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Constructive theory of boundary value problems for
linear integral-differential equations

The necessary and sufficient conditions for solvability of boundary value problems of the linear
integral-differential equations at phase and integral constraints are obtained. A method for
constructing the solution of the boundary value problem with constraints by constructing
minimizing sequences is developed. The basis of the proposed method for solving the boundary
value problem is the principle of immersion. The principle of immersion is created by building the
solution of a class of Fredholm integral equations of the first kind. The principal difference of the
proposed method is that the origin value problem at the beginning immersed to the controllability
problem with fictitious controls of functional spaces, followed by reduction to the initial problem
of optimal control. Solvability and construction of a solution of the boundary value problems
are solved together by solving an optimization problem. Creating a general theory of boundary
value problems for linear integral-differential equations with complex boundary conditions in the
presence of the phase and integral constraints is a topical problem with applications in the natural
sciences, economics and ecology.
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Aiicaramuen C.O., Aiicarasmesa C.C.
ChbI3BbIKThbI UHTErpo-auddepeHnanIablK TeHAeyJiep YIITuH
IIEKTIK eCerTep/IiH KYPbLIbIM/IBIK, T€OPUICHI

PazasblK K9HEe WHTErPAJIIBIK IIeKTeyIepi 0ap ChI3BIKTHI HHTErpo-TuddepeHnuaiiblK, TeHIeyIep
VIITiH MIEKTIK eCeNTiH, MeniIiMITIrHiH KaXKeTT] 2KoHe KETKUTKTI mapTTapb! ajJbiHran. MuamMyM-
JIay bl Ti30eKTep Il Kypy YKOJIBIMEH MEKTEY Iepi Oap IMEeKTIK eCenTiH MEITMiH Kypy 9/IiCi XKacajFaH.
[TekTik ecemti mmienryre yChIHBLIFAH 9/IICTiH HETi3i - OATHIPY KAFUIACHI OOJIBIIT TaObLIAIbI. BaThpy
Karumgacol Oip Kiaaccrarbl OpearonbMiil, OipiHIT TEKTI MHTErpAJIbIK TEHICYIEPIHIH »KAIIbI TITe-
MIiMiH TYPFBI3Y HETi3iHe KYPBLIFaH. YCHIHBLIFAH 9/iCTiH Tybereiti e3remreiri - 6epiireH mekTik
€Cell aJIFaIbIHIa (DYHKIIMOHAIBIK KEHICTIKTEp/IeH aJbIHFAH XKaJFaH 0acKapyrapbl 6ap 6acKapbIM-
JIBUIBIK, ecebiHe, cofaH Keiin TuiMil 6ackapyisiH bactankbl ecebine kesripiayi. Illekrik ecentiy,
MIEMNMIEPiH TYPFBI3Y KOHE OHBIH, MMM THIMIUTIK ecebin miernry Herisinge asbiHaabl. Da-
3aJIBIK, 2KOHE MHTEIDAJIIIBIK, MEKTeyJIepl MeH KYDPJeJii IMEeKTIK IapTTapbl 0ap ChI3BIKTHI WHTErpo-
muddepeHInaNIblK TeHIEYIEP VIMH MEKTIK €CElTiH YKaJIbl TEOPUSICHIH KYPY KaPaATHIIBICTAHY
FBLIBIMIAPBIH/IA, SKOHOMHUKA/IA YKOHE SKOJIOTUIIA KOITEreH KOChIMIAIAPhl 6ap aKTyaJsIIbl MICcesIe
OOJIBINT TabbLIAIBI.

Tyiiin ce3ep: KyPbLIBIMIBIK TEOPHUSICHI, IIEKTIK €CEITeDP, ChI3BIKTHI HHTErPO-TrdhdepEeHTNATIBIK,
TeHgieysep, 6aTbIPY KAruIaChL.
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Aiicaramues C.A., Aiicarasmesa C.C.
KoucTpykTuBHasi Teopusi KpaeBbIX 334a4 JJIs1 JIMHEHHBIX
uHTerpo-andpepeHnnaJIbHbIX yYPaBHEeHUN’

