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Abstract

This paper presents a formulation of the NSCBC (Navier- Stocks characteristic boundary
conditions) for the problem of turbulent supersonic gas flow in a plane channel with a per-
pendicular injection jets. The non-reflection boundary conditions for direct modeling of com-
pressible viscous gases are studied through boundaries for the subsonic inflow and subson-
ic non-reflection outflow situations. Verification of the constructed algorithm of boundary
conditions is carried out by solving a test problem of perpendicular sound of jets injec-
tion into a supersonic gas flow in a plane channel at different three inflow Mach Numbers
(My = 2.75, M, = 3.75 and M, = 4.75.).

Introduction

For the problem of turbulent supersonic gas flow in a plane channel with a perpendicular
injection jets there are two types of boundary conditions, the first is physical which is specifies
the known physical behavior of one or more of the dependent variables at the boundaries, and
the second - is numerical boundary conditions which are necessary when the number of phys-
ical boundary conditions are less than the number of dependent variables. Also the numerical
boundary conditions are necessary to exclude all wrong reflections of propagating incoming
waves from the inside of the domain to the outside (subsonic non-reflecting outflow) as in
[1], and from the outside of the domain to the inside (subsonic non-reflecting inflow). These
waves require a specific treatment as quoted here from [2-3| for the Navier-Stokes equations.
In this paper is numerically simulated planar turbulent supersonic air flow with a transverse
hydrogen injection from the channel walls based on the method developed for solving the
Navier-Stokes equations for multi-component gas mixture flow at( M., = 2.75, M, = 3.75
and M., = 4.75.). For the convenience of computation is considered that, the injecting of
the jet with the bottom wall. Flow scheme is shown in Fig. 1. The computational code
is developed On the basis of the fourth order weighted essentially non-oscillatory (WENO)
schemes, the NSCBC (Navier- Stocks characteristic boundary conditions) for supersonic flows
of compressible viscous multi-component gas at the boundariesis introduced in the following
situations:
I. A subsonic inflow.
IT. A subsonic non-reflection outflow.

1.Model Equations

In Cartesian coordinates two-dimensional Reynolds-averaged Navier-Stokes equations for
multi- components flow in conservation form are:
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The components EU, P_’;, are written in the form:
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Where the molar specific heat Cp; of the i—th components is given in terms of the fourth
degree polynomial with respect to temperature which constants can be found in the JANAF
Thermochemical Tables [4], Y; is the mass fraction of the i—th components, 7., 7oz, Tz, Toz,are
the viscous stress tensors , ¢, ., Jui, J»; are the heat and diffusion flux (diffusion fluxes are
defined from Fick’s Law ).u = pp, + g is the sum of the coefficients of the laminar and turbu-
lent viscosity. The Baldwin - Lomax model is used for determiningu;. The system equation
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(1)-(3) is written in a dimensionless form and conventional notation. The governing parame-
ters are the entrance parameters, the pressure and total energy are normalized to psu? the
enthalpy - to R°T,, /W, the molar specific heat - to R°. The boundary conditions have the
following form: At the entrance: W; = Wy, P = nP,,T = Ty, w = M, %(;To,u =0Y, =
Yio, 2 =0, Ly <o < Ly + h;

(n = Py/Pxis the jet pressure ratio, is the jet pressure, and is the flow pressure); on the
lower wall the no-slip condition and the adiabatic wall condition are imposed; on the upper

boundary the condition of symmetry is assumed; on the outflow the nonreflecting boundary
condition is derived.

2. Method of the solution

The numerical solution of the system (1)-(3) is calculated by the two steps. The first is
defined dynamic parameters and second mass species. The approximation of convection terms
is performed on the basis of the fourth order weighted essentially non-oscillatory (WENO)
scheme. The WENO scheme is constructed on the basis of ENO scheme [1]. However, in
WENO scheme instead of choosing one interpolating polynomial, is used a convex combi-
nation of all corresponding polynomials. This is done by introducing weight coefficients to
the convex combination. In approximation of derivatives in diffusion terms were used second-
order central-difference operators.

3.The implementation of non-reflection boundary conditions

Implementation of a true non-reflecting boundary conditions based on the NSCBC theory
such that variables which are not imposed by physical boundary conditions are computed on
the boundaries by solving the conservation equations as in the domain. The wave propagation
is assumed to be associated only with the hyperbolic part of the Navier-Stokes equations;
waves associated with the diffusion process are neglected. In characteristics analysis, absence
of reflection is enforced by correcting the amplitude of the incoming characteristic (wave
reflected by the boundary) to zero. To formulate the NSCBC approach for the inflow and
outflow boundaries first we consider a boundary located at x=0 for the inflow boundaries,
and x=L for the outflow boundaries. The characteristic analysis [2] is used to modify the
hyperbolic terms of Eqgs. (1)-(3) corresponding to waves propagating in x—=const. direction:
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and Z;’s are the amplitudes of the characteristic waves associated with each characteristic
velocity\;. These characteristic velocities are given by [2]:

M=u—c, =uN3=ul=1u-+c 9)
Where c is the speed of sound: ¢ = % and Z;’s are given by:
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To specify the values of Z;’s of the incoming waves we use the LODI (the Local One-
Dimensional Inviscid) relations [2]:
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3.1 A subsonic inflow.

