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OPTIMAL APPROXIMATION OF SOLUTIONS OF POISSON EQUATION
BY INITIAL DATA IN THE FORM OF ACCURATE AND INACCURATE
INFORMATION OF TRIGONOMETRIC FOURIER COEFFICIENTS

Partial differential equations along with a function, derivative, and integral are basic mathematical
models. Therefore, the problem of their approximation by accurate and inaccurate information with
the construction of optimal computational aggregates (approximation methods) of approximation
is relevant and many articles are devoted to this issue.

In the article is considered the problem of approximation of solutions of Poisson equation with
the right-hand side f from the Nikol'skii classes H5(0,1)% in the Lebesgue metrics L?(0,1)* and
L°°(0,1)%. The orders of error of approximation of solutions of the Poisson equation by accurate
and inaccurate information in the form of trigonometric Fourier coefficients of f are obtained.
Namely, a lower bound for the approximation error based on accurate information is found for all
possible computational agregates using an arbitrary finite set of trigonometric Fourier coefficients.
A computational agregate (approximation method) by the trigonometric Fourier coefficients of the
right-hand side f of the equation is constructed that confirms this lower bound. The boundaries
of €x of inaccurate information preserving the order of error of approximation by accurate
information are established.

Key words: Poisson equation, approximation by accurate and inaccurate information, Nikol’skii
classes, optimal computational aggregate, boundaries of inaccurate information.
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K. Ky6amos arbinnarsl Akrebe onipaik yHuBepcureri, Axkrobe, Kazaxcran
2J1.H. T'ymuieB areianarsl Eypasust yaATTHIK yHEBepcuTeTi, Acrana, Kasakcran
*e-mail: arystangalikyzya@gmail.com
Tpuronomerpusaiblk Pypbe k03D PUIMEHTTEPIHEH AJBIHFAH I9J1 2K9HE JI9JI eMec bacTankbl
aknapar ooiibmamma Ilyaccon TeHaeyiHiH mermiMaepin onTUMAaNIbI 2Ky BIKTAY

Hepbec TybIHABLIBL JuddepPeHIAIBIK, TeHAeYIep (DYHKIMS, TYBIH/bI XKoHe HHTerpajMeH KaTap
HEri3r MaTeMaTHKaJIbIK, MOJIEIbIep KaTapbiHa KaTaabl. COHIBIKTAH, 1)1 2KOHE JI9JI eMeC aKIapar
GOMBIHINA OJIADJLI XKYBIKTAYIbIH, ONTHUMAJJBI €CEIITEeY arperarTapbii (XKYBIKTay 9iCTepiH) Kypy
Moceseci ©3eKTi OOJIBIIT TAOBLIABI KOHE OCHI MICEJIEre KOIITEreH MAKAJIAIAD apHAJIFaH.
Maxasaza f on xarel H}(0,1)°® Hukonbckuii Kiacbiaga kararbie [lyaccon Tenzeyinin mernmim-
nepin L2(0,1)* sxone L>°(0, 1) Jleber MeTpUKaapbIHIa KYBIKTAY ecebi KapacThIpbLIaIbl. f hyHK-
[USICBIHBIH, TPUTOHOMETPUIIBIK, Pyphbe Ko3hdUImeHTTepi TypiHae OepiireH Mol KOHE JI9JI eMecC
akmapar 6otibrama [lyaccon Ten ieyinin mernmimaepin XKybIKTay KaTeTIriHiH peTi ajabiHIbl. ATarr aii-
TKaHa, TpUroHoMeTpusiiblK Pypbe KoabduimenTTepiHiy Ke3 KeJIreH aKbIPJIbl JKUBIHBIH KOJIIaHA~
HBITI, DAPJIBIK, MYMKIH €CeTey arperarTapbl VIITiH 19/ aKIapaTTapra HeTi31eareH XKy bIKTay KaTeTi-
riHiH, ToMeHHEH Garajaybl aJblHIbl. ToMeHHEH Garajiay/ bl PACTARTLIH ecenTeyin arperar (Kybl-
KTay OJ1icl) TeHJIey/IiH OH YKaK TPUroHOMeTpHsIbIK Pypbe KoadduimenTrepi GOMBIHIIA KYPBULIHL.
o akmapar OOUBIHINA YKYBIKTay KATETITIHIH PETiH CAKTAWTHIH JI9JI €MeC aKIMapaTThIH €y IIeKa-
paJjiapbl aHBIKTAJIJIBL.

