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ON ¢-DEFORMATED HORMANDER MULTIPLIER THEOREM

Abstract. The main purposes of this work, we introduce the ¢-deformed Fourier multiplier
Ay defined on the space Lg (R,) through the framework of the g?-Fourier transform, while also
extending the functional setting of Lg(Rq) with 1 < p < oco. Our approach provides a natural
extension of classical Fourier multiplier theory into the g-deformed setting, which is relevant
in the context of quantum groups and noncommutative analysis. Furthermore, we establish
several key g-analogues of classical harmonic analysis inequalities for the g¢?-Fourier transform,
including the Paley inequality, Hausdorff-Young inequality, Hausdorff-Young-Paley inequality,
and Hardy-Littlewood inequality. These results not only generalize their classical counterparts but
also open new avenues for analysis on g-deformed spaces. As a significant application, we prove
a g-deformed version of the Hormander multiplier theorem, which provides sufficient conditions
for the boundedness of multipliers in the g-deformed setting. This work sets the stage for further
developments in the field of ¢g-deformed harmonic analysis.

Key words: g-Jackson integral, g-caclulus, Fourier multiplier, inequality, multiplier, Hausdorff-
Young inequality.
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g-nedopmanussianrad XépMaHAepAiH, MYJIbTUILINKATOPJIAP TEOPEMAaChl TyPaJibl

Annortarusa. By XKyMmbIcTbIH Herisri mMakcarTapbl: 6i3 Lg(Rq) KeHICTiriHIe aHBIKTAIFaH ¢2-
@ypre Typrengipyi menbepinge A, g-medopmanusananran Pypbe KeOEHTKINIH eHrizemis »xone
1 <p < oo ymin pynknumonanpr napamerpi LY (R,) xenicrikrepine keneiiremis. Bisnin kesxkapa-
cbIMbI3, opube, Dypbe KOOEHTKIIITEPIHIH KIIACCUKAJBIK, TEOPUICHIH ¢-1edOpMaIisjIaHFal Iapa-
MeTpre jiefiin KeHeiiTe i, OyJ KBAHTTHIK TOITAP MEH KOMMYTATUBTI €MeC TaJ1ay KOHTEKCTIHIE oTe
manpsael. Coman Keitin 6i3 ¢2-@ypbe TypJeHIipyi yIIiH rapMOHIKAJIBIK, TALIAY/IbIH KJIACCHKAIBIK
TeHCI3iKTepiHiH OipKaTap Herisri g-aHaorTapbiH OenrineiiMis, conwrH, iminge [lameit, Xaycmopd—
Aur, Xaycnopd—Aur—IIsitnn xkoune Xapau-JIntiBy TeHcizaikrepi. AJIBIHFAH HOTHXKEJIED OJIAPIbIH,
KJIACCHKAJIBIK, IIPOTOTUINITEPIH KOPBITHIIT KaHa KONMail, g-aedopMalusiianFal KeHiCTiKTepre TaJ-
JTayIbIH KaHA OarpITTAPBIH amaabl. MaHbI3abpl Komanba peTinae 6i3 kebelTKimTep Typaabl Xép-
MaHJEeP TeOPEMACHIHBIH, ¢-AedOpMAaIuaIanTal HYCKACHIH JRJIeaaeiimMi3, oy g-nedopMalusaianran
rmapameTp/ie KoOeHTKIMmTepIiH MeKTeJTeH I ir VI KeTKUTKTI mapTrapAsl oepesi. By xKymbic

g-nedpopManusiIaHFaH TapMOHUKAJIBIK TAJIIaY bl OJIaH 0Pl JAMBITYFa Heri3 KaJiaiijibl.
Tyitia ce3nep: ¢-/Ixekcon unTerpasbl, g-ecernrey, Pypbe KOOEHTKIII, TEHCI3/IK, MYyJIbTUILITKA-

