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Abstract

The main purpose of present paper consists in investigation of an systems of partial
differential equations with singular lines in the plane. For such systems the initial value

problem is solved.

1 Introduction

Let 0 < o <27, 0 < 1 < g < g, 0 < R < 00, k| =1tgp1, ke =tgps, 0 <a <1, v>0
is real numbers and G = {z=7re®¥:0<r <R, 0< ¢ < }. W]}(G) is the Sobolev space
(see [1]).

We consider the equation
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in G, where a;(¢), az(p), as(v), b(¢) € C'[0,¢o] and the function f(r,y) satisfies condition
(A).
Condition (A): the function f(r, ) is represented as

Flrop) = fel@)r*, v >0, file) € Cl0, 0,
k=0

o0
and Y |fil, 7% is convergent series in G, where |f|, = 11l co0,0) -
k=0

Let 1 <p< ﬁ, if v <landp>1,ifr>1. We find the solution of equation (1) in the
class

W, (@) [C(@) (2)

If we divide the equation (1) by 2Za;(g), then it becomes the elliptic equation under
laz(p)| < la1(p)]. For as(p) = 0, f(r,o) = 0 and a = 0 the obtained these equation is
studied in the articles [2 — 6] and has important application in the theory of infinitesimal
bending of surfaces of positive curvature with a point of flattening [4]. For av # 0 the equation
(1) is not study.
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Using the formulas
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the equation (1) can be written in polar coordinates

ow az(p)w
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f(r,v)

|sin @ — kg cos p|®

+b(p)w =

We will search a solution of equation (3) in the form
w(r,p) =Y (o)™, (4)
k=0

where wy (¢), (k=0,00) are new unknown functions from C*[0, po], such that w(r,¢) is

satisfying condition (A) and Y w},(¢)r** is convergent series in G.
k=0

By substituting the expression (4) for w(r, ¢) into the formula (3), we get

az(¢)

b U =
|Sing0 —_ kl COSQO|a>wk + (QO)U)]C

i(a1 (p) — az (9))wy, + (kv(ar (9) + a2 (p)) +

fr ()

- |sin o — ky cos |

From the last equation it follows, then for a; (¢) = as(¢) the function wy () is not
bounded in [0, ¢o] and hence is not exist from the class (2) the solution for the equation (3)
in the form (4). Let us assume a; (¢) # as () from last the equation we get

wh, + Ag() - wp = by () - Wy + Fi(p), (5)
where
A4(9) = au(i) — ivkas(o), asl) = —ias(?)
’ |sin @ — ky cos @|™ (a1(p) — az(p))’
_ai(p) + ax(p) ib(¢p)
52 = o) —aale) P T ale) - ale)
ife(p)

Fi(p) =

sing — kacos o - (aa(p) — az())’
Using the transformation

P / " A)d) (6)

0
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the equation (5) is transferred into the form

U = gr(9) - Uk + hi(p), (7)

where

gr(p) = bi(p) ~eXp(—2i/: ImAy, (v) dy), bi(v) = Fi(p) 'eXp(—/O Ax () dy).

Integrating the equation (7) we get

belp) = / ") - () dy + / " h() dy + e

0

where ¢, is any complex number.
As 0 < a <1, a1(p) # as(p) the integrals of the last equation are convergent.
Defining

Bun)e) = [ aFEn. me) = [
the last equation can be written in the form
V() = (Bu)(¢) + Hal9) + . 8)
For solving the equation (8) we use the iterated scheme
(BL)(9) = 1(9), (BR)(g) = (Bu B 0)(@), n = (T,50),

and the family of functions {I,(¢)}, (n = 1, 00) which are defined by

Tin(p) = / " e T (), Tea() = / " (). n = (3,9).

