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INVERSE SOURCE RECOVERY IN A CLASS OF SINGULAR DIFFUSION
EQUATIONS VIA OPTIMAL CONTROL

This paper addresses the inverse problem of identifying a space-dependent source term in a
singular parabolic equation involving an inverse-square potential, knowing final time measurement
data. The problem is reformulated within an optimal control framework, minimizing a Tikhonov-
regularized functional to ensure stability. Theoretical contributions include existence and
uniqueness of weak solutions for the direct problem, along with a stability estimate for the inverse
problem under a first-order optimality condition. A Landweber-type iterative algorithm is designed
for numerical reconstruction, validated through synthetic examples with both exact and noisy data.
Key words: Inverse problem, singular parabolic equation, stability; regularization,
Landweber method.
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Сингулярлық диффузиялық теңдеулер класы үшiн көздi оңтайлы басқару

әдiсiмен қалпына келтiру

Бұл жұмыста керi квадратты потенциалы бар сингулярлық параболалық теңдеудегi кеңiстiк-
тiк тәуелдi көздi анықтаудың керi есебi қарастырылады, ол ақырлы уақыт мезетiндегi өл-
шеу деректерiн пайдаланады. Есеп тиiмдi басқарудағы орнықтылықты қамтамасыз ету үшiн
Тихоновтың регуляризацияланған функционалын минимизациялауға негiзделiп тұжырым-
далған. Теориялық нәтижелерi ретiнде тура есеп үшiн әлсiз шешiмнiң бар және жалғыздығы
дәлелденуiн, сонымен қатар, бiрiншi реттiк оптималдық шарты орындалған жағдайда керi
есептiң орнықтылығының бағалауын айтуға болады. Сандық нәтижелерi ретiнде дәл және
шулы деректермен синтетикалық мысалдарда тексерiлген Ландвебер типiндегi итерациялық
алгоритм әзiрлендi.
Түйiндi сөздер: Керi есеп, сингулярлы параболалық теңдеу, тұрақтылық, регуляризация,
Ландвебер әдiсi.
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Восстановление источника в классе сингулярных уравнений диффузии с

использованием метода оптимального управления

В данной работе рассматривается обратная задача идентификации пространственно-
зависимого источника в сингулярном параболическом уравнении с обратно-квадратичным
потенциалом на основе данных измерений в конечный момент времени. Задача переформу-
лируется в рамках оптимального управления путём минимизации регуляризованного функ-
ционала Тихонова, что обеспечивает устойчивость решения. Теоретические результаты вклю-
чают доказательство существования и единственности слабого решения для прямой задачи,
а также оценку устойчивости для обратной задачи, основанную на условии оптимальности
первого порядка. Для численной реконструкции разработан итерационный алгоритм типа
Ландвебера, эффективность которого подтверждена на синтетических примерах с точными
и зашумлёнными данными.
Түйiндi сөздер: Обратная задача, сингулярное параболическое уравнение, стабильность,
регуляризация, Метод Ландвебера.

1 introduction

Inverse problems are concerned with the identification of unknown inputs or sources from
partial or indirect observations of the system’s response, in contrast to forward problems,
where the output is computed from given inputs. It is well known that inverse problems are
often ill-posed in the sense of Hadamard; that is, the solution may not exist, may not be
unique, or may not depend continuously on the data. Consequently, small perturbations in
the measurements—such as those due to noise—can lead to significant errors in the solution

In the present work, we investigate the inverse problem of identifying a spatially dependent
source term in a singular parabolic equation from measurements of the solution at a fixed
final time. More precisely, we consider the following initial-boundary value problem

∂tθ(x, t)− θxx(x, t)−
µ

|x|2 θ(x, t) = f(x), (x, t) ∈ QT := Ω× (0, T ),

θ(0, t) = θ(1, t) = 0, t ∈ (0, T ),

θ(x, 0) = θ0(x), x ∈ Ω,

(1)

where Ω := (0, 1), 0 < T < ∞ is an arbitrary final fixed time, θ0 is a given smooth function
describe the initial state, f(x) represents the unknown source term which is assumed to be
kept independent of time variable t.

We are particularly concerned with the inverse problem of recovering the spatially
dependent source term f(x) appearing in the governing parabolic equation. To this end,
we assume that the solution u(x, t) is observed at the final time t = T over the spatial
domain Ω, that is

u(x, T ) = ω(x), x ∈ Ω, (2)

where ω ∈ L2(Ω) denotes the final-time observation. When the source term f(x) is known,
the associated initial-boundary value problem (1) defines the so-called direct (or forward)
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problem. In the present study, however, f(x) is unknown and must be identified from the
final observation (2). Accordingly, we formulate the inverse problem as the determination of
f(x) from a prescribed admissible class such that the corresponding solution to (1) satisfies
the final-time constraint (2).

Singular inverse-square potentials have attracted considerable attention in recent years
due to their relevance in modeling various physical phenomena across multiple disciplines,
including quantum cosmology [5], combustion theory [6], electron capture processes [8],
and quantum mechanics [7]. Moreover, such potentials naturally arise in the linearization
of certain reaction–diffusion systems governed by the heat equation involving supercritical
source terms [1].

In the context of inverse problems for parabolic equations, a substantial body of literature
has addressed issues related to stability and well-posedness for various classes of equations
using a range of analytical and numerical techniques [12,17–21].