top, Xaycaopd—Aur TeHcizairi.
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Annoramusi. OcHOBHBIE TIeJIM JIAHHON pabOThl COCTOAT B CJEAYIOMIEM: MbI BBOIUM (-
JieopMUPOBAHHBIH My/IbTHILIHKATOP Pypbe Ag, OLpeneséHHbIl Ha IPOCTPAHCTBE Lg(Rq) B pam-
Kax ¢?-mpeobpasopamms Pypbe, a TakxKe pacmupgeM (QYHKIHOHAILHYIO HOCTAHOBKY OO IIPO-
CTPaAHCTB LZ’(Rq) mpu 1 < p < oo. Ham momxom ecrecTBeHHBIM 0OPA30M IIPOMOJIKAET KJIAc-
CHYECKYI0 TeOpHIO (hyphe-MyJbTUIINKATOPOB B ¢-71e(DOPMUPOBAHHYIO MMOCTAHOBKY, YTO CyIIe-
CTBEHHO B KOHTEKCTE€ KBAHTOBBIX I'DYII U HEKOMMYTATHBHOIO aHaym3a. /lajee Mbl ycTaHaBJu-
BaeM s KJIOUEBEIX (-AHAJIOTOB KJIACCHYECKHX HEPABEHCTB TAPMOHMYECKOTO AHAJN3A IS (-
npeobpazoBanus Pypre, BKIoUas HepaBercrsa [Iaym, Xaycnopda—Aura, Xaycaopdba—Auara—IIamu
u Xapaun-Jlurtneyna. [loxyaennbie pe3yabraThl He TOJIBKO 0000IIAIOT WX KIIACCHIECKUE ITPOTOTHU-
IIbI, HO W OTKPBIBAIOT HOBBIE HAIIPABJIECHUS aHAJIN3a HA ¢-1edOPMUPOBAHHBIX POCTPAHCTBAX. B
KadecTBe CyIIEeCTBEHHOIO MPUJIOKEHUsI MBI JOKA3bIBaeM ¢-1eOPMUPOBAHHBII BADUAHT TEOPEMBI
XépMaHiepa 0 MyJIbTUILINKATOPAX, JAONIUN JJOCTATOYHbIE YCJIOBUSI OIPAHUYEHHOCTH MYJIbTUILIN-
KATOPOB B ¢-1e(OPMUPOBAHHON MTOCTAHOBKE. DTa PabOTa 3aKJIabIBAET OCHOBY s Ja/IbHEHIIIero
pa3BuTHA ¢-1eOPMUPOBAHHOINO TAPMOHUIECKOIO aHAIN3A.

KuaroueBbie cjioBa: ¢-marerpas JXKekcoHa, g-mcuuciaenne, MyabTurmmkarop Pypbe, HepaBeH-
CTBO, MYJIbLTUILINKATOP, HEPABEHCTBO Xaycaopda—ddnra.

1 Introduction

The history of quantum calculus (or g-deformation) started in the 18th century when L. Euler
[9] investigated the infinite product in the following form:

o0

1
N
(¢:90)% = in)l_—q%l’ lq| < 1.

It serves as a generating function for the partition function p(n), which enumerates the
number of distinct ways to express n as a sum of positive integers. In the early 20th
century, F.H. Jackson introduced the g-derivative and the definite g-integral [6}/7], forming
the basis of modern g-calculus. Over the past two decades, research on ¢-deformation has
expanded rapidly. For instance, V. Kac and P. Cheung [8| studied its fundamental properties,
while T. Ernst [10,/11] highlighted its importance in quantum computing models. Further
developments include the work of N. Bettaibi and R.H. Bettaieb |4], who introduced a ¢-
deformed Dunkl operator and analyzed its Fourier transform in [13,|14] (see also |16]). This
operator is defined using Rubins g-differential operator 9, [17,/18]. For more details on the
history and recent progress in g-calculus, see the monographs [1,10-12,|15].

The ¢-difference calculus dates back to the early 20th century, with pioneering
contributions by F. Jackson [6,/7] and R.D. Carmichael [5|. More recently, W. Al-Salam |3|
and R.P. Agarwal [2] introduced the concept of fractional ¢-difference calculus. In recent
years, fueled by the rapid growth of research in the ¢-partial dif equation, this theory has
also undergone significant development (see, [25-27,29-31]).

