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ASYMPTOTIC SOLUTIONS TO INITIAL VALUE PROBLEMS FOR
SINGULARLY PERTURBED QUASI-LINEAR IMPULSIVE SYSTEMS

This paper investigates a singularly perturbed quasi-linear impulsive differential system with
singularities present both in the differential equations and in the impulse functions. The boundary
function method is employed to derive the main results. A uniform asymptotic approximation
with higher accuracy is constructed and a complete asymptotic expansion is obtained. Theoretical
findings are supported by illustrative examples and numerical simulations. The analysis reveals
the presence of boundary and interior layers caused by the singular perturbation and impulsive
effects. Sufficient conditions for the existence and uniqueness of the solution are established. The
results contribute to the theoretical understanding of impulsive systems with complex singular
structures and may be applicable to various problems in applied mathematics.
Key words:singularly perturbed systems, impulsive differential equations with singularities, small
parameter, the boundary function method.
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Сингулярлы ауытқыған квазисызықты импульстi жүйелер үшiн бастапқы есептiң
асимптотикалық шешiмi

Бұл мақала дифференциалдық теңдеуiмен қатар импульстiк функциясында кiшi пара-
метрi бар сингулярлы ауытқыған квази-сызықты импульстiк дифференциалдық жүйенi қа-
растырады. Негiзгi нәтижелердi алу үшiн шекаралық функциялар әдiсi қолданылады. Ше-
шiмнiң кез-келген дәлдiктегi асимптотикалық жуықтауы алынды және толық асимптоти-
калық жiктелуi құрылады. Теориялық тұжырымдар иллюстрациялық мысалдармен және
сандық модельдеу нәтижелерiмен расталады. Зерттеу нәтижесi сингулярлық ауытқу мен
импульстiк әсерлерден туындайтын шекаралық және iшкi қабаттардың болуын анықтайды.
Шешiмнiң бар және жалғыз болуының жеткiлiктi шарттары анықталады. Алынған нәтиже-
лер күрделi сингулярлық құрылымы бар импульстiк жүйелер туралы теориялық түсiнiктiң
дамуына ықпал етедi және қолданбалы математика мәселелерiнде қолдануға болады.
Түйiн сөздер: сингулярлы ауытқыған жүйелер, сингулярлы ауытқыған импульстi диффе-
ренциалдық теңдеулер, кiшi параметр, шекаралық функциялар әдiсi.
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Асимптотические решения начальных задач для сингулярно возмущённых
квазилинейных импульсных систем

В данной работе исследуется сингулярно возмущённая квазилинейная импульсная диф-
ференциальная система, в которой сингулярности присутствуют как в дифференциальных
уравнениях, так и в импульсных функциях. Для получения основных результатов применя-
ется метод граничных функций. Построено равномерное асимптотическое приближение по-
вышенной точности и получено полное асимптотическое разложение. Теоретические выводы
подтверждаются иллюстративными примерами и результатами численного моделирования.
Анализ выявляет наличие как граничных, так и внутренних слоёв, возникающих в результате
сингулярных возмущений и импульсных эффектов.
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Установлены достаточные условия существования и единственности решения. Полученные
результаты способствуют развитию теоретического понимания импульсных систем со слож-
ной сингулярной структурой и могут быть применимы в задачах прикладной математики.

Ключевые слова: сингулярно возмущённые системы, импульсные дифференциальные
уравнения с сингулярностями, малый параметр, метод граничных функций.

1 Introduction

Perturbation methods deal with problems that contain a small parameter, usually
denoted by ε, which perturbs or slightly modifies a simpler, well-understood problem. These
problems arise frequently in applied mathematics [1, 2], physics and engineering [3]. There
are two main types of perturbation problems: Regular perturbation problems – the solution
varies smoothly with ε.

Singular perturbation problems – the small parameter multiplies the highest derivative [4],
causing drastic changes in the nature of the solution as ε→ 0.

Singularly perturbed differential equations represent a challenging and fascinating class of
problems where small parameters significantly impact the solution behavior. These equations
require specialized methods like matched asymptotic expansions to accurately capture the
full dynamics of the solution across different scales.

This work is associated with one of the effective asymptotic methods in the theory
of singular perturbations about the method of boundary functions, the mathematical
foundations of which were laid in the works [5, 6]. The boundary layer method is a powerful
analytical technique used to study differential equations with rapid changes in a small region
of the domain — typically near a boundary. This method is especially useful in fluid dynamics,
applied mathematics, and singular perturbation theory. In many physical systems (especially
fluid flow), variables like velocity or temperature change very sharply near boundaries (e.g.,
surfaces), but slowly elsewhere. The thin region of rapid change is called the boundary layer.
Outside this layer, the solution varies smoothly this is the outer region.

Impulse effects describe the response or reaction of a system to a sudden, short-duration
force or signal. These effects are critical in understanding how systems behave under rapid
or transient conditions. Impulse differential equations (or impulsive differential equations)
are used to model systems that experience sudden changes (impulses) at specific moments
in time [7]. These equations combine continuous dynamics (ordinary differential equations)
with discrete jumps or instantaneous changes.

Singularly perturbed impulsive systems present significant difficulties. An exact solution
of impulsive differential equations with singular perturbations is elusive, which explains the
relatively small number of studies in this area. Major works in this field were performed
before 2000 (see [8–13]), including the research of Kulev (1992) and Bainov et al. (1996) on
uniform asymptotic stability, as well as the work of Zhu et al. (2007) on the exponential
stability of singularly perturbed equations with impulsive delay.

In [14–17], singularly perturbed Tikhonov-type systems with impulsive effects are studied.
These systems are distinguished by the presence of both slow and fast dynamics, as well as
by discrete state discontinuities occurring at fixed time instants. The combination of multi-
scale behavior and impulsive phenomena provides a rigorous mathematical framework for
the analysis and modeling of complex processes exhibiting rapid transitions and time-scale
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separation induced by a small perturbation parameter.
Akhmet and Çağ [18–20] extended the Tikhonov theorem to a class of singularly perturbed

impulsive systems of the form

µż = f(z, y, t), ẏ = g(z, y, t),

µ∆z|t=θi = I(z, y, µ), ∆y|t=ηj = J(z, y),
(1)

with initial condition

z(0, µ) = z0, y(0, µ) = y0, (2)

where z, f and I are m-dimensional vector valued functions, y, g and J are n-dimensional
vector valued functions, θipi=1, 0 < θ1 < θ2 < ... < θp < T, and ηjkj=1, are distinct discontinuity
moments in (0, T ).