Concerning inverse problems for singular parabolic equations, we mention, among other
works, the study in [15], where the inverse source problem for the model (1) was investigated
in a multidimensional setting. In [11], the author addressed the inverse problem of identifying
a source term in degenerate singular parabolic equations, with degeneracy and singularity
occurring in the interior of the spatial domain. More recently, in [14], the inverse source
problem for a heat equation involving multipolar inverse-square potentials was considered.

From a numerical perspective, it is worth noting that only a limited number of works have
been devoted to the identification of source terms or coefficients in parabolic equations with
inverse-square potentials, despite the fact that such models arise naturally in both theoretical
studies and applied contexts.

In contrast to the aforementioned studies, which commonly rely on techniques based
on Carleman estimates [17], our approach is framed within the context of optimal control
theory—a widely used methodology for addressing inverse source problems in a broad class
of evolution equations [1,10,13,22]. Specifically, we recast the inverse problem as an optimal
control problem, where the unknown source term is treated as a control variable. The objective
is then to minimize a suitably defined cost functional, which yields a quasi-solution to the
original inverse problem.

By deriving and analyzing the first-order necessary optimality conditions, we establish
both the local stability and uniqueness of the quasi-solution. More precisely, our main stability
result can be stated as follows: let (U, f) and (Ũ , f̃) be two solutions to the inverse problem
(1)–(2) corresponding to final-time observations ω and ω̃, respectively. Then, there exists a
constant C > 0, independent of the final time T , such that

∥f − f̃∥2L2(Ω) ≤ C∥ω − ω̃∥2L2(Ω).

The second main contribution of this work concerns the numerical reconstruction of the
unknown source term in the problem (1), based on the final-time observation (2). To this
end, we develop a numerical scheme built upon the well-known Landweber iterative method.
This approach has proven to be both reliable and efficient, as demonstrated through a series
of numerical experiments.

The remainder of the paper is organized as follows. In Section 2, we establish the well-
posedness of the direct problem (1). Section 3 is devoted to the analysis of the inverse
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problem within an optimal control framework; in particular, we prove the existence of a
minimizer for the cost functional and derive the associated first-order necessary optimality
condition. In Section 4, using the optimality condition, we establish a stability result for the
inverse problem. Section 5 is concerned with the numerical reconstruction of the unknown
source term. To this end, we implement a Landweber-type iterative method to compute an
approximate solution to the inverse problem based on the final-time data.

2 Analysis of the direct problem

2.1 Functional framework

As is well known in the analysis of parabolic equations involving singular inverse-square
potentials, the constant µ plays a crucial role in determining the well-posedness of the
associated problem. Specifically, there exists a critical threshold µ∗ > 0 beyond which the
problem becomes ill-posed. This upper bound is given by the optimal constant in the Hardy
inequality, which ensures that for any function z ∈ H1

0 (Ω), the weighted function z
x
∈ L2(Ω),

and the following inequality holds:

µ∗
∫
Ω

z2(x)

x2
dx ≤

∫
Ω

|zx(x)|2 dx. (3)

In the one-dimensional setting Ω = (0, 1), it is known that the critical constant is µ∗ = 1
4
.

For fixed µ ∈ (0, µ∗], we define the following functional space:

H1
µ,0(Ω) :=

{
z ∈ L2(Ω) ∩H1

loc(Ω) : z(0) = z(1) = 0,

∫
Ω

(
z2x(x)− µ

z2(x)

x2

)
dx < +∞

}
.

This space is a Hilbert space when equipped with the inner product

(z1, z2)µ :=

∫
Ω

(
z1,x(x)z2,x(x)− µ

z1(x)z2(x)

x2

)
dx,

and the corresponding norm

∥z∥µ :=

(∫
Ω

(
z2x(x)− µ

z2(x)

x2

)
dx

)1/2

.

By standard arguments, one can show that there exist positive constants C1, C2 > 0,
depending on µ, such that

(1− 4µ)

∫
Ω

z2x dx+ C1

∫
Ω

z2 dx ≤ ∥z∥2µ ≤ (1 + 4µ)

∫
Ω

z2x dx+ C2

∫
Ω

z2 dx.

This implies that for the subcritical case µ < µ∗, the spaces H1
µ,0(Ω) and H1

0 (Ω) are
topologically equivalent with respect to their norms. However, in the critical case µ = µ∗, the
space H1

µ,0(Ω) strictly contains H1
0 (Ω), that is,

H1
0 (Ω) ⊊ H1

µ,0(Ω).
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In this work, we restrict our attention to the subcritical case 0 < µ < µ∗. Now, le us define
the space H1

µ(Ω) as the completion of H1(Ω) with respect to the norm

∥z∥H1
µ(Ω) :=

(
∥z∥2L2(Ω) + ∥z∥2µ

)1/2

.

Accordingly, we may write

H1
µ,0(Ω) =

{
z ∈ H1

µ(Ω) : z(0) = z(1) = 0
}
.

Under the assumption µ < 1
4
, it is known that H1

µ(Ω) embeds continuously into the Sobolev
space W 1,q

0 (Ω) for all 1 ≤ q < 2, and also into the fractional Sobolev spaces Hs
0(Ω) for all

0 ≤ s < 1. Moreover, due to the compact embedding W 1,q
0 (Ω) ↪→ Hs

0(Ω) for suitable q = q(s)
sufficiently close to 2, and the compactness of Hs

0(Ω) ↪→ L2(Ω), we conclude that

H1
µ(Ω) ↪→↪→ L2(Ω),

where the embedding is compact. For more details on the properties of H1
µ(Ω), we refer the

reader to [2] and [15].