In this work, we establish some basic g-deformed integral inequalities for ¢-Fourier
transform such as the Paley, Hausdorff-Young, Hausdorft-Young-Paley, and Hardy-Littlewood
inequalities. The problem under consideration can be reformulated as proving the
boundedness of an associated Fourier multiplier via an appropriate transformation. In this
context, the Hormander multiplier theorem is a fundamental result in Fourier analysis that
provides conditions ensuring the boundedness of Fourier multiplier operators on L” spaces.
Specifically, it characterizes the regularity requirements for a multiplier function so that the
associated operator, defined by multiplication in the Fourier domain, acts boundedly on
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LP(R%. Let o be a function on R?, and define the Fourier multiplier operator A, by
Arf(2) = F o - fl(2),

where F denotes the classical Fourier transform.
The theorem states that A, is bounded on Lp(Rd) for 1 < p <2< q< o0 if o satisfies a

condition, often expressed as
11
sup)\< / dqs>p .
A>0

lo(s)[=A

This statement generalizes earlier results by Mikhlin and provides a powerful framework for
analyzing multipliers. It has important applications in partial differential equations, signal
processing, and control theory, among others. Comprehensive discussions of these results and
their further developments are available in the works of L. Hérmander 23], E.M. Stein [32],
as well as in more recent texts like L. Grafakos [24]. Our formulation of ¢-deformed Fourier
multiplier is more intuitive and aligns closely with the classical, commutative framework,
which allows many of the same properties to carry over. Similar to the classical case, the key
part of the proof depends on the Paley inequality and the Hausdorff-Young—Paley inequality
for the classical Fourier transform, both of which are obtained through the Hausdorff—Young
inequality. In the course of our work, we also derive g-analogue of several important
inequalities such as the Paley, Hausdorff-Young—Paley, Hardy-Littlewood. Moreovere, we
present a simple proof of the P — L? boundedness of Fourier multipliers that avoids using
the Paley and Hausdorff-Young—Paley inequalities, drawing on the method introduced in [33].

2 Preliminaries

2.1 Basic notations on R, space

Throughout this paper, we assume 0 < ¢ < 1. In this section, we will fix some notations and
recall some preliminary results. We put R, = {£¢" : n € Z} and R, = R, U {0}. For a € C,
the g-shifted factorials are defined by

n—1 0
(@qo=1 (0).=]]0-ad"), n=12. (69)=]]1—ad).
k=0 k=0
We denote also
1—¢° (¢ Dn
al, = , acC and [n|,)=-—"———", neN

The g-analogue differential operator D, f(x) is

f(z) = flgz)
r(l1—q)

The ¢-Jackson integrals are defined by (see, [6,7])

D,f(z) =



120 On g-deformated Hérmander multiplier theorem

a

/ F@)dgr = (1 - )’ S q"f (ag”) (1)

0

b oo
[ H@dr = (=0 Y q" 0F 00") - af (ag) 2)

and
+oo

/f Mer = (1=0) 30 40 @)+ 1 (")},

prov1ded the sums converge absolutely.

In the following we denote by

1/p

o Ij(R,) = finHLg(Rq)=</R |f<x>|pdqx> <o

e L*(Ry) = {fﬁ 1l zgorg) = Sup |f(2)] < OO}-

2.2 Fourier transform and Fourier multiplier on R,
The g*-exponentials (see |18] and [17])
e(z;¢%) = cos(—ix; ¢*) + isin(—ix; ¢*),

where the ¢?-trigonometric functions

k=0
and o0 k k(k+1),.2k
. , (—1)kghlkt1) 241
sin(x; q¢*) =
(%) ; 2k + 1],
Definition 2.1 Let f € D, (R,). Then the ¢*-Fourier transform of f is defined as follows

/\

F&q?)=f¢ = K f (—iz&; q°)dgw (3)

and its inverse

fo) = K / (i€ (1) F (€ )t

_ (492
where K = 2Fq2q(1/2).
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Moreover, we have the Plancherel (or Parseval) identity (see, [17])

[f 2y = I fllL2ry)- (4)
In [17], 0, denote the weighted Dirac-measure at y € R, defined on R, by
_ [ Q=g ifr=y,
5@’(”_{ 0. if £y,

and It satisfies the following properties:
1) for all z,y € R, , we have the orthogonality relation

dy(z) = K2/e(z’xf;q2)e(—iy§;q2)dq§. (5)

Rq

2) If f € Ly(R,), then we get that

f) = [ @3, (6)

Definition 2.2 We assume that the function g : R, — C is bounded. Then, we introduce the
q-deformated Fourier multiplier Ay on L2(R,) as follows

~

Ay(P)@) = K | 9(&) f(©e(in; ¢*)dyé. (7)

Ry

Definition 2.3 Let 1 < p,r < oo. Let B : LE(R,) — Li(R,) be a bounded linear operator.
The, we define its adjoint operator B* : L;l (Ry) — Lf]’/ (R,) as follows

(B(f). fo) = / BUNEROGE = [ HOBEEE = (. B (1) ®)

Rq

for all f € LE(R,) and fy € L7 (R,).