Tyitin ce3znep: Ilyaccon Teraeyi, 1o/ KoHE DT eMec aKIapaT OOUBIHINA XKYBIKTay, HUKOIbCKMit
KJIACCTaphl, THIMJII €CENTey arperar, JI2JI eMeC aKlapaT IeKapaJjaphbl.
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*e-mail: arystangalikyzya@gmail.com
OnrumanbHOe NIpudIN2KeHUe penieHnil ypaBHeHnil IlyaccoHa 1mo nmcxogHbIM JaHHBIM B BHE
TOYHBIX U NPUOJINKEHHBIX 3HAYEHU TpUroHoMerpudyeckux KoddduiimenToB ®ypbe

Huddepenmnmaabubie ypaBHEHNS B YACTHBIX TPOU3BOTHBIX HAPSIY ¢ (DyHKIHEH, TPOM3BOIHOM, MH-
TErpajioM OTHOCSITCS K OCHOBHBIM MATEMATHIECKUM MOJIEJISIM.

CiefoBaTe/IbHO 3a/a49a UX PUOJIMKEHUsI 110 TOYHBIM U HETOYHBIM JIAHHBIM C ITOCTPOEHUEM OITTH-
MAJIbHBIX BBIYUC/UTEIbHBIX arperaToB (MeTOIOB IPUO/IMIKEHNs) ABJIIETC aKTyaJbHON U JaHHO-
My BOIIPOCY TOCBEIIEHO MHOXKECTBO crareil. B crarbe uzydaercs: 3ajada TPUOIUKEHUST PEIIEHUI
ypasrenus [lyaccona ¢ npasoit yacroio f u3 kiaaccoB Hukosnbckoro H3 (0,1)° B JlebGerosoii meTpu-
kax L2(0,1)* m L°°(0,1)*. IToyIensl TIOPSIKA TOTPEITHOCTH TIPUOINYKEHNs PereHnii ypaBHeHus
[TyaccoHa 110 TOYHBIM U HETOYHBIM JIAHHBIM B BHJe TPUINOHOMETpUIecKux KoddduimeaToB Oypbe
dbyuknun f. ImenHo, HaiijileHa OIleHKa CHU3Y IIOIPEITHOCTU TPUOJIMKEHUSI 10 TOYHBIM JTAHHBIM 110
BCEM BO3MOXKHBIM BBIUUC/IUTEBHBIM arperaTaM, UCIOJIb3YIONUM KOHEUHBII HAOOP TPUTOHOMET-
puueckux koadbdunuenro Pypoe. [Hocrpoen BuraucauTe bHBI arperar (MeTO MPUOIIMKEHUS )
1o TpUroHOMeTpraIeckuM Koaddurmentam Oypoe npaBoit qactu f ypaBHEHUsI, TOTBEPK TATOIINIT
JIAHHYIO OIEHKY CHU3Y. YCTAHOBJIEHBI TPAHMIIBI £y HETOYHON MHMOPMAINU, COXPAHSIOIIIE TOPs-
JIOK yOBbIBAHME IO TOYHOU WHQOPMAIIAHN.

Kurouessbie ciioBa: ypasaenue [lyaccora, npubmKkeHre o TOYHBIM U HETOYHBIM JTAHHBIM, KJIaC-
cbl HUKOTHCKOTO, ONITUMAJIBLHBIH BBIYUCIUTEBHBIN arperaT, TPaHUIbl HETOTHON HHMOPMAIIH.

1 Introduction

Solutions of partial differential equations, even when expressed explicitly by means of Fourier
series in the eigenfunctions of the corresponding differential operator or convolution with the
corresponding kernels, being represented by series or integrals, in fact again infinite objects.
Therefore, the problem of approximating them with finite objects again arises. In the article
is considered the problem of approximation of solutions of Poisson equations in the sence of
computational (numerical) diameter (denoted by C(N)D). Poisson equation has an various
applications. One of them is that it describes the distribution of an electrostatistics, potential
theory, scalar field, such as an electric potential or gravitational potential, in space. Thus, its
physical meaning is that it relates the distribution of field sources to the field itself. Therefore,
it is important to take this equation into account. Let at first consider the definition of
computational (numerical) diameter problem.

