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Abstract

The paper is aimed to show that we can easily construct a family consisting of any
given number of elements whose Rogers semilattice consists of one element.

Introduction

Computable numberings of a family of c.e. sets can be considered as the uniform enumer-
ation procedures for the sets of the family. Monotonicity is the most salient features of such
computations. This means that every number (as a piece of information) enumerated in any
set via an uniform enumeration procedure never leaves this set in the future. Thus, infor-
mation accumulated in every set of the family is growing more and more, i.e. monotonously
with respect to growth by the time. In contrary with the classical case, during computations
via computable numbering of a family in the Ershov hierarchy, any number could enter a
set and, later, it could leave the set, and after that again enter it and etc. Number of these
‘enter-leaves’ is bounded by the level of the hierarchy.

For unexplained notions and results on the theory of numberings, the reader is referred
to [6]. In a nutshell, Goncharov and Sorbi’s proposal, [7], for generalizing the theory of
numberings to different notions of computability consists in the following. Let C be an abstract
“notion” of computability, i.e. a countable class of sets of numbers, and let A ⊆ C: then a
numbering π : ω → A is C–computable, if {〈k, x〉 : x ∈ π(k)} ∈ C. On numberings α, β of a
family A, one defines α ≤ β if there is a computable function f such that α = β ◦ f ; and
α ≡ β if α ≤ β and β ≤ α; for A ⊆ C, we denote by ComC(A) the set of C–computable
numberings of A; we say that A is C–computable if ComC(A) 6= ∅; finally we denote by RC(A)
the set of Rogers degrees of the elements of ComC(A), i.e. the set ComC(A)/ ≡ ; it can be
shown that RC(A), if nonempty, is an upper semilattice.

Historically, the first two problems on the Rogers semilattices of the families of c.e. sets
were raised by Yu.L. Ershov: What is a possible cardinality of a Rogers semilattice? Can
a Rogers semilattice be a lattice? There is a sharp distinction in the Rogers semilattices
of the families of Σ−1

n – sets for n > 1 and Rogers semilattices of Σ0
n– sets for n > 0. It

should be noted that nothing on a possible cardinality of the Rogers semilattices in the case
of Ershov’s hierarchy. Also the methods employed in the theorems of Khutoretsky [9], and
Goncharov–Sorbi [7] are of no use in the case of computability in the hierarchy of Ershov.
Non-monotonicity of computations in this hierarchy prevents anybody to use these methods
for resolution the problem of cardinality as well as many other problems. The question on a
cardinality of the Rogers semilattices in the case of Ershov’s hierarchy seems to be non-trivial.

1Работа выполнена при поддержке грантового финансирования научно-технических программ и
проектов Комитетом науки МОН РК, грант № 0726/ГФ, 2012г.-2014г.
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We now briefly review the basic notions concerning ordinal notations, and the Ershov
hierarchy. We refer to Kleene’s system O of ordinal notations for computable ordinals: for
details, see [11]. In particular, for a ∈ O, the symbol |a|O represents the ordinal of which
a is a notation; the symbol <O denotes Kleene’s partial ordering relation on O; moreover,
the symbol +0 denotes a partial computable function, defined on O, such that |a +O b|O =
|a|O + |b|O, and a ≤O a +O b. We now briefly recall the definition of the Ershov hierarchy,
introduced in [3, 4, 5]. Our presentation is based on [8].

Definition 1.1 If a is a notation for a computable ordinal, then a set of numbers A is
said to be Σ−1

a if there are a computable function f(z, t) and a partial computable function
γ(z, t) such that, for all z,

1. A(z) = limt f(z, t), with f(z, 0) = 0; (here, given a set X, and a number z, the symbol
X(z) denotes the value of the characteristic function of X on z);

2. (a) γ(z, t) ↓⇒ γ(z, t+ 1) ↓ & γ(z, t+ 1) ≤O γ(z, t) <O a;

(b) f(z, t+ 1) 6= f(z, t)⇒ γ(z, t+ 1) ↓6= γ(z, t).

We call the partial function γ the mind–change function for A, relatively to f .
A Σ−1

a –approximation to a Σ−1
a –set A, is a pair 〈f, γ〉, where f and γ are respectively a

computable function and a partial computable function satisfying 1. and 2., above, for A.
Following [7], we give the following:
Definition 1.2 A Σ−1

a –computable numbering of a family A of Σ−1
a –sets is an onto

function π : ω −→ A, such that

{〈k, x〉 : x ∈ π(k)} ∈ Σ−1
a .