2.3 The ¢-distribution function

In subsection, we state the distribution function df();¢) on R,. Let Q be a subset of (0, c0)
and z > 0. Then, the definite ¢-integral with the function xq(z) introduced as follows

/ Yo@) f@)dgz = (11— ) 3 ¢ F(q") (9)

Ry "sz
and
/ X (@) (@)dgz = (1= ) 3 g" (g™, (10)

where xq(z) is the characteristic function of the set  (see, |20, formals 2.6-2.7] and [21]).
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Definition 2.4 (see, 28, Definition 2. p. 504]) The q-distribution function ds(X;q) of f :
R, — R is a real-valued function, which expressed as

dp(g) = pafe € Ry [f(@)] > A}, A >0,
Moreover, we observe that

drig(2X; ) < dp(A;q) + dg(X; q). (11)

Using the distribution function, we present and demonstrate the following key
characterization of the LF(R,) norm.

Proposition 2.5 (see, (28, Proposition 4. p. 506[)Let 0 < p < oo and f € LL(R,). Then

11y = W [ X5 ) (12)

Ry

Lemma 2.6 (see, (25, Lemma 1. p. 506]) Let f € LE(R,) for 0 < p < oo. Then
a) We assume that Ey = {x € R, : |f(z)] > A}

dna) <5 [ e @@l < 5 [ 7@l

Rq

b) (The q-Chebyshev inequality).

desg/mmwmwﬁ

Rq

3 A ¢-deformated interpolation theorem

In this section we establish a ¢-deformated interpolation theorem.

3.1 The g-deformated Marcinkiewicz Interpolation theorem

Definition 3.1 (see, |28, Definition. p. 507]) Assume that 0 < p < oo. Then, we defined
the space weak LB> (R,) as follows

. C 1/
p,00 = N N < —q e p N .
flig=eo = {int{cy>0:a000 < b —sw (rafrosn} <oof. a3

The weak L2 (R,) spaces are larger than the usual L? (R,) spaces.
For any 0 < p < oo and any f in L (R,) we have

||f||Lf;’°°(]Rq) < ||f||L%;(Rq)a (14>

Hence, the embedding L2 (R,) < L? (R,) holds.
Indeed, by and the ¢-Chebyshev’s inequality (see, Lemma (b) ), and we have
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Il = igg{kd}/p(k; 9)} Zitilg{(/xg(x)\f( Pdg) "} < Uy,

Ex

which implies that holds.
Now, we can prove the following interpolation theorem, which will let us deduce L? (R,)
boundedness from weak inequalities, since they measure the size of the distribution function.

Theorem 3.2 (¢-deformated  Marcinkiewicz  interpolation)  Let 0 < D <
s < oo and T is a sublinear operator defined on LP>(R,) + Ly*(R,) :=
{fo + i fo€ LB (Ry), fr € Ly (]Rq)}. Assume that

T~y < Collflleewy, Y€ Ly™(Ry), (15)

IT(H)ly=m@,) < Cillflley=m,), VI € L™ (R,), (16)
Then Vr € (p,s) and Vf € Ly (R) the following estimate holds

1Ty < Cllf g, (17)

1/r
where C':= 2[r ]UT (4 + ;> COCI=0 and 0 = =1

[r—plq [s—rlq 1/p—1/s
Proof. For a fixed A > 0 we suppose that the functions fy and f; by

_ fla), if [f(z)] < CA _ 0, if[f(x)] <O
f0<x)_{ 0, if |f(z)] > O\, fl(w)‘{ Fz), if |f(z)] > O\,

for some C' > 0 to be determined later.

Let 0 < p < r < s < oo. We assume that Fy = {z:|f(x)] < CA} and E; :=
{z :|f(z)] > CA}. Then it can then be easily verified that f; (the unbounded part of f)
is an L} function for p < r:

X gt = X7 @l
Ry Rq

Ry

= [1s@r [x @i < )
Rq RS

[r —plq

and that fy (the bounded part of f) is an L, (R,) function for r < s:

/ N Al dh = / Ao / i (@) (@) P dgzd, A
+ R

R
:L/U !/ATSW% g < S Wha =)

[s =7l
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the subadditivity property of T" and Hypotheses and together with now
give

@M C} s
dry(2Xiq) < drp(Nq) +Hdrp (V) < 0HfoH inle,q (20)