Unlike the study referenced in [10], the authors considered systems in which not only the
differential part but also the impulsive parts are singularly perturbed. In this framework,
the impulsive function depends explicitly on the small parameter µ, and the moments of
discontinuity for the functions z and y are not coincident. The extension of Tikhonov’s
theorem to such systems necessitates the treatment of additional complexities arising from
the perturbation of impulses.

In [18], two types of singular behavior are analyzed: single-layer and multi-layers
structures, both arising due to the nature of the impulse functions. The singularities in the
impulsive part are addressed using techniques from singular perturbation theory. Stability
of the reduced system in the fast (rescaled) time is established through Lyapunov’s second
method.

Papers [21–23] are devoted to the study of impulsive systems with singularities. Using
the boundary layer method, the authors constructed a uniform asymptotic approximation of
the solution for 0 < t < T, and obtained higher-order approximations as well as complete
asymptotic expansions for systems with singularly perturbed impulses.

2 Formalities of approximation

Let us consider on the segment [0, T ] the following system

µz′ = F (y, t)z +G(y, t), µ∆z|t=θi = I1(y, µ)z + I2(y, µ),

y′ = f(y, t)z + g(y, t), ∆y|t=θi = J1(y, µ)z + J2(y, µ)
(3)

with initial condition

z(0, µ) = z0, y(0, µ) = y0, (4)

where µ is a small positive real number, z0 and y0 are assumed to be independent of µ,
θi
p
i=1, 0 < θ1 < θ2 < ... < θp < T, are distinct discontinuity moments in (0, T ). We define

∆x|t=θi = x(θi+) − x(θi), assuming that the right-hand limit x(θi+) = lim
t→θi+

x(t) exists and

that the left-hand limit satisfies x(θi−) = x(θi).
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Assume that µ = 0 in equation (3). In this case, system (3) reduces to the following
system

0 = F (y, t)z +G(y, t), 0 = I1(y, 0)z + I2(y, 0),

y′ = f(y, t)z + g(y, t), ∆y|t=θi = J1(y, 0)z + J2(y, 0),
(5)

which is called to as a degenerate system, since its order is lower than that of system (3).
Therefore, for system (5) the number of initial conditions to be less than the number of initial
conditions for (3). For system (5) we should retain only the initial condition for y since no
initial condition for z is needed:

y(0) = y0. (6)

In order to solve system (5), one needs to find z from the equations 0 = F (y, t)z +
G(y, t) and 0 = I1(y, 0)z + I2(y, 0). Then, one selects a root of the system in the form
z = ϕ(y(t), t) = −G(y,t)

F (y,t)
, which satisfies the equations 0 = F (y, t)ϕ(y(t), t) + G(y, t) and

0 = I1(y, 0)ϕ(y(t), t) + I2(y, 0). Substituting this expression into equation (5) together with
the initial condition (6) yield system

y′ = f(y, t)ϕ(y(t), t) + g(y, t), ∆y|t=θi = J1(y, 0)ϕ(y(t), t) + J2(y, 0),

y(0) = y0.
(7)

The following conditions are assumed to hold.

(C1) The functions F (y, t), G(y, t), f(y, t), g(y, t) and Ii(y, ε), Ji(y, ε), i = 1, 2 are infinitely
differentiable on the interval 0 ≤ t ≤ T.

(C2) F (y, t) < 0, 0 ≤ t ≤ T.

(C3) The system (7) has a unique solution y(t) on 0 ≤ t ≤ T.

(C4) 1 + ∂
∂y

(J1(y, 0)ϕ(y(t), t) + J2(y, 0)) 6= 0.

(C5) lim
(z,y,)→(ϕ,y,0)

I1(y, µ)z + I2(y, µ)

µ
= 0, where y = y(θi) are the values for each impulse

moment at the points t = θi, i = 1, 2, ..., p.

An asymptotic approximation to the solution z(t, µ), y(t, µ) of problem (3)–(4) will be
sought in the form

z(t, µ) = z(t, µ) + ω(i)(τi, µ), τi =
t− θi
µ

, i = 0, 1, 2, ..., p,

y(t, µ) = y(t, µ) + µν(i)(τi, µ), θi < t ≤ θi+1, θ0 ≡ 0, θp+1 ≡ T.

(8)

where

z(t, µ) =
∞∑
k=0

µkzk(t), y(t, µ) =
∞∑
k=0

µkyk(t),

ω(i)(τi, µ) =
∞∑
k=0

µkω
(i)
k (τi), ν(i)(τi, µ) =

∞∑
k=0

µkν
(i)
k (τi).

(9)
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The coefficients ω(i)
k (τi) and ν

(i)
k (τi) in (9) are called boundary functions, for which the

following additional condition is imposed,

ω
(i)
k (∞) = 0, ν

(i)
k (∞) = 0, i = 0, 1, 2, ..., p. (10)

By substituting the expansions (8) into system (3), we get at the following equalities

µz′(t, µ) + ω̇(i)(τi, µ) = F (y(t, µ) + µν(i)(τi, µ), t)(z(t, µ) + ω(i)(τi, µ))− F (y(t, µ), t)z(t, µ)+

+ F (y(t, µ), t)z(t, µ) + [G(y(t, µ) + µν(i)(τi, µ), t)−G(y(t, µ), t)] +G(ỹ(t, µ), t),

y′(t, µ) + ν̇(i)(τi, µ) = f(y(t, µ) + µν(i)(τi, µ), t)(z(t, µ) + ω(i)(τi, µ))− f(y(t, µ), t)z(t, µ)+

+ f(y(t, µ), t)z(t, µ) + [g(y(t, µ) + µν(i)(τi, µ), t)− g(y(t, µ), t)] + g(y(t, µ), t).

Separating the expressions with respect to the variables t and τi, we derive two systems

µz′(t, µ) = F (y(t, µ), t)z(t, µ) +G(y(t, µ), t),

y′(t, µ) = f(y(t, µ), t)z(t, µ) + g(y(t, µ), t),
(11)

and

ω̇(i)(τi, µ) = F (y(t, µ) + µν(i)(τi, µ), t)ω(i)(τi, µ) + [F (y(t, µ) + µν(i)(τi, µ), t)− F (y(t, µ), t)]z(t, µ)+

+G(y(t, µ) + µν(i)(τi, µ), t)−G(y(t, µ), t),

ν̇(i)(τi, µ) = f(y(t, µ) + µν(i)(τi, µ), t)ω(i)(τi, µ) + [f(y(t, µ) + µν(i)(τi, µ), t)− f(y(t, µ), t)]z(t, µ)+

+ g(y(t, µ) + µν(i)(τi, µ), t)− g(y(t, µ), t).

