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MATHEMATICAL MODEL WITH NON-LOCAL BOUNDARY CONDITION
OF INCOMPRESSIBLE FLUID FILTRATION

This work is devoted to an actual problem today — the creation of cost-effective technology of
combined development of several reservoirs. Joint development of oil reservoirs combining two or
more oil reservoirs into one production facility by simultaneous extraction of reservoir fluids from
them by a single network of wells [1,[2]. Oil fields, as a rule, are multilayer, and the productive
formations are heterogeneous, first of all, by reservoir properties: first of all, they have different
permeability and thickness. It is economically unprofitable to drill a different production grid for
each of the productive formations. One of the primary tasks of putting an oil field into commercial
development is to combine productive formations into single production facilities and to carry out
joint development of these formations. After the reservoirs are combined into a single production
facility, they are drilled using a single grid of production and injection wells [3,/4]. This paper
considers a two-layer reservoir with different permeability and thickness. Numerical solution of
the model is proposed to determine the pressure field of incompressible fluid at known total
flow rate. The technology of combined development of several reservoirs isolated from each other
is used. We construct special difference equations in the neighborhood of internal boundaries
that allow us to apply the integro-interpolation method in a two-connected domain. Special
differences equations in the vicinity of internal borders, allowing overcome the difficulties arising
from the borders of the domain are constructed. The necessity of combined development in order
to reduce the economic costs is revealed and justified. Based on the numerical investigations
of the problem, obtained numerical results in programming language Fortran, and graphics in
Tecplot for double-layer reservoirs. The article also found an analytical solution of this problem
for the two reservoirs and made a comparative analysis of the results. Given conclusions about
the quality and accuracy of used iterative method. The scientific novelty of this work is to
research several layers by simultaneous selection of the reservoir fluids single well. The method of
solving and analysis of the results will be of interest to those skilled in the development the oil fields.

Key words: combined development, doubly connected domain, reservoir thickness, mesh of wells,
numerical solution, finite difference method, analytical solution.
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HTekapaJsbik HIAPTHI JOKAJAbI €MEC ChIFbIIIMAUTHIH CYMBIKTHIH,
dbuabTpaeHyiHiH MaTeMaTUKAJIBIK MOJIEJi

3eprrey KYMBICHI Ka3ipri Ke3jeri e3ekTi — HipHerre maacTbl 6ipre OHIIPY/IiH SKOHOMUAKAJIBIK, THIM-
JIi TEXHOJIOTUSICHIH KYpy Mocesecine apHasran. Exi Hemece KenkaTnapima maactap/ibl 6ipmesrisiie
VHFBIMa KYilecin eHrisin esaipy »kosuapbiaa |1,|2] GafinaHbicThl MaTeMATHKAJBIK MOJEIbIEPIIH
MIENNMiH KapacThIpy OipMe3riie MyHaiIbl OHIIPY/IiH KAXKETTUIrH Taugay MyMKIHIIKTEpiH Oe-
peai. MyHait KOpbl *KepacTbl KabaTTapbIHBIH OPTYPJI KOJIJIEKTOPJILIK, KACHETTEPiHe YKoHe TIaCTKa-
OaTmaapablH, KaJIbIHIbIFbIHA OaiilaHbIcThl opHajackad. Coran 6aiijaHbICThI MyHal KOPbI 6ap Ka-
Oarmajapra KeKe YHFbIMa XKYHeciH naiijaaany b, THiMIiIir mamasibl. COHABIKTaH MyHal KOPbI
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bap mIacTkabaTIaIapabl Oipre eHJIIPY KOJJIAPBIH KAPACTPBIN 3€PTTEy MYHAil MeXaHUKACHIHJIA
xkui Koszanbliagasl |3l /4]. ©s3apa Gaitnanbicnaran eki IuiacTarbl CYHBIK KODBIH ©HJIpPY ecebi
3epTTesred. MyHIa YHFBIMAHBIH, BIKIAJIIBIK PAIAyChIMEH IMEKTEITeH aiiMaKTa apHaNlbl aKbIPJIb-
AfBIPBIMIIBIK, CXeMa, AJIBIHBIN, OAPJLIK aifMak VIMiH WHTErPO-MHTEPHOJANUSIIBIK, 9IICTI KOIIAHY
2KoJIbI Koitblira. OckIiMeH Hipre eki IJIacT yiH IIeKapaJiblK, MapThl JOKAJIbIbl €MeC ChIFbLIMANTHIH
CYUBIKTBIK, (PUILTPJCHY eceOiHiH AaHAJIUTUKAJIBIK, IMEeIiMi asbIHbII, KYBIK IIEeIIMiHe TaJaay
Kacajabl. JKOHOMUKAJIBIK, IIMBIFBIHIADILI a3aiiTyga Oipre OHIIPYIiH KaXKeTTirl KepcerTiir,
monengenei. 2Kyprisiiren canapik 3eprreyiepin HoTuxkecinge Fortran 6armapiamanay TigiHe
€Kl TJIaCT YIMH eCenTiH CaHablK MoHIepi »kKome Tecplot Garmap/aMajbIK MaKeTiHIe Chi3daapbl
ajparad. KoJsmaHbLIFaH wTeparmablK, OJiCTiH camachkl mojesaeHretn. 2KyMbBICTBIH Oacka Ka-
PACTBIPBIIFAH KYMBICTAPMEH CAJIBICTHIPFAHIAFBI FBIIBIMEU 2KaHAJIBIFBI — e3apa OaitlaHbIcTIaraH
IJIACTapJAarbl CYHWBIK KOpPBIH Oip Me3rimge Oip yHFbIMaJIap TOPBIMEH OHJIPY ecebiH 3eprTey
GoJtbilt TabbLIA L. MomesbIi 3epTTey oJicTepi MeH aJIbIHFaH KOPBITBHIHIBI HOTUXKeIepl MyHall KeH
OPBIHJIAPHI MAMaHIAPBIHBIH, KbI3bIFYIIBLIBIFBIH TYIbIPYbl MYMKiH.