2.2 Well-posedness of the Direct Problem

In order to analyze the inverse problem associated with the differential equation under
consideration, a thorough understanding of the corresponding direct problem is essential.
Therefore, we begin by establishing the well-posedness of the direct problem, with a detailed
analysis of the existence, uniqueness, and regularity of its solutions.

To define a weak solution, we multiply equation (1) by a test function ϕ ∈ H1
µ,0(Ω),

integrate over Ω, and use integration by parts. This leads to the following variational
formulation.

Definition 1. Let θ0 ∈ L2(Ω) and f ∈ L2(QT ). A function θ is said to be a weak solution
to problem (1) if

θ ∈ L2(0, T ;H1
µ,0(Ω)), θt ∈ L2(0, T ;H−1

µ (Ω)),

and for all test functions ϕ ∈ L2(0, T ;H1
µ,0(Ω)), the following variational identity holds:∫∫

QT

θtϕ dx dt+

∫∫
QT

θxϕx dx dt− µ

∫∫
QT

θϕ

x2
dx dt =

∫∫
QT

fϕ dx dt, (4)

with the initial condition θ(0) = θ0 satisfied in L2(Ω).

Remark 1. The use of the weighted Sobolev space H1
µ,0(Ω) is crucial due to the singularity

of the potential term µx−2θ, which renders the classical space H1
0 (Ω) inadequate when µ > 0.

For µ < µ∗, the Hardy inequality ensures that the bilinear form associated with the operator
is coercive on H1

µ,0(Ω).
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Before formulating the inverse problem, it is necessary to establish that the associated
direct problem is well posed.
This ensures that for any admissible source term, the governing singular parabolic equation
admits a unique weak solution that depends continuously on the data.
Such a result guarantees that the forward operator is mathematically well defined, which is
a fundamental prerequisite for the subsequent optimal control framework.

Theorem 1. Let θ0 ∈ L2(Ω) and f ∈ L2(QT ). Then, problem (1) admits a unique weak
solution θ in the sense of Definition 1, satisfying

θ ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1
µ,0(Ω)), θt ∈ L2(0, T ;H−1

µ (Ω)).

Moreover, the following a priori energy estimate holds:

sup
t∈[0,T ]

∥θ(t)∥2L2(Ω)+

∫ T

0

∥θ(t)∥2µ dt+
∫ T

0

∥θt(t)∥2H−1
µ (Ω)

dt ≤ C
(
∥θ0∥2L2(Ω) + ∥f∥2L2(QT )

)
, (5)

where the constant C > 0 depends only on µ,Ω, and T .

3 Optimal control

The inverse problem under consideration is ill-posed in the sense of Hadamard, meaning that
uniqueness and stability of solutions cannot be guaranteed without introducing additional
constraints.
A widely used strategy in such cases is to recast the inverse problem as an optimal control
problem, where the unknown source term is treated as a control variable.
This approach allows us to incorporate a regularization mechanism that stabilizes the
inversion procedure.

More precisely, the inverse problem is reformulated as the minimization of a Tikhonov-
type cost functional, consisting of two terms: a data misfit term that enforces consistency
with the final-time observation, and a penalty term that ensures stability by controlling the
norm of the source.
The admissible set of controls is restricted to bounded functions in L2(Ω), which reflects a
priori physical knowledge about the source.

This optimal control formulation serves as the foundation for the subsequent analysis. In
particular, it allows us to establish the existence of minimizers (Th2), to derive necessary
optimality conditions (Th3), and to prove stability estimates for the reconstructed source
(Th4). Hence, Section 3 plays a crucial role in bridging the direct analysis of the forward
problem with the theoretical and numerical treatment of the inverse problem.

4 Formulation of the Inverse Problem

The inverse problem addressed in this work can be stated as follows: given an initial condition
θ0(x) ∈ L2(Ω) and a final-time observation ω(x) ∈ L2(Ω), determine the spatially dependent
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source term f(x) such that the corresponding solution θ to the initial-boundary value
problem (1) satisfies the over-specified final condition

θ(x, T ) = ω(x), for all x ∈ Ω. (6)

To tackle this ill-posed problem, we adopt an optimal control framework. The inverse
problem is reformulated as the following constrained optimization problem: find f ∗ ∈ A such
that

min
f∈A

J (f) = J (f ∗), subject to θ[f ] solving (1), (7)

where the cost functional J : L2(Ω) → R is defined by

J (f) :=
1

2
∥θ[f ](·, T )− ω∥2L2(Ω) +

γ

2
∥f∥2L2(Ω), (8)

and γ > 0 is a regularization parameter. The admissible set A ⊂ L2(Ω) is given by

A :=
{
f ∈ L2(Ω) : c0 ≤ f(x) ≤ c1 a.e. in Ω

}
, (9)

for some constants 0 < c0 < c1. The regularization term in (8) ensures the stability of the
minimization problem and reflects a priori bounds on the unknown source.

Next, we establish the existence of an optimal solution to the minimization problem (7)
by means of the following result.

Theorem 2. Let θ0 ∈ L2(Ω), ω ∈ L2(Ω), and assume that the direct problem (1) admits a
unique weak solution θ[f ] for every f ∈ A, as guaranteed by Theorem 1. Then, the optimal
control problem (7) admits at least one solution; that is, there exists f ∗ ∈ A such that

J (f ∗) = min
f∈A

J (f).