In view of the last estimates — and (12 , we conclude that

. (@ r,
Afl, @l [ x g2

RS

D 2, | [ X hldA + 5 XA

| RS Ry
(18) ([T9) [cver—r  C5CsT
< 2'r 0 + } fln
L e e e L LA

We assume that CJC™? = C$C5™", we get that

p(r—p)  s(r—p) p(r—p)  s(r—p)

C=C;7Ci™ = CPC"P=CPC," " C,°" =Cy" " C,"7" .
Therefore, we have shown , where

p(r—p)  s(r—p) 1 1
C"=2[r),Cy° " Cy { + }

r—p S—r

This completes the proof.

We say that A < B if there exists a positive constant ¢ > 0, which depends only on
certain parameters of the spaces involved, such that A < ¢B. Similarly, we write A < B
to indicate that both inequalities A < B and A 2 B are satisfied, possibly with different
constants in each inequality. In other words, A and B are equivalent up to multiplicative
constants depending only on the space parameters.

4 The ¢-deformated Hausdorff-Young-Paley Inequality

Now, we start to prove g¢-deformated Hausdorff-Young-Paley inequality and its inverse
inequality.

Theorem 4.1 Let 1 <p <2 and % + z% = 1. Then for any f € LE(R,) we have
17y ) < Il caceny 1)

Proof. Let A is a linear operator such that A(f)(¢) = f(€) for f € LP(R,), 1 < p < 2. Then,
by using the Holder inequality (see |19, Proposition 37.2|), we have

(AU M rgewy = [1fllgem, = sup [f(€)]
§ERy

< sup le(=i- & @) e @l sy < IS llzsey)s
q
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where Esu]éo le(—i- &)l L (R,) < 1. Moreover, by Plancherel’s identity , we have
ERq

~ @
TA( 2@y = 1 l2@e) = Nfll2wy,  f € Li(Ry).

Therefore, we derive that A : Lj(R,) — L°(R,) and A : L2(R,) — L2(R,), with the operator
norms at most 1. In the case, § = 2/p/, then 0 < § < 1. Moreover, we have 113 = 11;9 + g and
1 % + g. Hence, It is follows from the Theorem that the inequality holds.

p/
We now derive the reverse form of inequality in the range 2 < p < oo.
Theorem 4.2 Suppose that 2 < p < oo and fG Lfl’/ (Ry). Then

||f||Lfl)(Rq) < ||f||LZ,(Rq)’ (22)
1, 1 _
where ’ + o= 1.

Proof. Let f € LP(R,). then, from duality of LE(R,) we find that

1l =sup {I(£. D) : ¢ € LF (Re), N9l ) =1}
and using the Plancherel identity , we get
(19) = | Ty ay e SR,
Therefore,
Flez = soll(£.2)]: 0 € R, lelym, =1}

_ Sup{|/]R (5)20)des] - 0 € L (Re), Nl e, = 1}

< sup{ [ TR0 € LR el e, = 1)
< sup{ [ TR0 e LR, el g, = 1)
~ /v’ N /p
< s {( [ Feras)” ([ peras)
ApELg/(R) R, Rq
lell pr =1
LE (rg)
= s {1y, 18l
peL? (Rg)
\Iw\ILg/(Rq):l

Here we used the inequality |f(€)3(E)] < |F(€)||2(€)] for any & € R,, applying the Holder
inequality (see |19, Proposition 37.2]) with respect to Fourier transforms of f and ¢ € L{I’ (Ry)
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with [[¢|| 7 Ry = 1. by using inequality with respect to ¢, we write that

~ ~
||f||Lg(Rq) S Sulp {Hf”Lgl(Rq) ’ ||SO||L5,(Rq)} = ||f||LZ,(Rq)’
WEL%; (Rq)

llell s =1
Lé’ (Rq)

thereby completing the proof.
Next, we establish the g-deformated Hausdorff-Young-Paley inequality.

Theorem 4.3 Assume that 1 < p < 2 and let ¢ : R, — R be a strictly positive function
satisfyingthe following condition

M, :=supt / d,& < 0. (23)
>0
p(&)=t

Then, we have the following inequality

/ FOPP©dt | <M flpm, for e IRy, (24)
Rq

where ¢, > 0 1s a constant independent of f.