[Tostyaenbr HEOOXOUMBIE U JIOCTATOUHBIE YCIOBUSA PA3PEITUMOCTH KPAEBBIX 3aJa JJIs JIMHEHHBIX
UHTErpo-1udPEepPEeHITNANIBHBIX YPABHEHUN TPU HaaudIuu (Pa30BbIX W WHTETrPAJbHBIX OrPaHU-
qennii. Pazpaboran MeTOm MOCTpPOEHHUsI DeIIeHusl KPAeBOil 3aadu ¢ OTrPAHUYCHUSIMU, IIyTeM
MOCTPOEHUsT MUHUMU3UPYIOIIUX TOCsemoBaresbaocrei. OCHOBOM IpeiiaraeMoro MeTo/Ia PEIeHust
KDPaeBoOil 3aJ[a4u SBJISI€TCS UPUHIUI HOrpykeHus. lIpuHIun morpyzkeHust OB CO3J@H IIyTeM
MTOCTPOEHUsT OOIIEro PeIIeHusI OJHOTO KJacCa WHTErpaJbHBbIX ypaBHeHuit Ppearosbma mepBOro
pona. IlpuHrunuanbHOE OTJIMYHUE MPEJIAraeMOr0 MeTOJIa COCTOUT B TOM, UTO MCXOJIHAs KpaeBas
3ajjada B Hadaje MOUPYXKAEeTCsd B 3aJady YIPAaBIAEMOCTH € (DUKTHBHBIMU YIPABJICHUSMH U3
bYHKIIMOHAIBHBIX ITPOCTPAHCTB, C IMOCJIEAYIONNM CBEJICHUEM K HAYAJIHHON 33/1a9€ OINTHMAJILHOTO
yupaBieHus. Pa3pemnMocTs 1 IOCTPOEHHE PEIeHus KPAeBOi 33/1a491 PEIIAIOTCs BOEINHO, IIyTeM
pellleHust OnTUMHU3ANOHHOM 3ajaun. Cosmanne o0IIell TEOPHM KPAaeBbIX 33Ja4 JJisd JIMHEHHBIX
UHTErpo-1uPEepPeHITNAJIbHBIX YPABHEHUN CO CJIOXKHBIMH KPAEBBIMH YCJIOBUSIMUA TIPU  HAJIMIHH
$a30BBIX U MHTErpaJbHBIX OIPDAHUYEHUN SIBJISETCSI AKTYaJIbHOM MPOOJIEMOIl ¢ MHOTOYMC/IEHHBIMU
MIPUJIO’KEHUSMU B €CTECTBEHHBIX HayKaX, 9KOHOMUKU U 3KOJIOTUH.

KimroueBble cjioBa: KOHCTPDYKTHBHAs TEOPHs, KpaeBble 3aJadu, JUHEHble UHTErpo-
nuddepeHnaabHble yPABHEHUS, IPUHIINAI IOTDYXKEHU.

1. Problem statement

We consider the following boundary value problem for linear integral-differential equations
t1
&= Ao(t)r + Bo(t)/K(t,T)x(T)dT +u(t), tel=Iltt1], (1)
to

with boundary conditions
(I(to) = Xy, .I(tl) = l’l) eScC R2n, (2>
at phase constraints

2(t) € G(t) : G(t) = {x € R"/a(t) < L()a(t) < B(t), teI;

m@g/Mm%mwgmwteG, (3)

as well as the integral constraints

gj(x) <cj, j=1,my, gi(x)=cj, j=mi+1,my (4)
5@) = [1<at) 20>+ <b,0), [ Kt.r)a(ryir e, j =T (5)

Here Ao(t), Bo(t), K(t,7), L(t), t € I, 7 € I are prescribed matrixes with piecewise
continuous elements of the dimension n X n, n X m, m x n, s X n respectively, u(t), t € I
is given n — dimensional vector function with piecewise continuous components, S is given
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convex closed set, a;(t) = (a1;(t),...,an;(t)), bj(t) = (b1;(t),....bn;(t)), t € 1, j =1 m2
are known vector functions with piecewise continuous elements, a( ) = ( ( ), .
Bt) = (Bit), -, Bs(1)), n(t) = (anr(t), ..., com (), Bu(t) = (But).- . B (1)), ¢ f are
given continuous function. The values ¢;, j = 1, my are prescribed constants.

The following problems are set:

Problem 1 Find necessary and sufficient conditions for the existence of solutions of the
boundary problem (1) — (5).