Proof 1. Since J (f) ≥ 0 for all f ∈ A, the cost functional J admits an infimum over the
admissible set A, denoted by

d := inf
f∈A

J (f).

Let (fn)n∈N ⊂ A be a minimizing sequence such that

d < J (fn) ≤ d+
1

n
, for all n ∈ N∗. (10)

Since A ⊂ L2(Ω) is closed, convex, and bounded, there exists a subsequence (still denoted fn)
and a limit f ∗ ∈ A such that

fn ⇀ f ∗ weakly in L2(Ω). (11)

Let θn := θ[fn] denote the unique weak solution to problem (1) with source term fn. By
Theorem 1, the sequence (θn) is uniformly bounded in the spaces

L2(0, T ;H1
µ,0(Ω)), L∞(0, T ;L2(Ω)), and L2(0, T ;H−1

µ (Ω)).
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Hence, up to a subsequence, there exists θ∗ ∈ L2(0, T ;H1
µ,0(Ω)) such that

θn ⇀ θ∗ weakly in L2(0, T ;H1
µ,0(Ω)),

θn
∗
⇀ θ∗ weakly-* in L∞(0, T ;L2(Ω)),

∂tθn ⇀ ∂tθ
∗ weakly in L2(0, T ;H−1

µ (Ω)).

(12)

Furthermore, by the Aubin–Lions lemma and the compact embedding H1
µ,0(Ω) ↪→↪→ L2(Ω),

we also obtain the strong convergence

θn → θ∗ strongly in L2(QT ). (13)

Now, subtracting the weak formulations satisfied by θ∗ = θ[f ∗] and θn = θ[fn], and testing
the resulting equation by ϕ = θ∗ − θn, we obtain the energy inequality:

1

2

d

dt
∥θ∗(t)− θn(t)∥2L2(Ω) ≤ h(t)

∫
Ω

(f ∗(x)− fn(x))(θ
∗(x, t)− θn(x, t)) dx. (14)

Integrating both sides over (0, T ), we get

∥θ∗(T )− θn(T )∥2L2(Ω) ≤
∫∫

QT

h(t)(f ∗(x)− fn(x))(θ
∗(x, t)− θn(x, t)) dx dt.

Using the weak convergence fn ⇀ f ∗ in L2(Ω) and strong convergence θn → θ∗ in L2(QT ),
we deduce that the right-hand side vanishes as n→ ∞, hence:

∥θ∗(T )− θn(T )∥L2(Ω) → 0 as n→ ∞. (15)

To conclude, we analyze the convergence of the misfit term. Define:

In :=
∣∣∣∥θ∗(T )− ω∥2L2(Ω) − ∥θn(T )− ω∥2L2(Ω)

∣∣∣
≤ ∥θ∗(T )− θn(T )∥L2(Ω) · ∥θ∗(T ) + θn(T )− 2ω∥L2(Ω) .

Due to (15), we conclude:

lim
n→∞

∥θn(T )− ω∥2L2(Ω) = ∥θ∗(T )− ω∥2L2(Ω). (16)

Finally, applying weak lower semi-continuity of the L2-norm to (11), and using (16), we
obtain:

lim inf
n→∞

J (fn) = lim inf
n→∞

(
1

2
∥θn(T )− ω∥2 + γ

2
∥fn∥2

)
≥ 1

2
∥θ∗(T )− ω∥2 + γ

2
∥f ∗∥2 = J (f ∗).

Combining this with the minimality of the sequence (10), we conclude that f ∗ is indeed a
minimizer of the functional J , i.e., J (f ∗) = d. This completes the proof.
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Theorem 3 provides the first-order necessary condition characterizing the optimal control.
This condition links the unknown source term with the adjoint state and plays a central role
both in the theoretical analysis of stability and in the numerical implementation of the
Landweber-type method.

Theorem 3. Let f ∗ ∈ A be an optimal solution to the control problem (7), and let θ∗ := θ[f ∗]
denote the corresponding solution to the state equation (1). Then, the following variational
inequality holds:∫

Ω

[θ∗(x, T )− ω(x)] ξ(x, T ) dx+ γ

∫
Ω

f ∗(x) (h(x)− f ∗(x)) dx ≥ 0, ∀h ∈ A, (17)

where ξ ∈ L2(0, T ;H1
µ,0(Ω)) ∩ C([0, T ];L2(Ω)) is the unique weak solution to the following

adjoint problem:
∂tξ(x, t)− ξxx(x, t)−

µ

x2
ξ(x, t) = h(x)− f ∗(x), in QT := Ω× (0, T ),

ξ(0, t) = ξ(1, t) = 0, for t ∈ (0, T ),

ξ(x, 0) = 0, for x ∈ Ω := (0, 1).

(18)

Proof 2. Let h ∈ A and δ ∈ [0, 1], and define a convex perturbation of the optimal control
f ∗ by

fδ := f ∗ + δ(h− f ∗).

Since A is convex, it follows that fδ ∈ A for all δ ∈ [0, 1]. Let θδ := θ[fδ] denote the unique
weak solution to problem (1) associated with the control fδ.