In computational (numerical) diameter the initial definition is (see, for example, [1]- [2])

5N(€N; DN)Y = (SN(SN;T; F; DN)Y = mf 6 (SN7 (l( ). ))Y
(IN)son)eDN

where

dn(en; (l( )790N>> =on(en; T5 F; (Z(N)HON))Y:

= e IO e WA B0 Rl
S

CIUNEE

(T 1 .N)

Here, a mathematical model is given by the operator T : FF — Y. X and Y are the
normalized spaces of functions defined on 2y and €y respectively, I’ C Y is a class of
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functions. Numerical information [V) = [(M)(f) = (l%)(f),...,lj(\],v)(f)) of volume N(N =

1,2,...) about f from class F' is taken by linear functionals l%)(f), - lJ(VN)(f) (in general, not
necessarily linear). An information processing algorithm @n(z1,...,2x;+) : CN x Qx — C' is
a correspondence, which for every fixed (zy, ..., 2xy) € C as a function of (-) is an element of
Y and ¢n(0, ...,0;-) = 0. If the class of functions under consideration is centrally symmetric,
then the last condition ¢x(0, ...,0;-) = 0 can be ignored. The record ¢y € Y means that ¢y
satisfies all the conditions listed above, and {py}y is a set composed of all p € Y. Further,
(IM): ) is a computational aggregate of recovery from accurate information for the function
f € F acting according to the rule gpN(l](\}), ...,lg\],v); -). The recovery of T'f by inaccurate
information is proceeding as follows. At first the boundaries of the inaccuracy are set: a vector

EN = (55\1,), ...,5%\7)) with non-negative components. Then, the accurate values l](\;)( f) are

replaced with a given accuracy EE\T,) > 0 by approximate values z, = z:(f), |z — Zg) (N < 8%)
(tr = 1,..,N), numbers z, = z(f) (t = 1,...,N) are processed using the algorithm ¢y
up to the function ¢y (z1(f), ..., 2x(f); ), which will constitute the computational aggregate
(IM):on) = on(z1(f), ..., 2n(f); -) constructed according to information of the precision ey =
(W, .., e

Let Dy = Dy(F)y be a given set of complexes (lgvl), o l%v); on) = (M, oy), we
emphasize, operators of recovery by accurate information.

For nonnegative sequences {Ay} and {By}, we write Ay < By (or, equivalently Ay =
O(By)) if there exists a positive constant ¢ > 0 such that, for all N(N = 1,2,...) hold
Ayxn < ¢Bpy. Furthermore, we write Ay < By if both Ay <« By and By < Ay hold
simultaneously.

Within the framework of given notations and definitions, the problem of optimal recovery
by inaccurate information, framed under the name computational (numerical) diameter,
according to the [1]- [2], consists in a collective sense in sequential solution of the following
three problems: C(N)D-1, C(N)D-2 and C(N)D-3.

For given T F';Y; Dy:

C(N)D-1: an order of < 0x(0; Dy)y = on(0;T; F; Dy)y is found with the construction

of a specific computional aggregate (Z(N),@N) from Dy = Dy (F)y supporting ordering
= 0n(0; D)y

C(N)D-2: for (Z(N),GN) is considered the problem of existence and finding a sequence

eEn =en(Dn; (1 );GN))Y with non-negative components such that

z(N) —

on(0; Dy)y = on(En; (I 5 0N))y =

= sup{||Tf(-) — By (21, 2wy : f € F |l (f) — 2| <P (r € {1,..., N})}

with simultaneous satisfying the following expression

Vin T 400(0 <y < nvy1, My — +00)

7(N)

Sl

;PNn))v/0n(0; Dy)y = +00;
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C(N)D-3: massiveness of limiting error £y is set: as huge as possible set My (Z(N);GN)
from Dy (usually associated with the structure of the (Z(N);@V)) of computional aggregates