Using the algorithm solving the solutions, such described in [2, 3] we have get

k() = ek Pra () + ek Pra() + Hya(9), (9)
where
Peale ka;zj 1(0), Pralp) = 1+kazg L Hea(p) = > (BLH) ().
7=0

Taking into consideration the definition of the operators (B.f)(y) and the function Iy, (¢)
the following estimates are obtained:

|Pri(@)| < [b1]y - cosh(|bi]y - @), [Pr2(@)| < 14 byl - sinh(]bi], - o),
(10)
|Hy1 ()] < [Hylo exp([bi]y ).
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From (4), (6), (8) and (9) it follows

i ®
wirg) = o r o= [ A (@ Puale) + o Pealo) + Hiae) . (11
k=0 0
Here ¢, k = (1, 00) are any complex numbers, such that the series > ¢;-7* is convergent.

k=0

Let I'm (%) = 0. From (10) it follows that the function w(r, ¢) given by the formula

(11) is satisfying condition (A) and belong to the class (2). Using the estimates (10) we get

[w (r, )l S ex- D lenl ™ + ez exp(lbalo) Y [Hilo ™,
k=0 k=0

where
ex = max (Jsh(lbaly- £)| + eh(lbrly - )] +1).
SP>Po
/w exp (as(7)) dy |
o Isiny —kycosy|* (ai(y) —az(7)) "

Summarizing the following theorem is proved.

Theorem 1 The equation (1) as ai(¢) # as(p) and Imas(v) = 0 has an infinite number
of solutions from the class (2). These solutions are given by (11).

Now let us consider the following initial value problem.

Problem C. [t is necessary to find a solution w(r,¢) of the equation (1) from the class
(2) satisfying the conditions

ey = max |
0<p<¢o

, O
w(r: O) = Blr ) (9_p’fw(r’ @)’ r=20 = Qf, k= (17 00)7 (12>
=0

where p =1", a; are given complexr numbers, such that the series i 4 is convergent.
Substituting the formula (11) in the conditions (12) we have gl;?
_ %
k!’
Therefore the following theorem holds.

Theorem 2 For ai(p) # ax(p), Imas(p) = 0 the problem C has only the solution,
which can be found by the formulas (11) and (13).

(k=0,00). (13)

Ck

2 Conclusion

In this article the manyfold of solution for one systems of first order partial differential
equations with singular lines is obtained in explicit form in any angular domain and the
initial value problem for this systems is solved.
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K. Axmen-Baknu, Cucmema dupgeperyu-
AAOHHLT YPABHEHUT 8 HACTHBLL NPOU3BOOHDIT
nepeozo nopadka ¢ CUHLYAAPHLMU NP~
Mmotmu, BectHuk KasHY, cep. maTt., wmex.,
nHdp. 2011, Ne4(71),3-7

B crarbe nosryteno MHOTOOOpa3ue HEIIPEPHIB-
HBIX peIeHuil OJHOTO KJiacca CHUCTeM Tud-
depeHnMaTbHBIX YPABHEHN B YACTHBIX TTPO-
U3BOJHBIX IIEPBOrO IIOpsJIKa C OlIepaTOpPOM
Oykca B qudhepeHnuaabHol YacTH U ¢ CHH-
TyJISIPHBIMU NIpsaMbIMU. J[jist Takux cucrem
pelreHa 3amada Tuma Kormm.

K. Axmen-Baku, Cuneyssapiv. Col3uKma-
pumern  Oipitwi pemmi depbec MmyviHObLAbL
dugpdepenyuanrdv,  mendeyaep orcytienepi.,
KasYV xabapuubicbl, MaT., Mex., UHd. cepuscel
2011, Ne4(71),3-7

MakaJjiajia CHHTYJISIDJIBI  CBI3BIKTAPBI YKOHE
muddepennuasas 6estiringe Pykc omeparo-
pbl Oap Oipinmi perti mgepbec TYBIHIBLIBI
muddepennuaaab TEHIEYJIep Kyiheaepinin
y3imiccis mentiMaepi anbiaasl. Ocbl 2Kyliesiep
yuin Ko ecebi merrisiren.