Tyiiin ce3mep: Gipre enmgipy, exi OailTaHbICKAH aifiMaK, MIACTHIH KyaThl, VHFBIMAJIAP TOPHI, CaH-
JIBIK, TIETITM, aKbIPJIb-AfbIPBIMIIBIK, 91iC, AHAJINTUKAJIBIK, MIEITiM.

K. Nmaubepaues®, A. Kapumos
Kazaxckuit HanuoHaJIbHBIH yHUBEpcuTeT nMeHn ajib-Papabdbu, Anmarsr, Kazaxcran
*e-mail: kanzharbek75ikb@gmail.com

Maremarudyeckasi MOJ€Jb C HEJIOKAJIBHBIM I'PAHUYHBIM
ycjioBueM (PUIbTPAIIN HECXKUMAEMON YKUIKOCTA

Jlannass paboTa TOCBAIIEHA aKTYAJbHON HA CErOMHSIITHUN JI€Hb MpobJieMe — CO3JAHUI0 SKOHOMU-
qeckn d(PDEKTUBHON TEXHOJIOIHH COBMECTHON pPa3pabOTKM HECKOJbKUX maacToB. CoBMecTHAs
paszpaboTka HedTIHBIX IJIACTOB — OObEINHEHNE IBYX U Oojiee HePTIHBIX IJIACTOB B OJUH IKCILIY-
ATAIMOHHBIN 00BEKT IIyTEM OJIHOBPEMEHHOrO 0TOOpA U3 HUX IJIACTOBON KUJIKOCTU €JIMHOI CeTKON
CKBaXKuH paccmarpusasancs MHoruMu asropamu |12]. Hedrsiabie MecTOpoXK IeHNs, KaK IIPaBHUIIO,
SIBJISIIOTCST MHOTOIIACTOBBIME, IIPUYEM IIPOJLYKTUBHBIE IJIACTHI HEOIHOPOJHDI, IIPEXKJE BCEro 10
KOJUIEKTOPCKUM CBONCTBaM HMMEIOT IEPBYIO OY€PEIb PA3IMIHYI0 MPOHUIAEMOCTb u ToJmuHy. Ha
KaXKJIblil U3 MPOAYKTUBHBIX ILIACTOB OyPHUTH CBOIO CETKY JIOOBIBAIOIINX SKOHOMUYECKHU YOBITOUHO.
OpiHO¥ M3 IEPBOOYEPETHBIX 33/1a9 BBOJIA HEDTIHONO MECTOPOXKJIEHUS B IIPOMBIIIJIEHHYIO pa3pa-
6OTKY sBJIsIeTCsl OObEMHEHNE IPOJYKTUBHBIX ILIACTOB B €JIMHBIE SKCILIYATAIMOHHBIE OOBEKTDHI
7 IIPOBEJIEHNE COBMECTHOH pa3paborkm 3tmx msactos. llociae obbeuHeHNs IJIACTOB B €IMHBIN
IKCILIYATAMOHHBIA 00beKT UX pPasbypUBAIOT 10 €IUHON ceTKe MoObIBaromux ckBaxkuu |[3||4].
B pabore paccmarpumBaeTcst ABYXCJOHHBIN TIJIACT PAa3JIUIHON MPOHUIIAEMOCTH W TOJIIIWHEI.
[Ipensioxkeno dYucieHHOE peEIleHre MOJIEJIN OIPE/IESIEHUs /IaBJIEHNs] HECXKAMAaeMOU JKUJIKOCTH,
KOIJIa M3BECTE€H CYMMAapHBIN JeOMT HPH OJHOBPEMEHHOI COBMECTHO# pa3paboTKe HECKOJbKUX
M30JIMPOBAHHBIX MEXKJy CODOOIl IIACTOB METOJIOM KOHEUHBIX pasHocteil. IlocTpoensl cuenuaibHbe
Pa3HOCTHBIE YPABHEHUsI B OKPECTHOCTY BHYTPEHHUX I'DAHWIIL, ITO3BOJISAIONINE TPUMEHUTD HHTETPO-
WHTEPIOJISIINOHHBI METOJT B JBYXCBA3HOI obsiactu. Ha ocHOBe mpOBEIEHHOrO WUCCIIEIOBAHUS