(IMN) o) is found, such that for each of them the following relation holds
Vnn T +00(0 <y < Nny1, v — +00) -

lim dn (nven; (I, on))y /n(0; D)y = +oc.
N—+o00

In the article is considered the following concretization of computational (numerical)
diameter problem. T'f = u(z, f) — the solution of Dirichlet problem of Poisson equations

*u  O%*u 0%

Au= 4 + ...+ —
dx?  0x3 12

= f(x)a (1>

on a unit cube [0, 1]°, where f(x) = f(xy,...,z5) € F = Hj — Nikol’skii class, Y are Lebesgue
metrics L? and L* and recovery is performed over all computational aggregates, in which
numerical information is specified by trigonometric Fourier coefficients with an arbitrary
spectrum:

~ -~

Dy =&y = {IP(f) = FmD), 1) = Fm™) :mW € Z5( =1,..., N)} x {on}y,

where Y is L? or L,

f(m) = fla)e ) gy

[0,1]°
are trigonometric Fourier coeficients, (m,x) = mix; + ... + msxs, m = (my,...,mg), * =
(@1, .oy Ts).

In this article, the computational (numerical) diameter problem in the specified
concretization is solved in parts C(N)D-1 and the first part of C(N)D-2. Let’s move on
to a brief overview of the issue.

One of the first result, when f is odd, approximation of solution to Poisson
equation is considered by N.M.Korobov in [3, p. 187-189]. There are approximation
operator is constructed on the value of the function f (initial condition) at the points

({%},...,{“&k ),k € 1,..,N, ({b} — fractional part of b). If ay,...,as are the optimal

coeflicients (see definition of optimal coeffitients in |3, p. 96]) modulo N and /8 index, then

(InN)Z+*
the approximation of error is O |
N2 275

The authors of [4] were achieved sharp estimates in the power scale for the approximation
error, which is almost square times better in comparison with previous result of Korobov.

. . InN)(r+2/s)(s—1) InN)"(B+s)+s\ .
More precisely, with accuracy O (%) and O (%) in cases 1 — % — % >0

and 1 — % — % < 0 respectively.

For practical purposes, however, in [5] got the result about sampling on sparse grids by the
Smolyak’s algorithm. In [6] considered the approximation of a function in the Besov class and
used it to approximate solutions of Laplace equation. As well as, approximate the solution of
2D and 3D Poisson’s equations by the Haar wavelet method is considered in [7]. Research on
the problem of approximating solutions of the Poisson equation with accurate information
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in anisotropic Korobov classes E™"+(0,1)° has been studied recently in the papers [§]-
[9]. The problem of approximation of solutions to Poisson equation with right-hand side
from Nikol’skii-Besov classes Bj,(0,1)* and anisotropic Korobov classes Em-7s(0,1)° by
the value of the function at the points ({&Nk} . {ask ) k € 1,...,N is considered in [10].
Approximation by inaccurate information of solutions of P01sson equatlons with right-hand
side f € E™ " is considered in [11] and f € E! and W cases are considered in [12]-
[13] respectively. There are obtained upper bound of error of approximation by innacurate
information from values at the points of f in uniform metric. In [12|, the author approximates
the solutions of the Poisson equation in the L? metric using an approximation operator
constructed from a finite set of Fourier coefficients of the function with right hand side
f € EI. Here is given a complete solution for C(N)D problem.

2 Necessary definitions and statements

Definition 1 (see [14], p. 75-76). The Nikol’skii class Hj(0,1)° (s = 1,2,..;7 > 0;1 < ¢ <
+00) is the set of all functions f(x) € L9(0,1)® that 1-periodic in each of their variable
satisfying the inequality

sup 27| 3T F(m) - emima) <1, (2)
7Ol gmi<2 Lo(o,1)s
where the square bracket [...] means the integer part. For everywhere below for m =

(my, ..., ms) we set ||m| = max;_q,__s|my|.

Let F' be some class of f(z) = f(z1,...,xs) functions 1-periodic in each variable whose
trigonometric Fourier series converges absolutely.

Assume that f(0) # 0. It is easy to verify that, for any boundary condition there exists a
function w(z) depending on this condition such that w(x) is continuous on [0, 1}* and Aw = 1
on [0, 1]°. Moreover, solution of (1) has the form

wolr, ) = () - 10) ~ 15 Z*%ew(mw), (3)

If f(O) = 0, then for a solution of (1) to exist, it is necessary that the boundary condition
u|¢ = h(x) on the boundary of G satisfies

_ _L * f(m) 2mi(m,x)
h(z) = P} (m,m)e (z € G).