Problem 2 Construct a solution of the boundary value problem (1) — (5).

As it follows from statements of the problems it is necessary to prove the existence of a pair
(29, 1) € S such that the solution of the system (1), coming from the point x( at the moment
time tg, passes through the point x; at the moment time ¢;, in this case along the solutions
of the system (1) for each time moment the phase constraint is performed (3) and integrals
(5) satisfy the conditions (4). In particular, the set S is given by relation

S = {(zo,21) € Rzn/Hj(xo,ﬂil) <0, 7=1,p;

<6j,x0>—|—<1_9j,x1>—c_i~:() j=p+1 51},

where H;(z, 1), j = 1, p are convex functions in the variables (zo, 21), T0 = z(to), 71 = x(tl),
a; € R", l_)j € R", d € R', j = p1 + 1, s, are prescribed vectors and numbers, < -, - > is
scalar product.

Integral-differential equation connects together the present, future and past of the process.
These mathematical models of phenomena more adequately describe its properties. One of
the founders of quantum mechanics, V. Heisenberg, in his book "Physics and Philosophy"
makes the following suggestion: "... the basic equation of matter regarded as a mathematical
representation of the whole matter should take the form of a complex system of integral-
differential equations."

Particular cases of the boundary value problem (1) — (6) in the absence of phase and
integral restrictions with affine set .S are studied in the works [1-3|. This work is a continuation
of research of [4, 5.

The essence of the method is that the first stage of research the origin problem is immersed
to the controllability problem by transformation and introduction of a fictitious control.
Further elucidation of the existence of solutions of the original problem and the construction
of its solution is carried out by solving the problem of optimal control of a special kind. With
this approach, the necessary and sufficient conditions for the existence of a solution of the
boundary value problem (1) — (5) can be obtained from the condition of the lower bound of
the functional on a given set, and the solution of the original problem is determined by the
limiting points of the minimizing sequences.

Constructive theory of boundary value problems with phase and integral constraints for
ordinary differential equations, as well as for the parabolic equations are presented in [6-10].
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2. Transformation

Introducing the additional variables d = (dy, ..., d,) € R™, d > 0, the relations (4), (5)
can be presented as

t1

gj(x) = /[<a]() z(t) >+ < b,( /K (r)dr >|dt =c; —d;, j=1,m

to

where

de D={de R™/d>0}.

l,ml, Ej = Cy,

Let the vector ¢ = (¢1,...,Cn,) has the components ¢; = ¢; — d;, j =
,Mms ), t € I by equality

j=mq+1,my. We introduce the vector functions n(t) = (m:1(t), .

t

w(®) = [I< a0 >+ <), [ Krp)a(o)dp =i, tel

then

() =< a;(8), 2(t) > + < by(¢), / K(t,r)e(r)dr >, j = T,ms,
to
nj(t()) = 07 7]]<t1) :Eja ] - 17m27 d S D.
It follows that

n(t) = Ai(t)x(t) + By (t /KtT T)dr, tel,

where

ai(t) bi(?) m(t)
Ay (£) brna (2) s (1)

EGC:{EERmz/Ej:Cj—dj, jzl,ml, Ej:Cj, j:m1+1,m2},

n(tO) = O’mz,lv n(tl) = E, deD.

Now the original boundary value problem (1) — (5) is written as

¢ — A(D)E+ B(1) / Kt 1)a(r)dr + m(t), tel, (6)
£(to) = &0 = (20, Omy1), §(t1) =& = (21,0, (7)
(xo,m1) €S, de D, P¢(t)e G(t), tel, (8)
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where
£t) = <n(t)) LA = (Al(t) Omm), B(t) = (Bl(t>) :
w®=(50) . P =t O, PE=1
O — j X k is matrix with zero elements, £ = (&1,..., &0, &nt1y - - -5 Enms)s In 1s an identity

matrix of order n x n.
3. Linear control system

Along with the differential equation (6) with boundary conditions (7) we consider the
linear controlled system

y=Alt)y+ B(t)w(t) + m(t), tel, 9)
Y(to) = &0 = (20, Omy1), y(t1) =& = (21,0), (10)
(rg,71) €S, de D, w(-) € Ly(I,R™), (11)