Proof. We assume that v be a measure on R, by v(§) := ¢*(€)d,& > 0. Detone a space
LP(R,, v) as follows

1

1z = 4 f / FOPE©Ode | <o
Rq

One can readily verify that, endowed with the above norm, this space is Banach. We then
introduce the operator A : LE(R,) — LP(R,, v) via the formula

—_—

_ 1O

It follows from m(g) ]/”\(5) +@(&), f o€ Li(R,), that Ais a sub-liner (or quasi-linear)
operator. Now, we will prove that A A : LP(R,) — LP(R,, v) is well-defined and bounded with
1 < p < 2. Equivalently, we claim that (24]) is valid under condition . We first verify that
A is of weak types (2,2) and (1, 1). The distribution function d4)(t), t > 0, with respect to
©*(s) > 0, is defined by

€ |~

daipy(t) = wis > 0 |A(f)] > t} = / PE)dE.

[A(f)>1
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The next step is to show that

2
C f 2
dA(f)(t) < (m> with ¢ =1,

and

allflrie,)

dA(f)(t) S with cl = 2M@

(25)

(26)

To begin with, we prove inequality . Using the ¢-Chebyshev inequality (see Lemma

(b)) together with (3)), we obtain

~ —~
tain(®) < 1A gy = [ 1F6)Pdus = 1T gy 2 110,
Rq

Therefore, the operator A is of weak type (2, 2) with its norm bounded above by ¢s = 1. Next,
we proceed to prove inequality . Using Hulder’s inequality (cf. |19, Proposition 37.2]) for

the exponents p = 1 and p’ = 0o, we obtain

f©l @ |, f@el-iatia)da

p&) p(£)
le(=i- & a) gl sy I lzacey)
q q aq R .
: o(6) G
Therefore, we have
/()] 1123 ey
R, : R, : .
e A A R
for any ¢ > 0. Consequently,
79 1123 R0
R, : R, : -
ACeR g T svlieRe o 21
for any ¢ > 0. Setting v := HfHLE(Rq), we obtain
f /1|2y e,
V{fERq:%>t}§y{§ERq:%>t}: / ©*(£)d €.

w(§)<v

Let us estimate the right hand side. Now we claim that

| w@ue< e,

w(§)<v

(27)

(28)
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Indeed, from this equality ¢*(£) = (1—¢q) >, ¢, and (9)-(L0) first we have

7'<p?(§)
[ #ens = -0 [ X dag-a-oy DY
p(§)<v p(&)<v qi§¢2(£) ( <v l/2<<,0 (q )

= (1= > ¢ >, ¢

q?<v  ¢i/2<p(gF)<v

< (14401 =¢"") > d-9 D ¢

q'/?<v q'/2<p(q®)
< (1401 —q"7) D> ¢ " / dyé
¢'/?<v q/2<p(€)
— (1+q1/2)/ t/dqg dyi/2t. (29)
0\ t<e®

Since
t / d.§ < supt / d.§ = M,
>0
t<p(§) t<p(§)

and M, < oo by assumption and , it follows that

v
/ (‘02<§>dq§ < (I+ q1/2)M‘P/dq1/zt < (1+¢*w- M,,.
(§)<v 0

This establishes the claim . By combining and , we derive , which confirms
that A is of weak type (1,1) with operator norm at most ¢; = 2M,,. Applying Theorem
with parameters p; = 1, ps = 2, and % = an + 2, we consequently obtain inequality .
This completes the proof.

From the g-deformated Paley-type inequality stated in Theorem [£.3, we derive the
following g-deformated Hardy—Littlewood inequality.

Theorem 4.4 Assume that 1 < p < 2 and ¢ : R, — Ry be a strictly positive function
satisfying the following condition

1
——d,s < oo for some [ >0. 30
/ p(s) " 30)
R(I
Then, we have q-deformated Hardy—Littlewood inequality as follows

JIFPe 2 6)dss | < Collfligwy for £ € LiRy)

where C, > 0 is a constant independent of x.
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Proof. It follows from the assumption [30] that

C, = 1-q)> do (") =0-q9 >  d Q4

keZ P (gh)<t
> (1—qg)t Z ¢ = / dys=t / dgs, t>0.
Wﬁ(qk)ﬁ% QOB(S)S% < (pﬁl(s)

Therefore, taking the supremum over all positive ¢, we obtain the bound
supt/ dgs < Cy < 00,
t>0 {s€Ry:t< B( )}

This shows that the integral expression is uniformly controlled by the constant C,. Then, by
applying Theorem [£.3] to the function defined by

we derive the desired inequality.