If f(x1,...,x5) is odd in each of the variables z1, ..., z; then the function (see, |3|, p.187-189)
1 * f(m> 2mi(m,x)
u, f) = e (m,m)8
mezs
is a solution of (1) with zero boundary condition on [0, 1]°. Here and everywhere below the
asterisk “*” over the sum means that m = (0, ...,0) is dropped in the summation.
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3 Main result and its proof

Theorem 1. Let are given positive integer s and r > s/2. Then the following statements
hold (N = (2" +1)*, n=1,2,...)

C(N)D-1:
(SN(O, DN)LQ =

= inf sup ||ue(-, f) — Fim®W e Flm™) x ‘ = _%2’ 4

ez ez (- f) = en(f(m'), ., f(m); ) o) (4)

PN
upper bound is sharps on computational aggregate
s ey

—_ —(1 —(N)\. o 2mwi(m,x
@N(f(m( )>77f<m( ))7'7:) _w(x)f(())_meI (m7m)e ( )7 (5>

here in (5) the set {m") = 0,m?, ..., m™M} is some ordering of the set Ion, i.e.

Ly ={m = (my,..,m,) € Z° : m;| <2"(j = 1,2,...,8)} = {m = 0,m® ... .m"M}. (6)

~ ~

C(N)D-2 (first part): For computational aggregates @y (f(m"), ..., f(m™), z) from
(5) and for the numerical sequence

r4+2

N~ ifs < A4,
En<{ (InN)"z- N~ ifs =4, (7)
N=572,ifs >4
satisfy
ON(0; Dn)r2 < On (En; DN )2 <
= inf swp [t £) = on (Fm®) + 502, o Flm®)+
mMezs, . . mMezs, feHs,
o (VA<
=1,...,N)
N N — 1 1 iy
R = s e ) = en (RO + B P
€H),
SIS NI IES
(r=1,...,N)
N N _r+2
+20 )| = v, (8)

Proof. Let f belongs to Nikol’skii classes H}. Then since r > s/2 from the definition of
class Hj follows u,(z, f) € L*(0,1)%. Let n be a given positive integer, we set N = |[on| =
(271 + 1)%. According to the definition of Dy, we set

By = {mY = 0;m?;..;m™}, By = Ion,

-~ —q -~

(T () = FmDy = F(0),17)(f) = fmD), j = 2,3, ..., N.
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Let’s start with an upper bound for the value of dy (én; Dy);> from C(N)D-2. Let are

given {ny 71 {’y](\,m)}mebn, ]’y](\m < 1(r = 1,...,N). By (3) and (5), we have (L* =
L%(0,1)%)

T 1 1 — N
|t 1) = Ba(FEED) + 8, . ) + 804050 | | <
7r==(1) £(77(N) ~ (0 1 *gN7§Vm) 2mi(m,z)
< [Juate 1) = o (FE), . T )i0)|| @iy’ = g5 30 e <

melon ! L2
Z f 27rz(m x) + (x)g 0) L *gN'Y](Vm) 627T1;(m7x) =
(m, m) NIN T g2 (m,m) n

mGZS/IQn L2 melyn 12

= [Lallze + (12l 22

Estimating from above for ||I1]|2 gives upper bound for dy(0; Dy)z2 in C(N)D-1. We will
evaluate upper bound of the error of approximation in L? metric by using (2), (3), (5) and
Parseval’s equality:

~ -~

u(z, f) = on(fmW), ., f(m™); )

13 = |

_ flm) 2rilma)|| — |f (m)?
Z mm) Z Z 167r4(m,m)2<<

meZS/Ign 2 JEnH1 20 Iml|<27 1!