Hence there exist a computable function f(z, t) and a partial computable function γ(z, t), such
that π(k)(x) = limt f(〈k, x〉, t), with f(z, 0) = 0 for all z; and γ is the mind-change function
for {〈k, x〉 : x ∈ π(k)} relatively to f .

In the rest of the paper we will write Com−1
a (A) for ComΣ−1

a
(A), andR−1

a (A) forRΣ−1
a

(A).
We recall (see e.g. [4]) that there is an indexing {Az}z∈ω of the family of all Σ−1

a sets, such
that {〈x, z〉 : x ∈ Az} ∈ Σ−1

a . From this, it is possible (for more details, see [8]) to define an
indexing {πe}e∈ω of all computable numberings of families of Σ−1

a sets, for which

{〈e, k, x〉 : x ∈ πe(k)} ∈ Σ−1
a ,

i.e. the set {〈e, k, x〉 : x ∈ πe(k)} has a Σ−1
a –approximation 〈f, γ〉: an indexing satisfying this

property is called a Σ−1
a –computable indexing of all Σ−1

a –computable numberings. Clearly,
from e, k one has an effective way of getting a Σ−1

a –approximation 〈fπe(k), γπe(k)〉 to the set
πe(k).

2 The theorem

The following theorem (which follows along the lines of a similar theorem proved by
Badaev and Talasbaeva in [2] for all finite levels of the Ershov hierarchy) shows that there
is no problem when we consider families without any structural restrictions: we can easily
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construct a family consisting of any given number of elements whose Rogers semilattice
consists of one element.

Theorem 2.1 For every n ∈ ω ∪ {ω}, and for every ordinal notation a of a nonzero
ordinal, there exists a Σ−1

a –computable family A of exactly n sets, such that |R−1
a (A)| = 1.

proof : Suppose that we are given a notation a for a computable ordinal ≥ 1. We begin
with building a Σ−1

a –computable Friedberg (i.e. injective) numbering α of an infinite family
A such that, for every k, the requirement Rk,

Rk : πk ∈ Comp−1a(A)⇒ πk 6 α

is satisfied, where, as usual, we refer to some computable listing {πk}k∈ω of all Σ−1
a – com-

putable numberings. Without loss of generality, we may assume that π0(0) = ∅. We write

πsk(x) = {y : fπk(x)(y, s) = 1}.

We also assume that πs0(0) = ∅ for all s. We use 〈fπk(x), γπk(x〉 to denote a Σ−1
a – approximation

(uniform in k, x) to πk(x). In the construction we will build an auxiliary sequence {gk}k∈ω of
partial computable functions, each gk aiming at reducing πk to α, if πk is a numbering of A.
Finally, let a(k, x, i) be the values of some fixed computable injective function.

The construction. We begin with describing the strategy to meet Rk. The requirement
will be spread into subrequirements Rk,x: subrequirement Rk,x aims at defining gk(x), if
πk ∈ Comp−1a(A). In defining A, we will have care to achieve that if πk ∈ Comp−1a(A)
then there will be a unique i such that πk(x) = α(i), and we will let in this case gk(x) = i.

Module. A reasonable module for satisfying Rk,x is the following, carried out for each i:

1. let a(k, x, i) ∈ α(i);

2. await a(k, x, i) ∈ πk(x);

3. define gk(x) = i and extract a(k, x, i) from all α(j), j 6= i, if it lies in these sets;

4. await a(k, x, i) /∈ πk(x): if a(k, x, i) gets extracted from πk(x);

5. enumerate a(k, x, i) in all α(j), and go to (2)

Outcomes. Notice that we can not loop infinitely many times from (2) to (4), since πk ∈ Σ−1
a .