IIOCTABJIEHHO 3312491 10Ty YeHbl YMCJIEHHbIE PE3YIbTATHI Ha sA3bIKe MpOrpaMMupoBanus Fortran u
rpacduku mogenn ua Tecplot mist AByxcioiinoro maacra. Tak:ke HallIeHO AHAJTUTUIECKOE PeIlleHIe
JIAHHOHN 3aJIavu JJIst JBYX ILUIACTOB M CJIEIaH CPABHUTEIbHBII aHAJN3 MOJIYIEHHBIX PE3YJIbTATOB.
[Tomnyueno anajuTHYECKOE U YHCJIEHHOE PEIIeHHe 33/1a91 C HEJOKAJbHBIM PAHUIHBIM YCIOBHEM
[IPU COBMECTHOH pa3paboTKe NBYXCIOWHBIX IJIACTOB C 3aJaHHBIM CyMMapHBIM pacxomoMm. Hayanas
HOBU3HA DPAbOTHI 3AKJIIOYAETCH B HCCIEIOBAHUU HECKOJIBKHAX ILIACTOB IIyTEM OJIHOBPEMEHHOTO
0TOOPA IJIACTOBOI KWMITKOCTU €IMHOI CETKO# CKBaKUHBI. MeTos pelleHnst 1 aHaJII3 IOy 9€HHBIX
pe3yIbTaTOB Oy/IyT HHTEPECHBI CIIEIUAIUCTAM B 00JIACTH PAa3pabOTKU HEMTSIHBIX MECTOPOXK ICHUIA.

KitroueBbie ciioBa: coBMecTHasi pa3paboTKa, JBYXCBsI3Has 00JIACTH, MOIIHOCTH ILIACTA, CETKA
CKBasKWH, YUCJIEHHOE PEIIeHNne, MeTO/l KOHEUYHBIX Pa3HOCTel, aHAJIUTUYIECKOe PellieHne
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1 Introduction

The isothermal filtration of a homogeneous liquid in two formations isolated from each other,
but penetrated by one well, is considered. Thus, the problem of planned filtration of fluid into
a well comes down to finding a solution to Laplace’s equation in a doubly connected region,
the outer boundary of which is the contour of the filtration area, and the inner boundary is
the contour of the well.

Due to the fact that the size of the filtration area, as a rule, is much larger than the
size of the well contour, when solving the problem using the grid method, approximating
the filtration area by the grid area so as to take into account the size and shape of the well
presents certain difficulties |5]- |7].

When the well is replaced by a material point — the well in which the source (sink) is
located, the function p at point Oy becomes unlimited, and the flow rate q is defined as the
limit
. op
lim aandl =q, (1)

1—0
l

where [ is some closed contour covering the well, n is the external normal lose to (.