<L 2 T <<Z 2 G -’f<m3\mj\2>2<<

J=n+12i<||m||<27+1 J=n+12i<||m| <29+ ST

+oo
1 -~ Dy
R B S EY; TE) e SR o

j=n+1 29 <||m|| <29+ J=n+l
< 2—4n 2nr - N~ 2(T+2>
Further,
sup ||uw(z, f) — Pn( (m(l)), ...,f(m(N));x)H < N~
fEHS L2
and
~ o~ _r42
O DN = it s [lu(e, ) — e (Fm®), o Fn™)a)|| < N7
m(l)EZS ..... (N)EZS feHr L2

which is the upper bound in (4).
Then let’s evaluate || 15|12 (see(7))

1
Iollrs = ~ o 1 Ny 2mi(m,z) ~ o 1 :
|| 2”L2 = W(ZL‘)SN’YN A2 (m m)e < en+ Z EN (m m)g <
mé&lgon ! 2 melon ’
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N|=
|

n—1 n—1
_ 1 N 1
<L EnN 1+ E E (m2+...—{—m2)2 <K EnN 1+ E 27] E 1 <
=0 20 <|jm||<2i+1 V1 s 7=0 7 2i<|m|l<2i+1

1
n—1 2 n—1
<z 1+ (Z = 2j8> z 1+ (Z 2j<s—4>)
=0 ‘

7=0
If s < 4, then
1
n—1 2
~ - ~ 742
L)l < en | 14 <Z 23(84>> =&y =< N~
=0
If s =4, then
1
n—1 2
~ ~ 1 ~ 1 1 r+2 1 r+2
|22 < En 1—|—< 1) =<éey-nz<ey-(InN)2 < (InN)"2-N"« -(InN)2 < N~ 1
=0
If s > 4, then
1
< ; ? n(s—4) 1_2 r_1 1_2 r+2
1Ll < En [ L4+ | ) 2007 =Fy-2 7 =&y-NisxN:i2.N27s =N "%,
=0
Then, for f € H} and {7](\; ~_1, such that |fy(7)| <1 (r=1,..., N) satisfies
y = N
(@, ) = 2n(FO) + 80, FO) + 805 052) | < Mhillee + 1 Ellze <
Further, by the arbitrariness of the function f € Hj and{%(\? A |'y(7)| <1l(r=1,..,N)
oy n_(1 oy N
s [l £) =BT + EPR o T + 200000 | <
eHy,
CI AN e
(r=1,...,N)

In the end, we obtain the required upper bound in C(N)D-2

(@, f) — on (FmM) + 2071, .

OIN(EN; DN)r2 = inf sup ’
mMezs, . . .mMNezs, feHT

PN T T
(VL I,
(T 17 ’N)

f(m(N))"‘g{J\]fV)’YN, H <

and, by the definition of 05 (0; Dy )2 and dn(En; Dy )2

5N(O; DN)L2 < 5N(§N;DN)L2 <
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Let’s evaluate lower bound for dx(0, Dy)r2. Now, let us prove the lower bound in the
case of approximation from accurate information. Let are given an integer N > 1 and set
Ay ={mW, ..mW™) :mU) € Z5(j = 1,..., N)}. According to the choice of Dy, we define the
functionals I (f) = f(m®), .. I (f) = F(m™). Let @n (7, ..., 7x: %) also be an arbitrary
algorithm for processing information, such that @n(0,...,0;2) = 0. We define an integer
n =mn(s,N) > 1 from the conditions |lon| > 2N and |I3.| < N.

Let consider the function

gy =Y Talmenime), (10)

melon \AN

where @™ = k;(m) = k(j,n, s) when [2/(™7Y] < ||m| < 270", m € I \ Ay, j =0,1,...,n.
For the number of points of Isn \ An:

N < |In| > |I» \ An| > |Ion| — [AN] > 2N — N = N,

therefore

|]2n \ AN| = N.
By using Parseval’s equality, let define the norm of g
gl = swp 27 Y ke =

=0,1,..., v .
! " < ml <27,

NI
[

= sup 277 Z *]kj\Q = sup 207 kg Z 1| <
[29-1]< [ml|<2, =0 [29=1)< lml| <27,
m¢AN m¢AN

< sup 27 k- 2% — sup 200+ k;.
7=0,1,....n 7=0,1,....n
k; is defined from the condition [|gflg; < sup;_q;,.,2/"2) - k; < 1 (in that case g belong
to Hj class)

kj=2790%2) 5 =0,1,...,n. (11)