We define the perturbed cost functional

Jδ := J (fδ) =
1

2

∫
Ω

|θδ(x, T )− ω(x)|2dx+ γ

2

∫
Ω

|fδ(x)|2dx. (19)

Since f ∗ is an optimal control, the function δ 7→ J (fδ) attains its minimum at δ = 0.
Therefore, the derivative of Jδ with respect to δ satisfies

d

dδ
J (fδ)

∣∣∣∣
δ=0

≥ 0. (20)

We now compute this derivative. By differentiating under the integral sign and using the
chain rule, we obtain:

d

dδ
J (fδ) =

∫
Ω

[θδ(x, T )− ω(x)]
∂θδ
∂δ

(x, T ) dx+ γ

∫
Ω

fδ(x)(h(x)− f ∗(x)) dx. (21)

Evaluating (21) at δ = 0, we define ξ := ∂θδ
∂δ

∣∣
δ=0

. Then inequality (20) becomes:∫
Ω

[θ∗(x, T )− ω(x)] ξ(x, T ) dx+ γ

∫
Ω

f ∗(x)(h(x)− f ∗(x)) dx ≥ 0, (22)

which is precisely the desired variational inequality (17).
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It remains to characterize ξ. Differentiating the state equation with respect to δ, we find
that ξ satisfies the following linearized problem:

∂tξ(x, t)− ξxx(x, t)−
µ

x2
ξ(x, t) = h(x)− f ∗(x), in QT ,

ξ(0, t) = ξ(1, t) = 0, t ∈ (0, T ),

ξ(x, 0) = 0, x ∈ Ω,

which coincides with problem (18). This concludes the proof.

5 Stability Results

In this section, we investigate the stability of the inverse problem with respect to
perturbations in the final-time observation data. Stability plays a central role in inverse
problems, especially due to their inherent ill-posedness in the sense of Hadamard. In our
context, the goal is to assess how the optimal solution f ∗ depends continuously on the
measured data ω ∈ L2(Ω).

We consider two final-time observations ω, ω̃ ∈ L2(Ω), and analyze the corresponding
solutions f ∗, f̃ ∗ ∈ A obtained by minimizing the cost functional (7). Under appropriate
assumptions, we prove that small perturbations in the data lead to small changes in the
recovered source, thereby establishing a Lipschitz-type stability estimate for the inverse
problem.

Inverse problems are typically unstable with respect to perturbations in the data.
Theorem 4 demonstrates that, under the proposed optimal control formulation, the

recovered source satisfies a Lipschitz-type stability estimate.
This result ensures robustness of the reconstruction and provides a rigorous theoretical
justification for the numerical performance observed in Section 6.

Theorem 4. Let f, f̃ ∈ A be two optimal controls corresponding to the final observations
ω, ω̃ ∈ L2(Ω), respectively, and let θ := θ[f ], θ̃ := θ[f̃ ] be the associated solutions to the state
equation (1). Then, the following Lipschitz-type stability estimate holds:

∥f − f̃∥2L2(Ω) ≤
1

2γ
∥ω − ω̃∥2L2(Ω). (23)

Proof 3. Let f, f̃ ∈ A be two optimal controls corresponding to the final-time data ω, ω̃ ∈
L2(Ω), and let θ := θ[f ], θ̃ := θ[f̃ ] be the associated solutions to the state problem (1).

We apply the first-order optimality condition (17) with f ∗ = f and h = f̃ , yielding:∫
Ω

[θ(x, T )− ω(x)] ξ(x, T ) dx+ γ

∫
Ω

f(x)(f̃(x)− f(x)) dx ≥ 0, (24)

where ξ solves the adjoint problem:
∂tξ − ξxx −

µ

x2
ξ = f̃ − f, in QT ,

ξ(0, t) = ξ(1, t) = 0, t ∈ (0, T ),

ξ(x, 0) = 0, x ∈ Ω.

(25)



146 Source identification problem for a . . .

Similarly, applying (17) with f ∗ = f̃ and h = f , we obtain:∫
Ω

[
θ̃(x, T )− ω̃(x)

]
ξ̃(x, T ) dx+ γ

∫
Ω

f̃(x)(f(x)− f̃(x)) dx ≥ 0, (26)

where ξ̃ solves:
∂tξ̃ − ξ̃xx −

µ

x2
ξ̃ = f − f̃ , in QT ,

ξ̃(0, t) = ξ̃(1, t) = 0, t ∈ (0, T ),

ξ̃(x, 0) = 0, x ∈ Ω.

(27)

Adding inequalities (24) and (26) yields:

γ∥f − f̃∥2L2(Ω) ≤
∫
Ω

[θ(T )− ω] ξ(T ) dx+

∫
Ω

[
θ̃(T )− ω̃

]
ξ̃(T ) dx. (28)

Now, define the error functions E := θ − θ̃, and X := ξ − ξ̃. Then, E solves:
∂tE − Exx −

µ

x2
E = f − f̃ , in QT ,

E(0, t) = E(1, t) = 0, t ∈ (0, T ),

E(x, 0) = 0, x ∈ Ω,

(29)

and X solves the homogeneous problem:
∂tX −Xxx −

µ

x2
X = 0, in QT ,

X(0, t) = X(1, t) = 0, t ∈ (0, T ),

X(x, 0) = 0, x ∈ Ω.

(30)

Hence, by uniqueness of weak solutions, we conclude X = 0, i.e., ξ = ξ̃, and similarly E = −ξ
from comparing (29) and (25).

Substituting into (28) and using E = −ξ, we obtain:

γ∥f − f̃∥2 ≤
∫
Ω

E(x, T )ξ(x, T ) dx+

∫
Ω

(ω(x)− ω̃(x))ξ(x, T ) dx

= −∥ξ(·, T )∥2L2(Ω) +

∫
Ω

(ω − ω̃)ξ(·, T ) dx.