(12)

Let us express F , f , I1 and I2 in the form of power series in µ as follows:

F (y(t, µ), t)z(t, µ) +G(y(t, µ), t) =

= F (y0(t) + µy1(t) + ..., t)z(t, µ) +G(y0(t) + µy1(t) + ..., t) =

=
(
F (y0(t), t) + µFy(y0(t), t)y1(t) + ...+ µkFy(y0(t), t)yk(t) + ...

)
(z0(t) + µz1(t) + ...)+

+
(
G(y0(t), t) + µGy(y0(t), t)y1(t) + ...+ µkGy(y0(t), t)yk(t) + ...

)
=

= F (y0(t), t)z0(t) +G(y0(t), t) + µ[F (y0(t), t)z1(t) + (Fy(t)z0(t) +Gy(t))y1(t)]+

+ µk[F (y0(t), t)zk(t) + (Fy(t)z0(t) +Gy(t))yk(t) +Hk(t)] + ... =

= F (y0(t), t)z0(t) +G(y0(t), t) + µH1(t) + . . . µkHk(t) + ...,

where functions Fy(t) and Gy(t) are calculated at the point (y0(t), t) and Hk(t) are defined
recursively in terms of zj(t) and yj(t) for j < k,

F (y(t, µ) + µν(i)(τi, µ), t)− F (y(t, µ), t) =

= F (y0(θi + µτi) + µy1(θi + µτi) + ...+ µν
(i)
0 (τi) + µ2ν

(i)
1 (τi) + ..., θi + µτi)−

− F (y0(θi + µτi) + µy1(θi + µτi) + ..., θi + µτi) =

= µFy(y0(θi), θi)ν
(i)
0 (τi) + µ2[Fy(y0(θi), θi)ν

(i)
1 (τi) + F2(θi)] + ...+

+ µk[Fy(y0(θi), θi)ν
(i)
k−1(τi) + Fk(θi)] + ... = µΠ1F (τi) + . . .+ µkΠkF (τi) + ...,
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F (y(t, µ) + µν(i)(τi, µ), t)ω(i)(τi, µ) + [F (y(t, µ) + µν(i)(τi, µ), t)− F (y(t, µ), t)]z(t, ε)+

+G(y(t, µ) + µν(i)(τi, µ), t)−G(y(t, µ), t) =

= F (y(θi + µτi, µ) + µν(i)(τi, µ), θi + µτi)ω
(i)(τi, µ) + [µΠ1F (τi) + . . .+ µkΠkF (τi) + ...]z(θi + µτi, µ)+

+ µΠ1G(τi) + . . .+ µkΠkG(τi) + ... = F (y0(θi), θi)ω
(i)
0 (τi) + µF (y0(θi), θi)ω

(i)
1 (τi) + ...+

+ [µΠ1F (τi) + . . .+ µkΠkF (τi) + ...](z0(θi) + µz1(θi) + ...) + µΠ1G(τi) + . . .+ µkΠkG(τi) + ... =

= F (y0(θi), θi)ω
(i)
0 (τi) + µ[F (y0(θi), θi)ω

(i)
1 (τi) + Π1F (τi)z0(θi) + Π1G(τi)] + ...+

+ µk[F (y0(θi), θi)ω
(i)
k (τi) + ΠkF (τi)z0(θi) + ΠkG(τi)] + ... =

= Π0H(τi) + µΠ1H(τi) + . . .+ µkΠkH(τi) + ...,

z(θi + µτi, µ) = z0(θi + µτi) + µz1(θi + µτi) + ... = z0(θi) + µτiz
′
0(θi) + ...+

+ µ(z1(θi) + µτiz
′
1(θi) + ...) + ... = z0(θi) + µ[z1(θi) + z′0(θi)τi]+

+ µ2[z2(θi) + z′1(θi)τi + z′′0(θi)
τi
2

] + ... = ω0(τi) + µω1(τi) + µ2ω2(τi) + ...

where the functions Fk(θi) are calculated at the point (y0(θi), θi), i = 1, 2, ..., p, and
ΠkF (τi),ΠkG(τi), i = 1, 2, ..., p, are defined recursively in terms of ω(i)

j (τi) and ν
(i)
j (τi) for

j < k. Analogously, one can get that

I1(y(θi, µ), µ)z(θi, µ) + I2(y(θi, µ), µ) = I1(y(θi−, µ), µ)z(θ−, µ) + I2(y(θi−, µ), µ) =

= I1

(
y(θi, µ) + µν(i−1)

(
θi − θi−1

µ
, µ

)
, µ

)(
z(θi, µ) + ω(i−1)

(
θi − θi−1

µ
, µ

))
+

+ I2

(
y(θi, µ) + µν(i−1)

(
θi − θi−1

µ
, µ

)
, µ

)
=

= I1(y(θi, µ), µ)z(θi, µ) + I2(y(θi, µ), µ) = I1(y0(θi), 0)z0(θi) + I2(y0(θi), 0)+ (13)
+ µ[I1(y0(θi), 0)z1(θi) + I1y(θi)z0(θi)y1(θi) + I1ε(θi)] + ε[I2y(θi)y1(θi) + I2ε(θi)] + ...+

+ µk[I1(y0(θi), 0)zk(θi) + I1y(θi)z0(θi)yk(θi) + I1k(θi)] + µk[I2y(θi)yk(θi) + I2k(θi)] + ... =

= I1(y0(θi), 0)z0(θi) + I2(y0(θi), 0)+

+ µ[I1(y0(θi), 0)z1(θi) + (I1y(θi)z0(θi) + I2y(θi))y1(θi)) + Iµ(θi)] + ...+

+ µk[I1(y0(θi), 0)zk(θi) + (I1y(θi)z̃0(θi) + I2y(θi))ỹk(θi)) + Ik(θi)] + ... =

= T 0(θi) + µT 1(θi) + . . .+ µkT k(θi) + . . . ,

where the terms I1y(θi), I2y(θi), I1k(θi) and I2k(θi) are calculated at the point (y0(θi), 0), i =
1, 2, ..., p, and I1k(θi), I2k(θi) are defined recursively in terms of zj(θi) and yj(θi) for j < k.
Analogous expansions hold for the expression J1(y, µ)z + J2(y, µ).
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The problems (3), (4) with (11) and (12) can be rewritten in the following form