By putting (11) into (10), there are exist a positive constant ¢(s) such that

g(x) = c(s)g(z) = c(s) Z *E,(Im)eQWi(m’x) = c(s) Z Z *2_j(r+§)62”i(m’x).(12)

melgn\AN 7=0 mGIQn\AN,
2771 ImlI<2

Then, according to definition of g(x) satisfies l](\})(g) =g(mW) =0,.., Z%V) (9) = g(m™M) =
0, so it should be px(G(m™M),...,g(m™);.) = 0. Then for the lower bound of error of
approximation by accurate information we have

uy(z, f) — on (f(m(l)), . A(m(N));xM

>

sup 2
LQ

fEHE(0,1)*
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> |Juw(z, 9) — on (GmW), ... g(m™);2) ||, = llue (2, 9)ll 2 -

By definition of function g satisfies g(0) = 0. Let calculate the error by using Parseval’s
equality.

2
1

_(m

s . b * Uy, 2mi(m,) —
ol 93 = @) 50) = 15 30 e )

meElm\ Ay L2(0,1)s

2
o ||~ T 2mi(m,e) = - =
472 Z (m,m)e Z (m, m)*
mEI2n\AN

LQ(O,I)S m€]2n\AN

n—1 . A 1 2
=y ¥ (el ) >
mi+ ...+ m:

J=0 27 <||m|| <2741,
me¢AN

n—1 2
s * ]_
someny ) >
75 j

- ) ) max;—y, ...
=0 29 <|jm||<2i+1, ’
n—1
1 *
B DIy
> 2 > i 1>
J=0 V< Im||<27H,

meg¢AN

n—1
> 2—2n(r+%)—4n—4 . Z Z 1 = 2—2n(r+%)—4n—4 . |[2n \ ANl -

J=0 27 <|m||<27+1,

— 2—2nr—ns—4n LQns 2—2nr—4n — N_%T_%.
Finally, for (4) we have
sup |[us(e, /) = on(Fm®), ... Fn™a)| > N5 (13)
feHs L2

Then, due to the arbitrariness of m®,...,m®) from Z* and the information processing
algorithm ¢y, satisfies

on(0, D)= inf sup |[wa(e, £) = on(Fm®), . Fon™)a)| > N2 04)
m(l)GZS,...,m(N)EZS;fGHg L2
PN

As a result, by (9) and (14) we have (8)

(SN(O, DN)LQ = 5N(gN; DN)L2 = N_HS—Z.

Theorem 1 is proven.

Theorem 2. Let are given positive integer s and r > s/2. Then the following statements
hold(N = (2" +1)%, n=1,2,...)
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C(N)D-1:
5N(0; DN)Loo =
= inf su — FimM), ..., fm™); . H = N5 i3 (15
mMezs .., m(N)GZS fEI’II)T ( f) SON( ( ) f( ) ) Loo(0,1)s ( )
PN

C(N)D-2 (first part): For the computational aggregates @y (f(mY),..., f(m™N), z)
from (5) and for the numerical sequence

N3 ifs=1,
En << (InN)™t - N—"% ifs =2, (16)
N=572ifs> 2.
satisfy
—ro2yl
5]\[(0 DN)LOO(O 1)s = (SN (€N, DN)LOO(O 1)s =N 5+2. (17)

Proof. The proof will be carried out snmlarly by Theorem 1. Let are given f € HJ positive

integer n, N = |In| = (271 +1)* and {77}, = {77 }nes,n, such that [7{7] < 1. Then for
the error of approximation by computational aggregates (5)-(6) by inaccurate information
(L% = L>(0,1)°)

w1y = (FEm) + 2090, . F) + 20005 0)|| <

LOO

-~

< ||uo (. £) = B (FED). o FE V)i +

HLOO

*EN,}/ 7T’melf
+ ()5N7N 47r2 Z N ¢’ )

méelaon

= | Lsllzoe + [[1all Lo

LOO

Let’s estimate from above || 3| and || 14|

~ ~

uo(z, f) = pp(fmM), ., f(m™N); )

HLOO

— _L f(m) 627ri(m,;t) = |f(m)|
i 2 o) €L 2 )

oo d=nHL2i<|m]|<2i 41

+00 Ny 400 iy
7 7
<y ¥y ey y <

J=n+12i<|m||<29+1
“+oo
<y ¥y [fm)l.