Applying the Cauchy–Schwarz and Young inequalities, we get:

γ∥f − f̃∥2 ≤ −∥ξ(T )∥2 + ∥ω − ω̃∥ · ∥ξ(T )∥

≤ −∥ξ(T )∥2 + 1

2
∥ω − ω̃∥2 + 1

2
∥ξ(T )∥2

= −1

2
∥ξ(T )∥2 + 1

2
∥ω − ω̃∥2

≤ 1

2
∥ω − ω̃∥2.
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Dividing both sides by γ > 0, we conclude:

∥f − f̃∥2L2(Ω) ≤
1

2γ
∥ω − ω̃∥2L2(Ω),

which completes the proof.

Corollary 1. Assume that assumptions of Theorem (4) hold. Furthermore, suppose that ω
matches ω̃ over Ω then f = f̃

6 Numerical identification

In this section, we present a numerical strategy for identifying the unknown source term f(x)
in the singular parabolic problem (1), based on the final-time observation ω(x). Due to the
ill-posedness of the inverse problem, direct inversion is highly unstable, and regularization
techniques are essential to obtain stable and meaningful numerical approximations.

To this end, we implement an iterative regularization scheme based on the classical
Landweber method, which is widely used in inverse problems due to its simplicity and
robustness. The approach consists of iteratively updating the source term by moving along
the negative gradient direction of the cost functional (7), evaluated via the solution of the
associated forward and adjoint problems.

6.1 Landweber iteration method

Let us define the input-output operator T associated with the parabolic problem (1), which
maps a source term to the final-time state of the corresponding solution. For simplicity of
computation, we assume the initial condition is homogeneous, i.e., θ0 = 0. Then, the operator
T is given by:

T : L2(Ω) −→ H1
µ,0(Ω),

f 7→ T f := θ[f ](·, T ),

where θ[f ] denotes the weak solution to problem (1) with source term f ∈ L2(Ω), and θ0 = 0
as initial data. In this framework, T f represents the output measurement at the final time
t = T .

In view of the above considerations, our inverse problem can be equivalently reformulated
as the operator equation

Find f † ∈ A such that T f † = ω,

where T : L2(Ω) → H1
µ,0(Ω) is the input-output operator defined in the previous subsection,

and ω ∈ L2(Ω) denotes the measured final-time data. Formally, the exact solution f † satisfies
the associated normal equation

T ∗T f † = T ∗ω,

where T ∗ denotes the adjoint of the operator T . This normal equation can be interpreted as
a fixed-point problem of the form

f † = f † − β T ∗ (T f † − ω
)
,
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where β > 0 is a relaxation parameter. Based on this formulation, we construct an iterative
Landweber-type method to approximate f †. Starting from an initial guess f0 ∈ L2(Ω), the
iteration proceeds as:

fm+1 = fm − β T ∗ (T (fm)− ω)

= fm − β T ∗ (θm(·, T )− ω) ,
(31)

where θm := θ[fm] is the solution of the forward problem (1) associated with the current
iterate fm.

It is well known (see, e.g., [9]) that the Landweber iteration (31) converges strongly
to the minimum-norm solution f †, provided that 0 < β < 1/∥T ∥2 and the initial guess
f0 ∈ D(T ). In practice, the iteration is terminated according to a suitable discrepancy
principle or tolerance-based stopping rule.

For the numerical implementation of the Landweber algorithm, it is essential to compute
the adjoint of the input–output operator.

Lemma 1 provides an explicit characterization of this adjoint in terms of the solution of
an auxiliary boundary value problem.
This result enables the efficient numerical realization of the iterative reconstruction scheme.

Lemma 1. Let ψ ∈ L2(Ω), and let η ∈ L2(0, T ;H1
µ,0(Ω)) be the unique weak solution of the

following initial-boundary value problem:
∂tη(x, t)− ∂xxη(x, t) +

µ

x2
η(x, t) = ψ(x), in QT := Ω× (0, T ),

η(x, 0) = 0, x ∈ Ω,

η(0, t) = η(1, t) = 0, t ∈ (0, T ).

(32)

Then, the adjoint operator T ∗ : L2(Ω) → L2(Ω), corresponding to the input-output operator
T f = θ[f ](·, T ), is given by

T ∗ψ = η(·, T ),

Proof 4. Let f ∈ L2(Ω), and denote by θ = θ[f ] ∈ L2(0, T ;H1
µ,0(Ω)) the unique weak solution

of the forward problem:
∂tθ(x, t)− ∂xxθ(x, t) +

µ

x2
θ(x, t) = f(x), in QT ,

θ(x, 0) = 0, x ∈ Ω,

θ(0, t) = θ(1, t) = 0, t ∈ (0, T ).

(33)

Then the input-output operator T : L2(Ω) → L2(Ω) is defined by

T f = θ(·, T ).
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Let ψ ∈ L2(Ω), and let η ∈ L2(0, T ;H1
µ,0(Ω)) be the solution of the following adjoint

problem:
∂tη(x, t)− ∂xxη(x, t) +

µ

x2
η(x, t) = ψ(x), in QT ,

η(x, 0) = 0, x ∈ Ω,

η(0, t) = η(1, t) = 0, t ∈ (0, T ).

(34)

We want to compute T ∗ψ using the definition of the adjoint. By definition, T ∗ is the
operator such that

⟨T f, ψ⟩L2(Ω) = ⟨f, T ∗ψ⟩L2(Ω), ∀f ∈ L2(Ω).

Now, compute the left-hand side:

⟨T f, ψ⟩L2(Ω) =

∫
Ω

θ(x, T )ψ(x) dx.