µ(z′0(t) + µz′1(t) + . . .+ µkz̃′k(t) + . . .) = H0(t) + µH1(t) + . . . µkHk(t) + . . . ,

y′0(t) + µy′1(t) + . . .+ µky′k(t) + . . . = h0(t) + µh1(t) + . . . µkhk(t) + . . . ,

ω̇
(i)
0 (τi) + µω̇

(i)
1 (τi) + . . .+ µkω̇

(i)
k (τi) + . . . = Π0H(τi) + µΠ1H(τi) + . . .+ µkΠkH(τi) + . . . ,

ν̇
(i)
0 (τi) + εν̇

(i)
1 (τi) + . . .+ εkν̇

(i)
k (τi) + . . . = Π0h(τi) + εΠ1h(τi) + . . .+ µkΠkh(τi) + . . . ,

µ(
∞∑
k=0

µk∆zk|t=θi +
∞∑
k=0

µkω
(i)
k (0)) = T 0(θi) + µT 1(θi) + . . .+ µkT̃k(θi) + . . . ,

∞∑
k=0

µk∆yk|t=θi + µ
∞∑
k=0

µkν
(i)
k (0) = S0(θi) + µS1(θi) + . . .+ µkSk(θi) + . . . .

By inserting the expansion (9) into conditions (4), we get

z(0, µ) =
∞∑
k=0

µkzk(0) +
∞∑
k=0

µkω
(0)
k (0) = z0,

and

y(0, µ) =
∞∑
k=0

µkyk(0) + µ
∞∑
k=0

µkν
(0)
k (0) = y0.

The expansions are performed up to order n and the coefficients are equated by powers
of µ. For the zero-order approximation z0(t), y0(t), ω

(i)
0 (τi) and ν

(i)
0 (τi), i = 1, 2, ..., p, the

following systems are obtained:

0 = F (ỹ0(t), t)z0(t) +G(y0(t), t),

y′0(t) = f(y0(t), t)z0(t) + g(y0(t), t),
(14)

ω̇
(i)
0 (τi) = F (y0(θi), θi)ω

(i)
0 (τi) = Π0H(τi),

ν̇
(i)
0 (τi) = f(y0(θi), θi)ω

(i)
0 (τi) = Π0h(τi),

(15)

0 =
I1(y0(θi), 0)z0(θi) + I2(y0(θi), 0)

µ
, (16)

∆z0|t=θi + ω
(i)
0 (0) = I1(y0(θi), 0)z1(θi) + (I1y(θi)z0(θi) + I2y(θi))y1(θi) + Iµ(θi) = T 1(θi),

∆y0|t=θi = J1(y0(θi), 0)z0(θi) + J2(y0(θi), 0) = S0(θi), (17)

z0(0) + ω
(0)
0 (0) = z0, y0(0) = y0.

To find the coefficients of µk(k ≥ 1), the following equations are used

z′k−1(t) = F (y0(t), t)zk(t) + (Fy(t)z0(t) +Gy(t))yk(t) +Hk(t),

y′k(t) = f(y0(t), t)zk(t) + (fy(t)z0(t) + gy(t))yk(t) + hk(t),
(18)



N. Aviltay, A.B. Uaissov 51

ω̇
(i)
k (τi) = F (y0(θi), θi)ω

(i)
k (τi) + ΠkF (τi)z0(θi) + ΠkG(τi) = ΠkH(τi),

ν̇
(i)
k (τi) = f(y0(θi), θi)ω

(i)
k (τi) + Πkf(τi)z0(θi) + Πkg(τi) = Πkh(τi),

∆zk|t=θi + ω
(i)
k (0) = I1(y0(θi), 0)zk+1(θi) + (I1y(θi)z0(θi) + I2y(θi))yk+1(θi)) + Ik+1(θi),

∆yk|t=θi + ν
(i)
k−1(0) = J1(y0(θi), 0)zk(θi) + (J1y(θi)z0(θi) + J2y(θi))yk(θi)) + Jk(θi), (19)

zk(0) + ω
(0)
k (0) = 0, yk(0) + ν

(0)
k−1(0) = 0.

Now we consider the interval t ∈ [0, θ1]. To obtain the leading-order approximations z0(t) =
z(t) and y0(t) = y(t), we solve system

0 = F (y0(t), t)z0(t) +G(y0(t), t),

y′0(t) = f(y0(t), t)z0(t) + g(y0(t), y0(0) = y0.

By virtue of the first equation in (14), equation (15) can be rewritten in the form

ω̇
(0)
0 (τ0) = F (y0(0), 0)ω

(0)
0 (τ0).

From the last equation, together with the initial condition

ω
(0)
0 (0) = z0 − z0(0)

the function ω
(0)
0 (τ0) can be determined. According to condition (C5), ω(0)

0 (τ0) admits the
exponential estimate

|ω(0)
0 (τ0)| ≤ c exp(−κτ0), (20)

where c > 0 and κ > 0.
The final step is to solve equation

ν̇
(0)
0 (τ0) = F (y0(0), 0)ω

(0)
0 (τ0) ≡ Π0h(τ0).

In view of condition (10), the initial condition is given by

ν
(0)
0 (0) = −

∫ ∞
0

Π0h(s)ds,

from which it follows that

ν
(0)
0 (τ0) = −

∫ ∞
τ0

Π0h(s)ds.

Since Π0f(τ0) decays exponentially, i.e., |Π0f(τ0)| ≤ c exp(−κτ0) the same holds for ν(0)0 (τ0) :

|ν(0)0 (τ0)| ≤ c exp(−κτ0).

The coefficients of µk in the approximations zk(t) and yk(t) are obtained by applying
system

z′k−1(t) = F (y0(t), t)zk(t) + (Fy(t)z0(t) +Gy(t))yk(t) +Hk(t),

y′k(t) = f(y0(t), t)zk(t) + (fy(t)z0(t) + gy(t))yk(t) + hk(t),

yk(0) + ν
(0)
k−1(0) = 0.
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To get ω(0)
k (τ0), the following system must be solved

ω̇
(0)
k (τ0) = F (y0(0), 0)ω

(0)
k (τ0) + ΠkF (τ0)z0(0) + ΠkG(τ0) = ΠkH(τ0),

ω
(0)
k (0) = −zk(0).