At filtration of homogeneous fluid the condition is quite justified.If we keep the
boundary Ow,, associated with the control well, then specifying only the well flow rate for
them is not sufficient; additional conditions are needed on the well contour, i.e.

dp
/ 0ondr =1 (2)
Owe
p(z,y) =C, at (z,y) € Ow.. (3)

where C' is some unknown constants. In this case it follows from relations , that in e
neighborhood of the well the function p(z,y) is represented as

p=u-+ alni, (4)

C

where #Uc, r. is the radius of the well.
Then from we have

27

1
=5 o(re, p)de (5)
T
0

Oc

Apparently, using relation and hydraulic conductivity, it is necessary to continue to
the inside of the well so that at the well point it takes o., and require the fulfillment of
condition instead of condition . In this case, we can apply the substitution method [7].
However, as a result of such a transition, condition (3) will be fulfilled only approximately.
Following the work [4,8] given conditions , on the well and taking into account the
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logarithmic dependence , the pressure function in € neighborhoods of the well, a finite-
difference method of solving the problem is constructed.

When studying the issue of fluid flow to production wells in a multi-layer system or in
layers with a permeable roof and bottom, it is necessary to take into account its possible flows
from one horizon to another, which greatly complicates theoretical studies and mathematical
solutions of practical problems. We will investigate the plane-radial motion of liquid in two-
layer formations isolated from each other, but opened by a single well. Considering that the
thickness of the formation H is small compared to its dimensions in the horizontal plane,
that the roof and the sole of the layers are impermeable, it is possible to pre-carry out all
the necessary averaging of the parameters by power and thus move from spatial tasks to flat
ones.Let’s direct the OZ axis against gravity and introduce the reduced pressure function
p* = p+ pgh. Then we write the filtration rate in the form v = —%gradp*. In the following
we will omit the asterisk at p* and by the function p we will understand the reduced pressure.

2 Mathematical model of fluid filtration in two-layer formations

Let us introduce the notations: w.-area, enclosed within the contour dw,, Q2-area enclosed
within 02, @)y is total flow rate of the well, selection from two layers, & = 1,2 is layer
number. Then € is a flat doubly connected region 0§, and w. € ) is a circle of radius
r. = € < diamf);. Assume that the center of the circle coincides with the origin. Let us pose
the problem of finding pressures in the region ). , = /@, that satisfy the equation

divopgradp, =0, k=12 (x,y) € Qep, (6)

where ¢ is the radius of the well hereafter for convenience we will assume r. = €. On the
contour 0§ takes the given values

pk(xay) = (,00(1',3/), (x,y) € 0y, (7>

on Ow, satisfy the following conditions

Opx, -
;}éws Uk%d’Y =Qo (z,y) € Owe (8)
p2(x,y) = pi(z,y) + pgzc  at(z,y) € duw. (9)

where g, = % > 0 is coefficient of hydraulic conductivity, pi(x,y) = C' is some unknown
constant value, z. = const is trance between the center surfaces (horizontal planes) of the
two layers, p is the density of liquids, g is the acceleration of free fall.

3 Analytical solution of the problem ([6)—(9)

Let’s pass to polar coordinates in two-dimensional space

r?=a?+y?, w=rcosp, y=rsing, tanp=y/z.
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In polar coordinates, the desired function p(r, ¢) must be periodic with period 27 : p(r, p+
2m) = p(r, ). Let us write the isobaric pressure field for a circular reservoir with constant
hydraulic conductivity coefficient (o} = const):

d’p;  1dp;
- =0 . R. 10
dr?  rdr » Te<T< (10)

On the contour of two-layer strata
We set the total flow rate )y on the well

2

Z]é i P = Qo (12)

, or
=1

and unknown pressure on the well contour

pa(re) = pa(re) + pgH. (13)
Let us represent the general solution in layers in the following form

pi(r)=A;Inr+ B;, i=1,2, (14)

Let us take a sector of a circular layer (Figure 1), where ZAOB = dp, dy = AB. Then

for small (%‘p) we have d% = r.sin (%‘p) or write dy & r.dp.

Figure 1. Sector of the circle dp = ZAOB.