We aim to express this quantity in terms of f and η, and thereby identify T ∗ψ. To this
end, we define the auxiliary function v(x, t) := η(x, T − t). It is easy to verify (by direct
substitution) that v satisfies the backward parabolic problem:

− ∂tv(x, t)− ∂xxv(x, t) +
µ

x2
v(x, t) = ψ(x), in QT ,

v(x, T ) = 0, x ∈ Ω,

v(0, t) = v(1, t) = 0, t ∈ (0, T ).

(35)

We now multiply the equation for θ by v, integrate over QT , and use integration by parts
in time and space. We obtain:∫∫

QT

f(x)v(x, t) dxdt =

∫∫
QT

(
∂tθ · v + ∂xθ · ∂xv +

µ

x2
θv
)
dxdt

=

∫∫
QT

(
−∂tv · θ + ∂xθ · ∂xv +

µ

x2
θv
)
dxdt,

where we have used the fact that θ(x, 0) = v(x, T ) = 0.
Since v satisfies (35), the right-hand side becomes:∫∫

QT

ψ(x)θ(x, t) dxdt.

Thus, we have established the identity:∫∫
QT

f(x)v(x, t) dxdt =

∫∫
QT

ψ(x)θ(x, t) dxdt.

Now, reversing the change of variables v(x, t) = η(x, T − t), we have:∫ T

0

v(x, t) dt =

∫ T

0

η(x, s) ds.
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Similarly,∫∫
QT

f(x)v(x, t) dxdt =

∫
Ω

f(x)

∫ T

0

η(x, s) ds dx,

and ∫∫
QT

ψ(x)θ(x, t) dxdt =

∫
Ω

ψ(x)

∫ T

0

θ(x, t) dt dx.

Assuming that this identity holds for all T > 0, we formally differentiate both sides with
respect to T , obtaining:∫

Ω

ψ(x)θ(x, T ) dx =

∫
Ω

f(x)η(x, T ) dx.

Therefore, we have:

(T f, ψ)L2(Ω) = (θ(·, T ), ψ)L2(Ω) = (f, η(·, T ))L2(Ω),

and since this holds for all f ∈ L2(Ω), we conclude:

T ∗ψ = η(·, T ).

To summarize, we now outline the main steps of the iterative procedure used to
numerically reconstruct the unknown source term f in problem (1), based on the Landweber
method.

Algorithm 1 Iterative Landweber Method for Source Identification
Require: Relaxation parameter β > 0, tolerance ε > 0, final-time data ω ∈ L2(Ω)
Ensure: Approximate solution f † and corresponding state θ† to the inverse problem
1: Initialization: Choose an initial guess f0 ∈ A, and set k = 0
2: Solve Forward Problem: Compute θ0 := θ[f0] by solving (1)
3: Solve Adjoint Problem: Compute η0 by solving (32) with source ψ = θ0(·, T )− ω
4: Update Control: Set

f1 := f0 − βη0(·, T )

5: for k = 1, 2, . . . until convergence do
6: Solve θk := θ[fk] from (1)
7: if ∥θk(·, T )− ω∥L2(Ω) < ε then
8: Set f † := fk, θ† := θk, and stop
9: else

10: Solve ηk from (32) with ψ = θk(·, T )− ω
11: Update fk+1 := fk − βηk(·, T )
12: end if
13: end for
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6.2 Numerical results and discussions

In this subsection, we present numerical experiments that illustrate the performance of the
proposed Landweber algorithm for reconstructing the space-dependent source term. The
experiments are designed to validate both the accuracy and stability of the method under
noise-free and noisy final-time data.

We begin with Example 1, where the exact solution of the forward problem is available in
closed form. This allows for a direct comparison between the reconstructed and exact source
profiles. In Example 2, the forward solution is generated numerically, thereby testing the
algorithm in a more realistic setting. In both cases, the reconstructions confirm the theoretical
predictions: the Landweber method converges towards the true source when noise-free data
are used, while in the presence of noisy data, the algorithm still yields stable and accurate
approximations, as shown in Figures 6.1–6.3.

The relative error E2(k) is also monitored as a function of the iteration index k. The error
curves demonstrate a rapid initial decrease followed by saturation, which is consistent with
the discrepancy principle and the finite accuracy of the numerical discretization. Overall,
these results validate the effectiveness and robustness of the proposed method.

6.3 Numerical Implementation and Discretization

This subsection is devoted to numerical examples that illustrate the performance of the
proposed Landweber algorithm for reconstructing the space-dependent source term f(x)
in the inverse problem (1). The solutions to both the direct and adjoint problems are
approximated using finite-difference methods.

We fix the final time T = 1, so that the spatio-temporal domain is QT = (0, 1) × (0, 1).
Let M,N ∈ N∗ denote the number of spatial and temporal subdivisions, respectively. Define
the mesh sizes

∆x =
1

M
, ∆t =

1

N
.

The spatial and temporal grid points are given by:

xi = i∆x, for i = 0, 1, . . . ,M, tj = j∆t, for j = 0, 1, . . . , N.

The functions θ(x, t) (solution of the forward problem) and η(x, t) (solution of the adjoint
problem) are evaluated at these grid points. The numerical schemes employed for the
discretization are based on finite-difference approximations of second-order spatial derivatives
and backward or Crank–Nicolson schemes in time, ensuring stability in the presence of the
singular potential µ/x2. Boundary conditions are imposed explicitly at x = 0 and x = 1.