The remaining task is to solve the equation

ν̇
(0)
k (τ0) = f(y0(0), 0)ω

(0)
k (τ0) + Πkf(τ0)z0(0) + Πkg(τ0) = Πkh(τ0)

Taking into account condition (10), the initial condition is given by

ν
(0)
k (0) = −

∫ ∞
0

Πkh(s)ds,

from which it follows that

ν
(0)
k (τ0) = −

∫ τ∞

0

Πkh(s)ds.

Both ΠkH(τ0) and Πkh(τ0) satisfy exponential estimates of the type given in (20). As a
consequence, the following inequalities are satisfied,

|ω(0)
k (τ0)| ≤ c exp(−κτ0),
|ν(0)k (τ0)| ≤ c exp(−κτ0).

Let us now consider the interval t ∈ (θi, θi+1], i = 1, 2, ..., p. To obtain the leading-order
terms z0(t) = z(t) and y0(t) = y(t), corresponding to the power ε0, we make use of system

0 =F (y0(t), t)z0(t) +G(y0(t), t), 0 = I1(y0(θi), 0)z0(θi) + I2(y0(θi), 0),

y′0(t) =f(y0(t), t)z0(t) + g(y0(t), t), ∆y0|t=θi = J1(y0(θi), 0)z0(θi) + J2(y0(θi), 0).

In view of the first equation in (14), equation (15) takes the form

ω̇
(i)
0 (τi) = F (y0(θi), θi)ω

(i)
0 (τi), i = 1, 2, ..., p.

Based on the last equation and the initial condition

ω
(i)
0 (0) = I1(y0(θi), 0)z1(θi)+(I1y(θi)z0(θi)+I2y(θi))y1(θi)+Iµ(θi)−∆z0|t=θi , i = 1, 2, ..., p,

the function ω(i)
0 (τi) is to be determined, where ω(i)

0 (0) represented in the modified form below.
Differentiating both sides of the first equations in (14) and (16) yields the following

Fy(y0(θi), θi)z0(θi) +Gy(y0(θi), θi) = −F (y0(θi), θi)
dz

dy
,

I1y(y0(θi), 0)z0(θi) + I2y(y0(θi), 0) = −I1(y0(θi), 0)
dz

dy
.

(21)

Inserting the first equation of (21) into (18) results in

z′0(θi) = F (y0(θi), θi)z1(θi) + (Fy(θi)z0(θi) +Gy(θi))y1(θi) +H1(θi).
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Hence, it follows that

z1(θi)− y1(θi)
dz

dy
=
z′0(θi)−H1(θi)

F (y0(θi), θi)
. (22)

Inserting the second equation of (21) into (19) gives

ω
(i)
0 (0) = I1(y0(θi), 0)[z1(θi)− y1(θi)

dz

dy
] + Iµ(θi)−∆z0|t=θi , i = 1, 2, ..., p.

Substituting equation (22) in place of the square bracket yields

ω
(i)
0 (0) =

I1(y0(θi), 0)

F (y0(θi), θi)
(z′0(θi)−H1(θi)) + Iµ(θi)−∆z0|t=θi , i = 1, 2, ..., p.

According to condition (C5), the function ω
(i)
0 (τi) satisfies an exponential estimate of the

form

|ω(i)
0 (τi)| ≤ c exp(−κτi), i = 1, 2, ..., p, (23)

where c and κ denote positive constants, which values may differ across various inequalities.
The remaining task is to solve the following equation

ν̇
(i)
0 (τi) = f(y0(θi), θi)ω

(i)
0 (τi) = Π0h(τi), i = 1, 2, ..., p.

Using condition (10), we determine the initial condition as follows

ν
(i)
0 (0) = −

∫ ∞
0

Π0h(s)ds.

Consequently, the following result is derived

ν
(i)
0 (τi) = −

∫ ∞
τi

Π0h(s)ds.

Since |Π0h(τi)| ≤ c exp(−κτi), it holds that

|ν(i)0 (τi)| ≤ c exp(−κτi), i = 1, 2, ..., p.

The coefficients of εk in the approximations zk(t) and yk(t) are determined from the following
system

z′k−1(t) = F (y0(t), t)zk(t) + (Fy(t)z0(t) +Gy(t))yk(t) +Hk(t),

y′k(t) = f(y0(t), t)zk(t) + (fy(t)z0(t) + gy(t))yk(t) + hk(t),

∆yk|t=θi + ν
(i)
k−1(0) = J1(y0(θi), 0)zk(θi) + (J1y(θi)z0(θi) + J2y(θi))yk(θi)) + Jk(θi).

The functions ω(i)
k (τi) are determined as the solutions of the following system

ω̇
(i)
k (τi) = F (y0(θi), θi)ω

(i)
k (τi) + ΠkF (τi)z0(θi) + ΠkG(τi) = ΠkH(τi),

ω
(i)
k (0) = I1(y0(θi), 0)zk+1(θi) + (I1y(θi)z0(θi) + I2y(θi))yk+1(θi) + Ik+1(θi)−∆zk|t=θi ,
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where the initial value ω(i)
k (0) can be represented in an equivalent form below

ω
(i)
k (0) =

I1(y0(θi), 0)

F (y0(θi), θi)
(z′k(θi)−Hk+1(θi)) + Ik+1(θi)−∆zk|t=θi ,

Finally, it is necessary to solve the equation

ν̇
(i)
k (τi) = f(y0(θi), θi)ω

(i)
k (τi) + Πkf(τi)z0(θi) + Πkg(τi) = Πkh(τi), i = 1, 2, ..., p.

By applying condition (10), we obtain

ν
(i)
k (0) = −

∫ ∞
0

Πkh(s)ds,

and

ν
(i)
k (τi) = −

∫ ∞
τi

Πkh(s)ds.

The functions ΠkH(τi) and Πkh(τi) admit exponential estimates of the form (23).
Accordingly, one can prove that the following inequalities are satisfied,

|ω(i)
k (τi)| ≤ c exp(−κτi), i = 1, 2, ..., p,

|ν(i)k (τi)| ≤ c exp(−κτi), i = 1, 2, ..., p.
(24)

Hence, the expansions in (9) are constructed at least up to the terms of order k = n.

3 Main Results

In this section, we prove Theorems 1 and Theorem 2, which address two different behaviors:
a single layer singularity and a multi-layers singularity. The first behavior corresponds to a
layer concentrated near t = 0, while the second deals with the presence of multiple layers
near t = 0 and at the points t = θi, i = 1, 2, . . . , p. It is demonstrated that the partial sums
of the series (8) form a sequence of uniform approximations to the solution of the problem
(3)–(4).