Theorem 4.5 Suppose that 2 < p < oo with % + % =1 and ¢ : R, — Ry be a strictly
positive function satisfying the following condition

1
/(pﬁ—(s)dqs < oo for some [ >0.

R4

Iif

~ Bp(2—p)
/ F(s)Pe™ 7 (s)dys < o,
]Rd

then

BP( p

1£1Es 5, < Cha / FOPe™ ™ (5)dys,  f € LAR,),

where Cp, 4 > 0 is a constant independent of x.

Proof. For L,(R,) we have
11 zpcesy = sup {14, 9) 3| 9 € I (Re), Nl oriay = 1}

It follows from that

() iamy) = / F&a6) s, frg € I2(R,). (31)
Rd
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Using the Holder inequality for any function g € Lg/ (Ry) with [|g][ Ry = 1, we deduce that
q q

||f||L§(Rq) = sup  {|(/f, 9>L3(Rq)| VS Lf;)/(Rq)}
ol g =
- {\/f(s) ds| geLP(R)}
ol pr =
LP (Rq) .
< s { [ IF)as)dgs g € 1 (R)}
ol =1

(VAN
9]
c
i
—
%\
A>
&
S
&=
a
<
V2)
Q
m
h
ESihe]
—~
=
N
——

IN
)]
=
e}
I
—_
—
-Q%\
S
=
=7
.B\
Av
V)
-
A>
Vo)
AS)
=
w5
B
—
V)
P
Q)
—
-
<)
m
h
3
—
Z=)
N—
——

' =g
Bp(2—p) ~ 1/p ;o R y 1/p
< s {([FROFrs) " ([ Pmeras) "}
197 ey =1 g, i

Now applying Theorem [£.4] with respect to p’, we get

ﬂp(2 p) 1/p , . , 1/p
7l < ([« fora,s) " ([ oo as) "}

||9||

LP(R) R, Rd
ﬂp( =) 1/p
< / ST @) s ol
/ 91, =

Since ||g||Lg/ Ry = 1, taking C), , = ¢, 4, Wwe complete the proof.

Remark 4.6 Suppose p = 2, then the inequalities stated in Theorems and [{.9 both
simplify to the identity given by .

The following result can be inferred from |22, Corollary 5.5.2, p. 120].

Proposition 4.7 Let d,v1(§) = wi(§)d,€, din(l) = wa(€)dE, € € R,. Suppose that 1 <
p,70,71 < o0. If a continuous linear operator A admits bounded extensions A : LF(R,) —
) —

L (Ry,v1) and A - LE(R,) — Lyt (Ry, vy), then there exists a bounded extension A : LE(R,

r L _1-6 , 0 =0l
Ly(Ry,v) where 0 <6 <1, = ===+ = and dgv(§) = w(§)de&, w = w; - Wy

Now, we obtain the g-deformated Hausdorff-Young-Paley inequality.

Theorem 4.8 Suppose that1 <p <r < p < oo for %+z% = 1. Let p s given as in Theorem

[4.3 Then
~ 11 ; i1
([1FOr e 7di)" < cprardti ™ llgepy
Rd

where cqp .y > 0 15 a constant independent of f.
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Proof. Let A(x) := f be a linear operator acting on the space LP(R,). By using the
inequality stated in for 1 < p < 2, we then deduce that

([1FOPe@det)” £ M 17 lign
Rq

In other words, A : LE(R,) — LF(Ry,v1) is a bounded map, where the weight is given by
?1(?):=12-p(?)>0 w1 (&) := p*7P(£) > 0 with £ € R,. moreover, for 1 < p < 2 with 11—)—1—]% =1,
by applying the inequality , we obtain that

—~ , 1/p —~
([1FOP )" = 1Flly0, < Il1s0e,
Rq

which implyis that A : LE(R,) — L (R, 10), where v5(§) 1= 1d ¢ for all £ € R,. It follows
from Proposition 4.7 that A : LE(R,) — L} (R, v) with d,v = w(§)d,&, is bounded for any 7
such that p <n < p', where the space L}(R,,v) is defined as

1
n

Mmmw:(ﬁ&%R:/V@W%M£ <00,
]Rq

where w : R; — R is a positive function and will be defined later. Let us find the explicit
form of w. For fix 6 € (0, 1) such that % = 11.%9 + 1%’ we derive § = -2—L. and from Proposition

gj_ )

n(1—n) n(1—n)

W) = @) (W) =(PTE)TT 1 = () = ol

3=

_1
7

for all ¢ € Ry and =L - (1 — 1) = Hence, for d,v = gpn(% » )(é)dqé we obtain

1
.