2 27
Now let us write the condition (14]) with period 27 in the form ; of o; %’:}' redp = Q.
Then after integration on the basis of the general solution we obtain
27'('0'1141 + 27TO'2A2 = Qo. (15)

Taking into account the boundary conditions on the well contour, we determine the
integral constants for the first and second reservoirs:

C

A= (B =)/ (7). (16
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A = (po — p1(re) — pgH) / In (g) : (17)

From equations — we find the pressure on the well contour of the first and second
layers:

pi(re) = po — % In (EC) /(014 02) — 02 pgH /(01 + 02). (18)
palre) == 20 () flon +.02) + (1= 0001+ 02) - po. (19

Knowing the boundary conditions on the contour of two layers p;(R) = py and conditions
on the contour of the well and , we plot the field of pressure changes in the first and
second layers:

[ Qo
oo oy - pgH/ (01 + 09) r
pi(r) =po+ o1+ 09 + In (ﬁ) n(R) ’ (20)
e (1 —o09/(01 +02)) - pgH r
= —Iv— 2 — '1 . 21

If pgH = 0, we get a pressure field where the downhiller pressure at the well’s same for the
two layers, Pj(r.) = Py(r.) = const. It should be noted that problems with nonlocal boundary
condition for elliptic equation are considered by many authors. For example, in [9,/10] the
asymptotes of solutions of nonlocal elliptic equations are considered in flat bounded domains.

4 Numerical solution of the problem by finite difference method

In the case of joint reservoir development, the finite element method is proposed in [11]. It
is shown here that when using the finite difference method, the influence of the well radius
on the filtration process presents certain difficulties. Following the work [§8], we construct the
solution by the finite difference method. First, we will construct a solution method for one
layer (for the prostate we will take p = p; = po, 0 = 01 = 09, Q = Q1 = Qs, g1 = const).
Let the area 2 is covered by a grid Q(h > r.). We will place the well point Oy at node
(10, Jo)- The point Oy does not belong to the area 2, so the node (i, j,) does not belong to 2,
either. We include all points formed by the intersection of grid lines with the boundary dw.
We denote this set of nodes by 09, and we denote an area (cell) by €2; ; and its boundary
by Ow; j. Then the cell 0, ;, is doubly connected, has an internal boundary wy and, unlike
other elementary areas, contains not one grid point, but a set of nodes dwy, (see Fig. 1).
From the generalized Green’s formula and applying the condition , we obtain

Il Z

divogradpdV —% y a%d’y —]{ a%d”y —i Ja—nd’y —q1.

Wig,jo Wig.do
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The grid cell ©;, ;, is bi-connected because the cell contains a well with radius r. (Figure

2).
| (iorfy +1) |
i - 1
l dew;, |
— S VD . I A
| )2 |
(ip—14,) } 3 Li) 1—\:\:.,1 : (io+1.4,)
1ﬂln.m Ta |
| I
_._—_—T_—_—_—_T____.
| |
| |
! b Wd-1) !

Figure 2. The well is located at a grid node.

Let the grid be square x = ih, y = jh, 1,7 = +£1,+2,... then

Q= {%’—1/2 <2 < Tig1/2, Yj—12 S Y < Z/j+1/2}-

Thus, as a result of integration of equation @ over the cells §2; ; we obtain
dp
—d P, 22
% an ")/ 7.77 ( )

where ®, ; = ’ 7 SN
7 { q1, at (Z7]) = (ZOaJO)'

The radius (p) of influence of the well is comparable to the grid spacing (h). Then in
the neighborhoods of p point the function p has a logarithmic dependence. Therefore, in p

neighborhoods we introduce an auxiliary function

u=p—aglnr, r’=(xr—z0)>+ (y— o)’ (23)

where « is an undetermined constant.

Then we write in the following form

op dlnr
—d D, —d 24
[ TR 24
where 2% = 2% cos(n, z) + g—“ cos(n,y) and taking into account the difference derivative along

the normal Vn, m to the boundary =, (Figure 2). Thus ~,, is orthogonal to the m-th grid
line leaving node (4, j) of the grid. As a result of numerical differentiation and integration of

the left side of equation , we obtain

Zam nm UV Y = ”—aozom/ onr, (25)