3.1 Asymptotic expansion of singularity with a single layer

We consider the case in which the convergence of the solution is non-uniform in a
neighborhood of t = 0, as a result of the initial condition z(0, µ) = z0 satisfying z0 6= ϕ
for all µ > 0. The interval where this non-uniformity occurs is referred to as the initial layer.

In accordance with condition (C5) of (13), the following identity holds,

I1(y0(θi), 0)z1(θi) + (I1y(θi)z0(θi) + I2y(θi))y1(θi) + Iµ(θi) = 0, i = 1, 2, ..., p.

As a result, the first equation of (17) becomes

ω
(i)
0 (0) = −∆z0|t=θi , i = 1, 2, ..., p.
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Substituting the above expression into (8), we obtain

z(θi+, µ) = z0(θi+) + ω
(i)
0 (0) +O(µ) = z0(θi) +O(µ), i = 1, 2, ..., p.

It can be concluded that the region of non-uniform convergence has a thickness of order
O(µ), since for t > 0 the estimate |z(t, µ) − ϕ| = O(µ) holds and can be made arbitrarily
small by choosing sufficiently small µ. This indicates that, for sufficiently small values of µ,
the solution z(t, µ) to the problem (3), (4) does not exhibit boundary layer behavior in the
vicinity of the points t = θi, i = 1, 2, . . . , p.

Theorem 1 Let conditions (C1) − (C4) and (C5) be satisfied. Then there exist positive
constants µ0 and c such that, for all µ ∈ (0, µ0], the problem (3), (4) admits a unique solution
z(t, µ), y(t, µ) that satisfies the inequality

|z(t, µ)− Zn(t, µ)| ≤ cµn+1, 0 ≤ t ≤ T,

|y(t, µ)− Yn(t, µ)| ≤ cµn+1, 0 ≤ t ≤ T,
(25)

where

Zn(t, µ) = Z(i)
n (t, µ), Yn(t, µ) = Y (i)

n (t, µ), θi < t ≤ θi+1,

Z(i)
n (t, µ) =

n∑
k=0

µkzk(t) +
n∑
k=0

µkω
(i)
k (τi), τi =

t− θi
µ

,

Y (i)
n (t, µ) =

n∑
k=0

µkyk(t) + µ

n∑
k=0

µkν
(i)
k (τi), i = 1, 2, ..., p.

Proof 1 Substituting the expressions z(t, µ) = u(t, µ)+Zn(t, µ) and y(t, µ) = v(t, µ)+Yn(t, µ)
into equations (3) and (4), we derive the following system

µ
du

dt
= F (Y0, t)u+ [Fy(Y0, t)Z0 +Gy(Y0, t)]v + T1(u, v, t, µ),

dv

dt
= f(Y0, t)u+ [fy(Y0, t)Z0 + gy(Y0, t)]v + T2(u, v, t, µ),

µ∆u|t=θi = I1(Y0, 0)u+ [I1y(Y0, 0)Z0 + I2y(Y0, 0)]v + S1(u, v, θi, µ),

∆v|t=θi = J1(Y0, 0)u+ [J1y(Y0, 0)Z0 + J2y(Y0, 0)]v + S2(u, v, θi, µ),

(26)

with initial condition

u(0, µ) = 0, v(0, µ) = 0, (27)

where the components of the functions Fz, Fy, fz and fy are calculated at the points (z0(t) +
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ω
(i)
0 (τi), y0(t), 0), i = 1, 2, ..., p,

T1(u, v, t, µ) =F (v + Yn, t)(u+ Zn) +G(v + Yn, t)− F (Y0, t)u−

− [Fy(Y0, t)Z0 +Gy(Y0, t)]v − µ
dZn
dt

,

T2(u, v, t, µ) =f(v + Yn, t)(u+ Zn) + g(v + Yn, t)− f(Y0, t)u−

− [fy(Y0, t)Z0 + gy(Y0, t)]v −
dYn
dt

,

S1(u, v, θi, µ) =I1(v + Y (i−1)
n , µ)(u+ Z(i−1)

n ) + I2(v + Y (i−1)
n , µ)− I1(Y0, 0)u−

− [I1y(Y0, 0)Z0 + I2y(Y0, 0)]v + µZ(i−1)
n − µZ(i)

n ,

S2(u, v, θi, µ) =J1(v + Y (i−1)
n , µ)(u+ Z(i−1)

n ) + J2(v + Y (i−1)
n , µ)− J1(Y0, 0)u−

− [J1y(Y0, 0)Z0 + J2y(Y0, 0)]v + Y (i−1)
n − Y (i)

n .

The functions T (u, v, t, µ) possess the following two properties,
1) T1(0, 0, t, µ) = O(µn+1), T2(0, 0, t, µ) = O(µn+1).

2) For any µ > 0, there exist constants c2 > 0 and µ0 > 0 such that, for all µ ∈ (0, µ0)
and for ui, vi, i = 1, 2, the following inequalities are satisfied,
|Ti(u1, v1, t, µ)− Ti(u2, v2, t, µ)| ≤ c2µ(|u2 − u1|+ |v2 − v1|), i = 1, 2.

We now proceed to prove property 1). For t ∈ (θi, θi+1], it follows that

T1(0, 0, t, µ) = F (v + Yn, t)Zn +G(v + Yn, t)− µ
dZn
dt

= G(
n∑
k=0

µk(yk(t) + µν
(i)
k (τi)), t)+

+ F (
n∑
k=0

µk(yk(t) + µν
(i)
k (τi)), t)(

n∑
k=0

µk(zk(t) + ω
(i)
k (τi)))−

n∑
k=0

µk(z′k(t) + ω̇
(i)
k (τi)) =

= F (
n∑
k=0

µk(yk(t), t)
n∑
k=0

µkzk(t) +G(
n∑
k=0

µk(yk(t), t)−
n∑
k=0

µkz′k(t)+

F (y(θi + µτi, µ) + µν(i)(τi, µ), θi + µτi)
n∑
k=0

µkω
(i)
k (τi) +

n∑
k=0

µk(ΠkF (τi)z0(θi) + ΠkG(τi))−

−
n∑
k=0

µkω̇
(i)
k (τi) = [

n∑
k=0

µkHk(t) +O(µn+1)−
n∑
k=0

µkz′k(t)]+

+ [
n∑
k=0

µkΠkH(τi) +O(µn+1)−
n∑
k=0

µkω̇
(i)
k (τi)] = O(µn+1),

similarly to that for the functions yk(t), ν
(i)
k (τi), i = 1, 2, ..., p. The validity of the second

property of the functions Tj, j = 1, 2, can be derived by applying the mean value theorem. In
fact,