where A(t), B(t) are matrixes with piecewise continuous elements of the order (n + ms) X
(n+ms), (n+msg) X m respectively. It is easy to make sure that the control w(-) € Lo(I, R™)
that transfers the trajectory of the system (9) from any initial state &, to any desired final
state &, is a solution of the integral equation

t1

/ Bty 1) B(H)w(t)dt = a, (12)

to

where ®(¢,7) = 0(t)0~'(7), 0(¢) is a fundamental matrix of solutions of the linear homogeneous
system w = A(t)w, vector

t1

0 = alé ) = Blto )61~ &0~ [ Bt tyn(0)t

to

Theorem 1 The integral equation (12) at any fivzed a € R™™2 has a solution if and only if
(n 4+ mg) X (n 4+ mq) matriz

t1

W(to, t1) = /d)(to,t)B(t)B*(t)(b*(to,t)dt

to
is positive definited, where (x) denotes transposition.

The proof of the theorem is given in [11].
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Theorem 2 Let the matriz W (to,t1) > 0. Controlw(-) € Ly(I, R™) transforms the trajectory
of system (9) from any starting point & € R™™2 to any final state & € R™ ™2 if and only if

w(t) e W ={w(-) € Lo(I, R™) Jw(t) = v(t) + A1 (£, &0, &) + Ni(t)z(t1,0), (13)
tel, v(-) € Ly(I,R™)},

where the function z(t) = z(t,v), t € I, is the solution of the differential equation
Z2=A(t)z+ B(t)v(t), z(to) =0, v(-) € Lyo(I, R™). (14)

Moreover the solution of the differential equation (9), corresponding to the control w(t) € W
defined by equality

y(t) = 2(t) + Aa(t, &0, &) + Nao(t)2(t1,v), tel. (15)

Here v(-) € Lo(I1, R™) is any function, A\i(t,&,&1), Ni(t), Aa(t,&0,&1), Nao(t) are defined by

formulas
M (t, &0, &) = B ()P (to, )W (to, t1)a, Ni(t) = —B*(t)®*(to, t)W " (to, t1)®(to, t1),

Aa(t) = DL, to)W (t, t1)W (o, t1)&o + P(t, to)W (Lo, )W (Lo, t1) P (Lo, t1)E1+

n / B(t, )01 (7 — D{t, t0) TV (b0, )V (to, 11) / D (to, 7 (7).

Ng(t> = —(I)(tl,to)W(to,t)W_l(to,t1>q)(t0,t1), W(t,tl) = /Cp(to,T)B(T)X

t
t

x B*(1)®*(to, T)dT, W(to,1) :/@(to,T)B(T)B*(T)(I)*(to,T)dT.

The proof of the analogous theorem can be found in [6].
4. Optimization problem

We consider the following optimization problem: minimize the functional

J (v, u,p, 2o, 21, d) = /Hw(t) —u(®)]* + |p(t) — L(t) Py(t)[*+
i (16)
+|w(t) — /K(t, 7)Py(7)d7|?]dt — inf
at conditions
Z=A(t)z+ B(t)v(t), z(to) =0, v(-) € Lo(I,R™), (17)
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u(t) € U(t) = {ul() € Lo(, B™) /e (t) < ul(t) < Bu(t), t e}, (18)
p(t) € V(1) = {p() € Lao(L, B*)/a(t) < p(t) < B(t), t e}, (19)
(l’o,fﬂl) S S, de l)7 (20)

where the functions w(t), y(t), t € I are defined by the formulas (13) — (15) respectively.
We denote

X=Ly(I,R")x U(t) x V(t) x S x D C H = Ly(I, R™) x Lo(I, R™)x
x Ly(I, R®) x R*™ x R™, J, = inf J(0),
feXx

0= (v(t),u(t),p(t),zo,x1,d) € X, X, ={0,€ X/J(0,) = Olél)f( J(0) =min J(0)}.