Thus we distinguish the following outcomes:

1. for every i we wait forever at (2), without ever passing through (4): then πk is not a
numbering of A, since for every i, a(k, x, i) ∈ α(i)− πk(x);

2. there is some i such that we move at some time from (2) to (4), and for this i:

(w1) we wait forever at (2) (after being at (4)): then a(k, x, i) ∈ α(j), all j, but
a(k, x, i) /∈ πk(x), thus πk is not a numbering of A;

(w2) we wait forever at (4): then a(k, x, i) ∈ α(i)∩ πk(x), and a(k, x, i) /∈ α(j), if j 6= i;
thus is πk is a numbering of the family, then πk(x) = α(i), consistently with our
definition of gk(x) = i, made at (3).
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We give the detailed construction of α by stages: at stage t we define αt(e), or, by Definition
, the values f(e, z, t) of a suitable computable function, together with the values γ(e, z, t) of
a partial computable mind-change function for f : f and γ will witness that α is a Σ−1

a –
computable numbering. At each stage, each parameter will retain the same value as at the
preceding stage, unless otherwise explicitly redefined. Given a, j, at stage s we say that we
enumerate a in α(j), if we define a ∈ αs(j); similarly, we say that we extract a from α(j), if
we define a /∈ αs(j)

Stage 0: Let α0(e) = ∅ and let gk,0(e) be undefined for all k and e. Moreover, let f(e, z, 0) =
0, and γ(e, z, 0) ↑. Go to the next stage.

Stage t + 1: Let m = (t)0 and suppose that m = 〈k, x, i〉. Carry out the instructions of
Case 1 and Case 2, in the given order, and act accordingly: after acting go to next stage.

Case 1: If t = 〈m, 0〉 then enumerate the number a(k, x, i) into α(i): define f(i, a(k, x, i), t+
1) = 1 and γ(z, t+ 1) = 1. (Recall that 1 is a notation of the ordinal 0.)

Case 2: If there exists t′ < t such that (t′)0 = m then carry out one the following mutually
exclusive subcases 2.1–2.3.

Subcase 2.1: a(k, x, i) ∈ πt+1
k (x). Let gk,t+1(x) = i if gk,t(x) is undefined; for every j 6= i

extract a(k, x, i) from α(j), defining f(j, a(k, x, i), t+ 1) = 0 and

γ(j, a(k, x, i), t+ 1) = γπk(x)(a(k, x, i), t+ 1).

Subcase 2.2: gtk(x) = i and a(k, x, i) /∈ πt+1
k (x). For every j 6= i, enumerate a(k, x, i) into

α(j), define f(j, a(k, x, i), t+ 1) = 1 and

γ(j, a(k, x, i), t+ 1) = γπk(x)(a(k, x, i), t+ 1).

Subcase 2.3: If Subcases 2.1, 2.2 do not hold then do nothing.

Verification. Notice that the only numbers that go into any of the sets numbered by α
are numbers in the range of the function a(k, x, i): the element a(k, x, i) is enumerated once
for all in α(i), whereas its membership status in α(j), for j 6= i, is determined by the equation
α(j)(a(k, x, i)) = 1 − πk(x)(a(k, x, i))) at all stages following the least stage 〈〈k, x, i〉, 0〉 at
which we attack Rk,x. The pair 〈f, γ〉 is a Σ−1

a –computable approximation, since we redefine
γ(j, a(k, x, i)) only after seeing that fπk(x)(a(k, x, i)) has changed, thus γπk(x)(a(k, x, i)) has
dropped, and in this case we let γ(j, a(k, x, i)) = γπk(x)(a(k, x, i)). Moreover a(0, 0, i) is only
contained in α(0). Finally, for every k, if πk is a numbering of A, then gk is total and
πk = α ◦ gk, since α(gk(x)) is the only set of the family containing a(k, x, i).

The above construction builds in fact an infinite family. As in [2] we can show that for
every finite n there is a family of n sets: it suffices to build α(0), . . . , α(n− 1) as above, and
α(j) = α(n− 1), for every j ≥ n− 1.
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Манат Мустафа , О мощности полу-
решетки Роджерса в иерархии Ер-
шова, Вестник КазНУ, сер. мат., мех.,
инф. 2011, №4(71), 8 – 12

Данная статья показывает, что мы можем
легко построить семейство, состоящее из
любого заданного числа элементов, такое,
что полурешетка Роджерса состоит из од-
ного элемента.

Манат Мұстафа, Ершов иерархиясындағы
Рожерс жарты торының қуаты туралы ,
ҚазҰУ хабаршысы, мат., мех., инф. сериясы
2011, №4(71), 8 – 12

Бұл мақаланың мақсаты, Рожерс жарты
торының қуаты бiр элементтi болатындай
кез келген элементтен тұратын үйiрдi оңай
құрастрып алуға болатынын көрсету.