Here V7, is the length of the boundary ~,,.
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Consider the cell €, ;, (Figure 2). Its outer boundary is formed by line segments z =
xo £ %(h +7.),y =1y % %(h + 7). In this cell, four points belong to the grid ;. Obviously,
the distance from all points to the well point O is equal to r.. When m = 1,3 and m = 2,4, we
write down the difference approximation V, ,u (h +1r.) and V,,u (h +r.). Then we make
the reverse transition on the grid, i.e. we exclude the grid values of the auxiliary function
u(z,y) using equality connecting the values of the functions p(x,y) and u(z,y). Since in
our case h > r., we can get:

h h
Vamt = (pioﬂ,jo — Piojo — al”—) o Vymt = (pio,joﬂ — Pio.jo — al”—> :

c c

It is not difficult to make sure that for all m we have

/ Olnr /1/2 1/2hdy B

. q1 - _ 1
Here ap = , where Gop = § (Tig1/2.j0 + Tio—1/20 + Tiojo+1/2 + Tigjo—1/2) -

2M0O cp
Finally, for the cell €, j,, the difference equations with a given flow rate ¢; for one layer

will be written in the form

DX

hQL(Ua p>io7j0 = Oiy+1/2,j0 (pi0+17j0 - pioJo) + Tig—1/2,4o (pio—l,jo - piovjo)

h
+0ig jo+1/2 (Pio.jot1 = Piosjo) + Tioo—1/2 (Pio.jo—1 = Pioyjo) = @1 In —.
Thus, when the radius of influence of the well (p) is equal to the grid step (h), for one
reservoir the condition has the following difference approximation

2 h
th(O', p)iOJO = ;Ch In r_c (26)

Accordingly, expression gives a difference approximation at the point-well and for
the second layer. Let us assume that the grid spacing for the two layers is the same. In this
case, the following expression can be written for the two layers

2 h 2 h
h2L1 (Ulvp)io,jo + h2L2<0'27p)i07j0 - ;(h In 7’_ * ;qQ n > (27>

(&
Then, taking into account the total flow rate (Qy = ¢1 + ¢2) from two layers, we obtain

h

N
Te

2
WLy (01, D)iejo + W*La(02,D)i0.jo = —Qoln (28)

We construct numerical solutions of the problem @f@ by the longitudinal-transverse
scheme proposed by Peaceman—-Rachford.
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5 The Peaceman—Rachford method for solving the problem @f@

Let the grid be square x = ih, y = jh, 1,7 = £1,£2,... Then the left side of the difference
equation inside the domain on a five-point template with an error of O(h?) will have the
form [12]:

hQLk(Um,p)i,j = Okt (Pz'+1,j - Pi,j) + Oki-1,j (pifl,j - Pi,j)

Ok 41 T (Pij+1 — Pij) + O-k,z‘,j—%(pi,j—l — Dij) (29)

here k£ = 1,2 layer numbers.
Let’s write down the boundary conditions on the well

2 h
hQLl(O-bp)io,jO + h2L2(027p)i0,j0 = ;QO In 7’_7
D2,i0,jo = Plio,jo T th' (30)
On the contour r = R of two-layered interlayers
Pk (T> = $o, k= ]-7 2. (31)

Let us write equation with constant hydraulic conductivity coefficient o = const. Let
us introduce the difference operators:

P+1P = P+2P = Pij+1, Ep= Dij-

Let us represent the operator L, as a sum, e.g. for k = 1.

01

2

01

Ly=Ai+ Ay, A= =

(py1 —2E+p_1), A (py2 —2E 4+ p_s).

If p¥ = {pf j} , is known, it is done in two steps through finding the intermediate value
k+1/2
P2 — {pzj / } :

k+1/2 k
Dij  —Pij

w

= RPAPTY2 L R2ApF, 1<i<N-1,1<j<N-1, (32)

the corresponding entry is the same at k = 2.
Condition (33 at the intermediate stage

2 h
AjopP ™2 4 Agop® = Lo(0,p)igjo + ;Qo In r—/h2~ (33)

On the contour of the layers, pfjl/ 2 = .

Similarly, the Peaceman-Rachford method is constructed for the second layer in the
case of the operator Ls(og,p), [15]. The computational algorithm of the problem @—@



100 Mathematical model with non-local boundary condition ...

consists of two stages — internal and external iteration.In the case of internal iteration, the
pressure function in individual formations is determined. And the outer iteration ends when
the nonlocal boundary condition is satisfied.