j=n+1 27 <m||<27+1

Applying Holder’s inequality and (2), we will get required upper bound

400 2

L~ <2 3 | fmP] | X 1] <

j=n+1 \ 20 <|lm|<2i+1 23 <||m]|<2i+1

[



22 Optimal approximation of solutions of Poisson equations ...

< 2" 2n Z 2~ ] 2]r Z f(m)e2wi(m,x) < 2 2n—nr4+17 N7§7%+%.
j=nt 29 < | <291 L2
From the upper bound for || 3| =, we obtain the upper bound for (15) the approximation

by the accurate information

5N(O; DN)Loo =

(- ) = o (Fm™M), .. fm™); )

= inf sup
mWezs,. . .mWNezs; feHs
4PN

Then evaluate of |14z~ (see also (16))

H[4”L°° <L en+ Z 5N

n—1
(1 < En 1+221 Z 1 <<5N<1+Z2j<5—2>>.

melyn 23 <||m| <27 +1 =0
If s =1, then
~ 3
[ 4l < En < N2
If s =2, then
n—1
~ ~ ~ r_1 r_ 1
[ 14]|Le < EN (1 + Z 1> =<ey-n=<Eyx-InN=<(InN)"'-N"272.[nN < N 2 2,
=0
If s > 2, then

n—1
L]l < En (1 +y 2“82)) = Ey 2" <5y NS < N7imr . NS < Noimete

J=0

Finally, by estimation from above || I3]| .~ and || I4]| L~ we obtain the required upper bounds
n (17)

IN(0,Dy) e < IN(EN, D)oo =

- inf sup ‘ uo(z, f) — en(Fm™) + 2090, .., Fm™)+
mMezs, .. .mMNezs: feHsy,
oN

{'YN Y 17|’Y<T>\§17
(r=1,...,N)

N _r_2,41
F0n0 )| NEEL

(19)

A lower bound in the case of approximation from accurate information gives the
desired relation. Suppose we are given an integer N > 1, N linear functionals l](\})( f) =
f(m(l)),...,lng)(f) = fm"™), {mW, . mW™N} € Z° and a function @n(71,...,7n;7),

©n(0,...,0;2) = 0. We define an integer n = n(s, N) > 1 from the conditions |Is»| > 2N and
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Let consider the function

g(x) = c(s)N‘g_% Z " e2rilme) HJ.

mefgn \AN

where ¢(s) is a positive constant, defined so that g(x) € HJ.

Then, for the lower bound of error of approximation by accurate information

sup
feHS

w(e, ) = on (Fm®), o fm ™) | >

> sup [Juu(z, 9) = on GmD), ... gm™N);2) || . >
feHy

2 |luw(z, 9) = on (0,0, 0 2) | oo = [l (2, 9) [ oo -

Let estimate from below the norm of the solution.

1 «N75~
uw(l‘7g)L°0Hm > o)

mEIQn \AN

627ri(m,:v) —

~—| I~

Lo

r_ 1

1 fN—872 1 «N-:3
~ o o X el L 5

2
zeo1 | 47 melm\Ay (m,m) melm\Ay (m,m)
n—1 1
—n(r+5) N S - =
> 2 : Z 22(j+1) Z 1=
J=0 27 <||m|| <27+,

n—1

J=0 27 <||m||<27+1,
mg¢AN

- 27nr72n+% — N*%*%+%.
As a result,
_£_2+l
On(0, D)oo > N7 572,

Then by (19) and (20) we have

Theorem 2 is proven.

(20)
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4 Conclusion

In the present paper, the problem of the approximation of solutions of the Poisson equation
with right-hand side from the Nikol’skii classes Hj(0,1)® by accurate and inaccurate
information of the trigonometric Fourier coefficients in the sense of C(N)D-1 and the first
part of C(N)D-2 is considered.

Firstly, two-sided estimates for the error 6, (0; Dy)y (Y = L{0,1)* and Y = L*(0,1)*) of

approximation by accurate informmation were obtained (C(N)D-1 problem) with indicating
a computational aggregate that confirms the lower bound. For this computational aggregate,
bounds arises of inaccurate information that preserve the order of the error of approximation
by accurate information were found—the first part of problem C(N)D-2.
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