1

n

2-r
™

1_1
IA@) Ly @ew) S (Me™ ) Tl = My 7 l2llpe,), =€ LE(R,).

This completes the proof.

5 the g-deformated Hormander multiplier theorem
First, we obtain the ¢*>-Fourier transform of the Fourier multiplier (7).

Lemma 5.1 Let g : R, = C be a bounded function. Then, we have

—

A(f)=g-F, felr(R,). (32)

for f € LE(R,).
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Proof. Let f € LP(R,). Then, by , —@ and we have

-~

AN K / [ / 9(&) F(©)elint: ) dy€] e —iny; )y

_ / 9(©)F () [K? / e(i; ¢)e(—ixy: ) dgz] dot
/ 9(6) F(€)0,(€)d,t
B g,

for all y € LE(R,).
Let us denote by g the complex conjugate of the function g, in Definition [2.3]

Lemma 5.2 Suppose that 1 < p,q < oo. Let Ay : LF(R) — LY(RY) be the Fourier multiplier
defined by with the symbol g. Then its adjoint A} = Ag and Ay : Lg/ (RY) — Lf;, (Ad).

Proof. For h, f € LE(R,). Then, It follows frmm ®). (1), and that

(Agf> h)

E

.
Q@
Py
=
=
=

o8
(=)

(V)

Since L](R,) is dense in LE(R,) , we have A = A,.
Finally, we state the g-deformated Hormander multiplier theorem.

Theorem 5.3 Suppose that 1 < p <2 <n < oo and g : R, = R be a bounded function.
Then, the Fourier multiplier defined in (7)) can be extended to act as a bounded linear operator
from the space LE(R,) to the space L](R,). Moreover, the following estimate holds

1_1
Aullage sz Ssupd ([ dis)
A>0

lg(s)[=A

Proof. By duality it is sufficient to study two cases: 1 <p<n' <2and 1<n <p<2
where 1 = % + #
First, we consider the case 1 <p <1’ <2, where 1 = % + # By we have

Af=g-F, feIrR,). (33)
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Then, it follows from it follows from Proposition and that

—_—
[ P [P Y (34)

for all f € L](RR,).
Thus, we denote 7' ;= r and 1 := 1 1 = L — L then for h(¢) :=[g(9)]*, & € Ry, then,
v P
by using the inequality in Theorem @ In other words, we derive

([ (1 o) )™ < a1,

Rq

| 2 () (35)

for any f € LE(R,). Let us study M‘ » separately. Indeed, by definition

1 1 1
M\;IS = <sup)\ / dqf)s = <sup)\ / dq§>s = (sup A / dq£>s.
A>0 A>0 A>0
lg(&)|F=A \g(f)\Z/\% lg(&)|=A
Since < := Ilj — %, it follows that
: 5 s(1-1) i
M‘;‘S = <sup)\8 / dq5> =supA\r 7 ( / qé)
A>0 A>0
lg(©)|=A lg(€)I=A
= sup)\< / q§> ;75 (36)
A>0
lg(©)I=A

Hence, combining , , and (36|) we obtain
) 5
It = ([ (5119 <s>|) 0"

Rq
1 11
S Myleligey Boupr ([ ) el

l9(§)[>A
for 1 <p <7 <2andx e LA(R]).
Next, we consider the case n’ < p < 2 so that p’ < (1)) = n, where 1 = % + # and
1= % + 1%' Thus, the LP-duality (see Lemma yields that A7 = A, and

/

||A9HL{;(Rq)—>L2(Rq ||A ||L77 (Ry) —)Lp (Ry)’
Set 1—1) — % = % = % — z%' Hence, by repeating the argument in the previous case we have
T
q n
! < /
4@y S swr| [ d] ol
G2
11
p n
—swod | [ g ey,

g(&)|>A
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In other words, we have

1_1
p n
14l )2/ 2y = 502 / A&
>0
9(&)1=A
Combining both cases, we obtain
11
P on
||Ag||L€(Rq)HLZ(Rq) S sup A dqf
A>0
9()=A

for all 1 < p <2 <17 < oo. This concludes the proof.
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