Ti(u1, v1, t, µ)− Ti(u2, v2, t, µ) = sup
[0;T ]

|∂∗uT | · (u1 − u2) + sup
[0;T ]

|∂∗vT | · (v1 − v2),
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where ∂∗uT = ∂∗uT (u∗(s), v∗(s), t, µ), ∂∗vT = ∂∗vT (u∗(s), v∗(s), t, µ), u∗(s) = u2 + s(u1 −
u2), v

∗(s) = u∗(s) = v2 + s(v1 − v2), 0 < s < 1. But

∂uTi(u
∗(s), v∗(s), t, µ) = F (v + Yn, t)− F (Y0, t),

∂vTi(u
∗(s), v∗(s), t, µ) = Fy(v + Yn, t)(u+ Zn)− Fy(Y0, t)Z0 +Gy(v + Yn, t)−Gy(Y0, t),

and

|u∗(s) + Zn(t, µ)− Z0(t)| ≤ |u∗(s)|+ Cµ,

|v∗(s) + Yn(t, µ)− Y0(t)| ≤ |v∗(s)|+ Cµ.

The continuity of the first-order partial derivatives of the functions F (y, t), G(y, t), f(y, t) and
g(y, t) ensures the validity of property 2). The functions Si(u, v, θi, µ), i = 1, 2, possess the
following two properties,

1∗) For 0 < µ < µ0

S1(0, 0, θi, µ) = O(µn+1), S2(0, 0, θi, µ) = O(µn+1).

2∗) For any µ > 0, there exist constants c2 > 0 and µ0 > 0 such that, for all µ ∈ (0, µ0) and
for ui, vi, i = 1, 2, the following inequalities are satisfied,

|Si(u1, v1, t, µ)− Si(u2, v2, t, µ)| ≤ c2µ(|u2 − u1|+ |v2 − v1|), i = 1, 2.

The proofs of properties 1∗) and 2∗) follow analogously to those of properties 1) and 2),
respectively.

We now reformulate the impulsive system (26)–(27) as an equivalent system of integral
equations

u(t, µ) =
1

µ

∫ t

0

Φ(t, s, µ)[(Fy(Y0, s)Z0 +Gy(Y0, s))v(s, µ) + T1(u, v, s, µ)]ds+ (28)

+
∑

0<θi<t

Φ(t, θi, µ)(1 +
I1(Y0, 0)

µ
)−1([I1y(Y0, 0)Z0 + I2y(Y0, 0)]v(θi, µ) + S1(u, v, θi, µ)),

v(t, µ) =

∫ t

0

Ψ(t, s, µ)[f(Y0, s)u(s, µ) + T2(u, v, t, µ)]ds+ (29)

+
∑

0<θi<t

Ψ(t, θi, µ)(1 + J1y(Y0, 0)Z0 + J2y(Y0, 0))−1(J1(Y0, 0)u(θi, µ) + S2(u, v, θi, µ)),

where Φ(t, s, µ) and Ψ(t, s, µ) denote the fundamental matrices of the corresponding system

µ
dΦ

dt
= F (Y0, t)Φ, t 6= θi, µ∆Φ|t=θi = I1(Y0, 0)Φ, Φ(s, s, µ) = 1,

dΨ

dt
= (fy(Y0, t)Z0 + gy(Y0, t))Ψ, t 6= θi, ∆Ψ|t=θi = (J1y(Y0, 0)Z0 + J2y(Y0, 0))Ψ, Ψ(s, s, µ) = 1.

The following holds for the fundamental matrix Φ(t, s, µ)

|Φ(t, s, µ)| ≤ c exp(−κ
µ

(t− s)), 0 ≤ s ≤ t ≤ T.
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By inserting the representation of v(t, µ) from equation (29) into the first equation, we derive

u(t, µ) =

∫ t

0

H(t, s, µ)u(s, µ)ds+N1(u, v, t, µ),

where H denotes a bounded kernel, and the function N1 satisfies the same two properties as
the function T (u, v, t, µ). The last equation may be replaced by an equivalent one of the form

u(t, µ) =

∫ t

0

R(t, s, µ)N1(u, v, s, µ)ds+N1(u, v, t, µ) = M1(u, v, t, µ), (30)

where R is the resolvent corresponding to the kernel H. Substituting the representation (30)
for u(t, µ) into equation (29) yields

v(t, µ) =

∫ t

0

Ψ(t, s, µ)[f(Y0, s)M1(u, v, s, µ) + T2(u, v, s, µ)]ds+

+
∑

0<θi<t

Ψ(t, θi, µ)(1 + J1y(Y0, 0)Z0 + J2y(Y0, 0))−1(J1(Y0, 0)M1(u, v, θi, µ)+ (31)

+ S2(u, v, θi, µ)) = M2(u, v, t, µ).

The functions M1 and M2 possess the same two properties as the function T (u, v, t, µ). The
method of successive approximations applied to systems (30) and (31) yields a unique solution
that fulfills the corresponding estimates

|u(t, µ)| = |z(t, µ)− Zn(t, µ)| ≤ cµn+1, 0 ≤ t ≤ T,

|v(t, µ)| = |y(t, µ)− Yn(t, µ)| ≤ cµn+1, 0 ≤ t ≤ T.

The theorem is proven.

3.2 Asymptotic expansion of singularity with multi-layers

In the previous subsection, it was shown that there exists a single initial layer. Using an
impulse function, the convergence can be nonuniform near several points, that is to say,
that multi-layers emerge. These layers occur on the neighborhoods of t = 0 and t = θi

p
i=1.

In the preceding subsection, the existence of a single initial layer was demonstrated. The
introduction of an impulse function leads to nonuniform convergence in the vicinity of multiple
points, resulting in the formation of multi-layer structures. These layers are localized near
t = 0 and t = θi, i = 1, 2, . . . , p.