During the computational process, for example, for the first layer at a well point, from
expression (23) we determine Ly (071, p)y, j, with fixed Lo(02, p)i, ;, and we solve Ly (o1, p); j i.e.
we perform an internal iteration for the first layer. Then we carry out the internal iteration
for the second layer with fixed L;(o1,p)i,,j, and solve La(o2,p); ;. This procedure continues
until condition is satisfied, at which point the outer iteration ends.

Let us briefly dwell on the issue of convergence of the Peaceman—Rachford method [13].
Matrices A; and As are symmetric and negative — definite and have a common complete
orthonormal system of eigenvectors

2sin(imghy ) sin(inlh); k=1,N; —1; [ =1,Ny — 1.

The eigenvalues of the operator A; and Ay are (\)4, = —izsin’ (m), (Aj)a, =

h? 2
—Lsin? (Z2) 1 <i< N —1,1<j< N, — L.

h3

In the case of a tridiagonal matrix, excluding p**1/2

, We can write
(E — (,UAl)(E — WAQ)pk+1 = (E + wAl)(E + (A}A2>pk,

Hence p**! = (E — wAy) " YE — wA)) " (E + wA;)(E + wAs)p®. Tt is known that the
eigenvalues of the transition operator are taken

B = (E — WAl)(E — CL)AQ)(E + CUAl)(E + CL)AQ)

equal
Ou)s — W) L+ wX)a,
’ L—wN)a, 1T—w)a

Since (Ai)a, < 0, (A\j)a, <0, then (\;j)p < 1 and w > 0 for any w > 0. Therefore, the
Peaceman-Rachford method converges.

If the internal iteration associated with the Peaceman-Reckford method converges, then
obviously the external iteration also converges.

In this method, the question of the optimal choice of w is a complex issue that is not
resolved in all cases. You can proceed as follows: for the first N-1 iterations put |14}/15]

B 1
Wk4+1 = ()\1')A1’

Then (\;;)p, 1 <i < N; —1 from will vanish. If at the same time the inequality

(34)

k:O,N1—2.

max - |piyt - pi] <€
1<i< N -1
1<j<Ny—1
then w is then chosen to be equal to
1
wpy=—————, k=N —1,Ny,...,Ny + Ny — 3.

(Ak—NH-Q)Az

R* will be a value of the order of e~ ?~*. The value vy characterizes the quality of the
iterative method. As is known, for the simplest iteration process P! = P* + a(Au* — h2f)
under certain restrictions on a we have vy = 1/N2.
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Conclusion

The solution of the problem @f@ was carried out with the following parameters. On the
contour of the layers, the same pressure was maintained at 15 MPa, the fluid flow rate from
the two layers was 80 t/day, the thickness of the layers was 10 m, 15 m, and the thickness of
the impermeable interlayer bridge was 0.5 m, the fluid viscosity was 4 Sp, the permeability’s
were different 0.3 D, 0.5 D. The results obtained by finite difference method were compared
with the exact solution. In the filtration area of the radius of influence of the well, the error
averaged 0.1 per cent. However, this error did not exceed 0.05 per cent when approaching the
reservoir contour, i.e. it decreased. For }l area they obtained solutions by formulas f
are shown in Figures 1 and 2. The same pressure of 14 MPa was maintained at the contour
of the two layers, and the well radius was 12 cm. Here, the isobaric surfaces of the pressure
field P(x,y) differ by 0.7 MPa. In Figure 4, the isobaric surfaces are obtained with a contour
pressure of 13 MPa. Naturally, when the contour pressure decreases, the concentric surfaces
occupy less area.

P
1389
139.8
1387
1386
1385
1394
1383
139.2
= 4P 1381

@
R (v

1384
138.8
1387
138.8
1385
1384
138.3
1382
1381

Figure 3. Pressure field for the first.

[

0

L 1
(1] 2 4 8 B T

Figure 4. Pressure field for the second layer with permeability of 0.5 D.
Layer with permeability of 0.3 D. The contour pressure is 14 MPa.
The contour pressure is 14 MPa.
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Figure 5. Pressure field for the first layer with a permeability of 0.5 D.
Pressure on the contour is 13 MPa.

Joint development of several formations with one well can be cost-effective, especially
for low-productivity formations that cannot be exploited separately because they are not
economically feasible. The results obtained with the analytical method show the correctness
and high accuracy of the numerical finite difference method.
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