For a subsonic inflow the parameters u, w, and T are constant so we need only to solve two
equations (4) and (7). Since u= const. and from (11) in (12) and (13) we getZ; = Z; and
Zy = (y—1)Z; and from (12) we have Z3 = 0 by substituting in (4) with these values of Z;’s
we get,
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Applying an approximation for time step with second-order of accuracy then we get,
4 1 24ty 0P ou Opw
pz] 3p2j 3p1] 3 [C2 (U C)( al, pcax) + 62 ]Z] ( 6)
For total energy E; we consider the following equation:
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where h(T) is the enthalpy and. Since u and T are constants and from the state equation:
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Again here we applying an approximation for time step with second-order of accuracy then
we get:

4 1
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Since u = const and w = const then
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then by applying one finite difference approximation time step and from Egs. (16) and (20)
we get the following approximation at the inflow boundary
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3.2 A subsonic non-reflection outflow.
For a subsonic non-reflection outflow the static pressure at the outflow P = P, was imposed
to define the amplitude of incoming wave as:

Z1=K(P—Py) (23)

Corresponding to the negative characteristic velocity \; = v — ¢ where K = o(1 — M2 )c/L
(0 is constant and L is a characteristic size of the domain) and others physical conditions
are:

OTpe . OTue Oqy
ox =90, ox =0, ox

and finding the other’s (Zs, Z3 and Z4 by using interior points [2]. Now we substitute from
Egs. (9)-(10) and (23)-(24) in the system of equations (4)-(7). We get:

=0 (24)
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Fig.2 Pressure profiles on the wall at different inflow Mach number (My,) (A)My = 2.75
(B)My = 3.75 (C)My = 4.75 (— — —) After applying NSCBC' theory (—) Before
applying NSCBC' theory
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Then we can rewrite the system of equations (25)-(28) in vector form as:
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The finite difference approximation of (29) at the outflow boundary is given by:
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4. Numerical results and discussions

The computations were done on a staggered spatial grid with range of parameters: 2.75 <
My <475, My=1, Pr=0.7,2<n<15 Ty =642K, T, = 800K D = 0.1cm, H = 3.0cm,
Ly = 5¢m and L = 10e¢m, with Pressure ratio n = 10.26, P,, = 1000Pa, and different three
inflow Mach numbers M., = 2.75, M, = 3.75, and M., = 4.75, The computed results af-
ter applying the non-reflection boundaries condition at the entrance boundary are compared
with that computed results before applying the non-reflection boundaries condition at the
entrance boundary. We can see that from the Pressure profiles on the wall Figure 2, the
implementation of the NSCBC method on the entrance boundary contributed to improve the
numerical solution on the boundaries.

5. Conclusions

Numerical boundary conditions for the problem of turbulent supersonic gas flow in a plane
channel with a perpendicular injection jets are constructed without any extrapolation. The
NSCBC method is based on a local inviscid one-dimensional analysis of the waves crossing
the boundary. The amplitude variations of the waves entering the domain are estimated from
an analysis of the local one-dimensional inviscid equations. These amplitude variations are
then used in a reduced set of conservation equations to determine boundary variables which
were not specified by the physical boundary conditions.
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B pabote npenaraercs rpaHudHbIC YCIOBUS Kywmpicta KBLTIAM BB JBIOBIC
HEOTPaXKEHUs JJIst 3aJadu  TypOYJIEHTHOTO JKBULIAMIBIFBIHAH 2KOFaphl TiK AfBIHIIACHI
CBEPX3BYKOBOTO TEUYEHUsI ra3a B IIJIOCKOM 6ap JKA3bIK,  KaHAJIA TypOyJIeHTTiK
KaHajle C IepIeH/IUKYJISAPHBIM  BJLyBOM arbIHJAD/Ibl  €CENTeye  IMarbLIBICIANTHIH
CTPYIi. st 9TOro 3aIUChIBACTCS [IeKAPAJIbIK, IIIAPTTAP YCHIHBLIAIbI. Byt yImmiH
XapaKTePUCTUIECKAS dopma CUCTEMBI CBIFBIIMAJIBI  TYTKBIPJIbI  KOIIKOMIIOHEHTT1
yPpaBHEHUI Hagbe- Crokca JIs razra apuasran  Habwbe-Crokc — Tengeyi
CBEPX3BYKOBBIX TeUYeHUT C2KIMAEMOTO IeKapaia KOPBITBLIBIII, aJIbIHFAH
BSI3KOIO ~ MHOIPOKOMIIOHEHTHOI'O — Ta3a Ha TeHJIeyJiepre dpU3UKAIIBIK KA PAJIBIK,
rpanurax. llocie €ero OCYyIECTBIISIETCS mapTTap KOUbLIa bl. 2Ka3bIKTHIK OOMbIHIITA
[IOCTAHOBKA duznueckux IPAHUYIHBIX TYBIH/IBLIAP/IBIH, AKbIPJIbI ABIPBIMIADHI YITIH
ycJOBUIl B TIOJyUeHHble  ypaBHEHUsI. ekinmi perTi Oip OGarbITTarbl afbIpBIMIAD
IIpu ero sBHOI KOHEYHO- PA3HOCTHOI cyJ10aChl KOJIIAHBLIA b

peaju3anui  allpOKCUMAIIUs ITPOU3BOJIHBIX
1o IIPOCTPAHCTBEHHBIM HaAIIpABJICHUAM
OCYUIECTBJIACTCA OJIHOCTOPOHHUMHU
Pa3HOCTIMH CO BTOPBIM HOPSJIKOM TOYHOCTH.