In order to generate a singularity exhibiting a multi-layer structure, we examine system
(3) subject to conditions(C1)–(C4) along with the additional requirement condition

(C6) lim
(z,y,µ)→(ϕ,y,0)

I1(y, µ)z + I2(y, µ)

µ
= li 6= 0,

where li is a constant, ϕ(y(θi), θi)+li, i = 1, 2, ..., p, are the values for each impulse moment at
the points t = θi, i = 1, 2, ..., p. By virtue of condition (C6) from equation (13), the following
equality holds

I1(y0(θi), 0)z1(θi) + (I1y(θi)z0(θi) + I2y(θi))y1(θi) + Iµ(θi) = li 6= 0, i = 1, 2, ..., p.
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Accordingly, the first equation of system (17) can be rewritten in the following form

ω
(i)
0 (0) = li −∆z0|t=θi , i = 1, 2, ..., p.

By substituting the previously derived expression into (8), we arrive at

z(θi+, µ) = z0(θi+) + ω
(i)
0 (0) +O(µ) = z0(θi) + li +O(µ), i = 1, 2, ..., p.

According to condition (C6), after each impulse moment θi, the difference |z(θi+, µ)− ϕ| =
li +O(µ) does not vanish as µ→ 0. Consequently, the convergence is nonuniform. Therefore,
it can be concluded that the solution z(t, µ) of system (3) with the initial condition (4)
exhibits a multi-layer structure, with layers forming in the neighborhoods of t = 0 and t = θi
for i = 1, 2, . . . , p.

The proof of the next theorem follows by analogy with the proof of Theorem 1.

Theorem 2 Let conditions (C1) − (C4) and (C6) be satisfied. Then there exist positive
constants µ0 and c such that, for all µ ∈ (0, µ0], the problem (3), (4) admits a unique solution
z(t, µ), y(t, µ) that satisfies the inequality

|z(t, µ)− Zn(t, µ)| ≤ cµn+1, 0 ≤ t ≤ T,

|y(t, µ)− Yn(t, µ)| ≤ cµn+1, 0 ≤ t ≤ T,

where

Zn(t, µ) = Z(i)
n (t, µ), Yn(t, µ) = Y (i)

n (t, µ), θi < t ≤ θi+1,

Z(i)
n (t, µ) =

n∑
k=0

µkzk(t) +
n∑
k=0

µkω
(i)
k (τi), τi =

t− θi
µ

,

Y (i)
n (t, µ) =

n∑
k=0

µkyk(t) + µ
n∑
k=0

µkν
(i)
k (τi), i = 1, 2, ..., p.

4 Numerical examples

4.1 Example 1

Consider the impulsive system with singularities

µz′ = −y2z + y2 − 5µ2y, µ∆z|t=θi = zy − y − 2µ2y3,

y′ = 2zy − 8y, ∆y|t=θi = 2yz − 8y,
(32)

initial conditions

z(0, µ) = 2, y(0, µ) = 3, (33)

where θi = i/5, i = 1, 2, ...7. Assume that µ = 0 in the considered problem. In this case, the
first equation of system (32) reduces to the form −y2z + y2 = 0, zy− y = 0. which yields the
solution z = ϕ = 1. Nevertheless, according to condition (C2), the root z = 1 is uniformly
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asymptotically stable. Inserting the value z = 1 into the second equation of (32) yields the
following result

y′ = −6y, ∆y|t=θi = y + 1,

y(0) = 3.
(34)

This system possesses a unique solution y(t). Next, we examine the validity of condition (C5)

lim
(z,y,µ)→(ϕ,y,0)

zy − y − 2µ2y3

µ
= 0.

The solution z(t, µ) of system (32) with the initial condition (33) exhibits a single initial layer
at t = 0. The simulation results presented in Figure 1 confirm the presence of this single-layer
behavior. As µ→ 0, Figure 2 shows that the solution to problem (32), (33) converges to the
solution of the corresponding degenerate system (34).
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Figure 1: The blue and green curves illustrate the solutions of system (32) with initial
conditions (33), corresponding to the values µ = 0.1 and µ = 0.05, respectively. The red line
represents the solution to problem (34).
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Figure 2: The blue and green curves illustrate the solutions of system (32) with initial
conditions (33), corresponding to the values µ = 0.1 and µ = 0.05, respectively. The red line
represents the solution to problem (34).

4.2 Example 2

Now, we now consider the following system

µz′ = −y2z − 3y2 − 4µ2yz, µ∆z|t=θi = zy + 3y − 6µ2yz − 4sin(2µ),

y′ = 2zy − 8y, ∆y|t=θi = 2y − z,
(35)

initial conditions

z(0, µ) = −1, y(0, µ) = 3, (36)

where θi = i/5, i = 1, 2, ...7. Setting µ = 0 in (35) transforms the first equation into −y2z −
3y2 = 0, which simplifies to zy+3y = 0. This yields the root z = −3. The corresponding root
ϕ = −3 is uniformly asymptotically stable, as it satisfies condition (C2). Inserting z = −3
into the second equation of system (35) yields

y′ = −14y, ∆y|t=θi = 2y + 3,

y(0) = 3.
(37)

One can confirm that condition (C6) is satisfied

lim
(z,y,µ)→(ϕ,y,0)

zy + 3y − 6µ2yz − 4sin(2µ)

µ
= −8 6= 0.
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The solution z(t, µ) of system (35) with initial condition (36) exhibits multi-layers near t = 0
and at each point t = θ+i , i = 1, 2, ..., 7. Figure 3 reveals the presence of multi-layer behavior
in the solution, while Figure reffig4 shows that, as µ→ 0, the solution of the original problem
(35), (36) approaches the solution of the degenerate system (37).
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Figure 3: The green and blue curves illustrate the solutions of system (35) with initial
conditions (36), corresponding to the values µ = 0.1 and µ = 0.05, respectively. The red line
represents the solution to problem (37).
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Figure 4: The green and blue curves illustrate the solutions of system (35) with initial
conditions (36), corresponding to the values µ = 0.1 and µ = 0.05, respectively. The red line
represents the solution to problem (37).

5 Conclusion

In this paper, the singularly perturbed quasi-linear impulsive differential equation is
considered. The boundary function method is employed to construct asymptotic solutions
with arbitrary accuracy. Both single-layer and multi-layers phenomena are analyzed within
the framework of asymptotic expansions. This approach allows a detailed description of the
solution behavior in regions characterized by rapid transitions and boundary layers. The
theoretical results are supported by illustrative examples and numerical simulations.
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[19] Akhmet M., Çağ S., "Chattering as a Singular Problem" , Nonlinear Dynamics 90:4 (2017): 2797-2812.
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