In the numerical tests, we measure the accuracy of the reconstructed source using the
relative error at iteration k, defined by

E2(k) := ∥fk − f∥2L2(Ω) =
1

M + 1

M∑
i=0

(
f(xi)− fk(xi)

)2
,

where f is the exact source function and fk is the reconstructed approximation at the k-th
iteration, evaluated on the discrete grid {xi}Mi=0.



152 Source identification problem for a . . .

To test robustness against measurement errors, we also consider noisy data. The perturbed
observation ωε(x) is generated from the exact final state ω(x) = θ(x, T ) by injecting a
multiplicative random noise:

ωε(x) = ω(x) + ε · ω(x) · rand(x), x ∈ Ω, (36)

where ε ∈ (0, 1) denotes the noise level and rand(x) ∈ (0, 1) is a uniformly distributed random
function over the spatial domain. This simulates realistic data perturbations encountered in
practice.

Example 1. In this first test case, we consider the inverse problem (1)–(2) with singularity
parameter µ = 1

5
, and a source term given by

f(x, t) = −5 sin(πt)
(
(x2 − π2x2 + µ) sin(πx)

)
, (x, t) ∈ QT .

It is easy to verify that the corresponding exact solution of the forward problem (1) is

θ(x, t) = x2 sin(πx)(1− e−t), x ∈ Ω, t ∈ [0, T ].

Consequently, the final-time observation used in the inverse problem is computed as ω(x) =
u(x, T ). This example allows for direct comparison between the reconstructed and exact source
terms.

Example 2. In this second test, we consider a synthetic example in which the exact source
term is prescribed as

f(x) = sin(πx), x ∈ Ω.

We set the singularity parameter to µ = 1
6
. The final-time data ω(x) = u(x, T ) is generated

by solving the direct problem (1) using this exact source. This test serves to validate the
reconstruction algorithm when the forward solution is numerically simulated, without using
an explicit expression for u(x, t).

Discussion on Example 1

For the inversion process, we employ moderate discretization parameters, setting ∆t = 10−3

and ∆x = 5× 10−2. The Landweber iteration is initialized with the admissible guess f0(x) =
x2. Figure 6.1 (a) shows a comparison between the exact source f † and the reconstructed
profile fk in Example 1 after k = 8000 iterations. The agreement is notably close, confirming
the convergence of the algorithm in the noise-free setting.

To assess the robustness of the method under measurement perturbations, we conduct
additional experiments using noisy final-time data ω, generated according to the perturbation
model (36). The reconstruction is evaluated after k = 400 iterations. As shown in Figure 6.2-
(a), the reconstructions remain satisfactory under moderate noise levels, and the computed
state θk(·, T ) matches the perturbed observations ω with high accuracy. However, for higher
noise levels, the reconstruction quality deteriorates significantly. The evolution of E2(k) is
shown in Figure 6.3-(a). We observe a monotonic decay of the error up to around k = 400,
after which the reduction halts due to accumulated discretization errors in the numerical
solution of the direct and adjoint problems.
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Figure 6.1: Numerical reconstruction.
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Figure 6.2: The numerical results with noise
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Figure 6.3: Behaviour of reconstruction error E2(k) as a function of k.

Discussion on Example 2

For the second example, we consider a synthetic source term f †(x) = sin(πx) with singularity
parameter µ = 1

6
. The final-time observation ω(x) is generated by numerically solving the

direct problem (1). The Landweber iteration is initialized with the same admissible guess
f0(x) = 0, and discretization parameters are set to ∆t = 10−3 and ∆x = 5 × 10−2, as in
the previous example. Figure 6.1 (b) displays the comparison between the exact source f †

and the reconstructed solution fk after k = 400 iterations. The reconstruction achieves high
accuracy with significantly fewer iterations than in Example 1, which is attributed to the
simpler spectral content of the source.

To evaluate stability with respect to data perturbations, we introduce noisy observations
based on the same noise model (36). The reconstruction after k = 400 iterations is reported
in Figure 6.2 (b). The results indicate that the reconstructed state θk(·, T ) approximates
the noisy data ω well for low to moderate noise levels. However, as the noise amplitude
increases, the reconstruction degrades, consistent with the sensitivity of the inverse problem
to measurement errors.

The convergence history of the relative error E2(k) is depicted in Figure 6.3 (b). Similar to
the first example, we observe a rapid decay of the error up to k ≈ 300, followed by stagnation.
The early saturation is again due to the discretization effects and the finite resolution of the
spatial grid, which limit further improvements in accuracy despite continued iteration.

Conclusion

In this work, we have addressed an inverse problem concerned with the identification of a
space-dependent source term in a diffusion equation governed by a singular inverse-square
potential. The proposed approach is based on an optimal control framework.

We began by establishing the existence and uniqueness of weak solutions to the direct
problem. The inverse problem was then reformulated as a constrained optimization problem,
for which we proved the existence of a minimizer and derived a first-order necessary optimality
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condition. This condition was further employed to demonstrate a Lipschitz-type stability
result with respect to perturbations in the final-time data.

On the numerical side, we developed an iterative Landweber-type algorithm to reconstruct
the unknown source term from noisy final measurements. A series of numerical experiments
were carried out, confirming the effectiveness, stability, and robustness of the proposed
reconstruction method, even in the presence of data perturbations.

As directions for future work, we plan to extend the current methodology to more
complex models, including systems of coupled singular parabolic equations and fractional-
order singular diffusion problems.
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