0eX
We introduce the following notations

Fo(q(t), 1) = [w(t) — u()]” + [p(t) — LOPyO)* = [v(t) + M (t, o, 1)+

+N1(t)2(t, ) —u(t)? + [p(t) — L) P[2(t, v) + Aa(t, &, &) + Na(t)z(tr, 0)]* =
= |v(t) + Ty(t)zo + To(t)zy + Ts(t)d + pa(t) + Ny(t)z(t,v) — u(t)|*+
+p(t) — L(t)Plz(t,v) + Ey(t)xg + Eo(t)zy + Es(t)d + ps(t) + No(t)z(ty,v)]]* =
¢ (£)Q(t)q(t) + 24* (t)a(t) + b(t) > 0,

where

Q) =Q"(t) 20, tel, q(t)=(0(t),2(t v), 2(t1,0));

Fa®),0) = lwl®) ~ [ K7 Py(r)ar? = 1) + Tty + Tolo)es +
LTy + ualt) + Nu(8)z(tr,0) — / K(t,7)Ple(r,v) + Ey()ao + Es(r)ei+
FEy(r)d + pa(r) + No(r)=(t, 0)]dr? = [o(t) + [T1(t) — / K(t,7)PE, (v)dr]zo+
[T /K (. 7) PEy(r)dr)an + [Tyl /K (t,7)PEy(r)dr]d+
s /K (£, 7) Ppis(7)dr] + [N (7 /K (£, 7) PNy (7)dr] 2 (b, v)—

t1

- / K(t,7)P2(r,0)dr|? = |v(t) + T (t)xo + Ta(t)z + Ta(t)d+

to

Becrauk KasHY. Cepusi maremarnka, Mexanuka, uadopmaruka Ne(87)2015



10 Aisagaliev S.A., Aisagalieva S.S

+iy(t) + N1(t)2(t, v) — /K(t,7‘)Pz(7‘,v)d7‘|2 =

t1 t1
:/|@(t)—/K(t,T)Pz(T,v)dT|2dt,
to to

where w(t) = v(t)+T1(t)zo+To(t)x1+T3(t)d+Tis (1) +N1 () 2(t1,v), ¢(t) = (v(t), 20, 21, d, 2(t,0),
z2(ty,v)), tel, T el
Now the problem (16) — (20) can be written as

t1 t1

J(v,u,p, xg,1,d) = /Fo(q(t),t)dt—i— /Fl(q(t),t)dt — inf (21)

to to
at conditions (17) — (20).

Lemma 1 Let S C R?" be a convex set. Then:

1) functional (21) at conditions (17) — (20) is convex;

2) the partial derivatives of the function Fy(q,t), Fi(q,t) in the variable ¢ = (v,u, p, xo, x1,d,
z,2(t1)) € RN, N =2m + S + 2n + my + 2(n + my) satisfy Lipschitz conditions.

Proof. Since Fy(q,t) = ¢*Q(t)q + 2¢*a(t) + b(t), t € I, ¢ € RN, that 9*Fy(t,q)/9%q =
2Q(t) > 0, the function Fy(t,q) with respect to variable ¢ € RY is convex. The function
Fi(q1,t) is convex in the variables (v, g, x1, d, z(t1)) = G, due to the fact that w*w = §;Q1q,,
where ()1 = Q7 > 0.

We notice, that

7wf l/KtTPdT@ﬁhﬁ i[ﬂmﬂﬂ—%ﬂwx

/K P(r m+// PRt VK (£ 0) P2(o)dodrdt,
to to

where

mmeZW@mwnwwx/K@ﬂwmm+

+77fWPKWmmwwm@mwn
77,2*(7)]3*[(*(75,T)K(t,a)Pz(a)dadT: 7K(t,T)Pz(T)dT 2 > 0.

to to
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It follows that the function Fj(q,t) is convex in the variables ¢;. From the convexity of
the function Fy(q,t), Fi(q,t), with taking into account, that

2(t,avy + (1 — a)vg) = az(t,v1) + (1 — a)z(t,ve), t €I, Yy, vg € Lo(I, R™),

we obtain .
J(ab + (1 —a)bs) = /Fo(aq + (1 — a)g, t)dt+
to
t1

+/F1(0@1 + (1 —a)g, t)dt < aJ(0;) + (1 —a)J(bz), Vb;,0, € X.

to
Consequently, the function (21) at conditions (17) — (20) is convex.

The partial derivatives of the function F(v,u,p,xo,x1,d,z,2(t1)) = Fo(q,t) + F(q,1t)

equal:

F,(q,t) = OF(q,t) =2(w—u)+ 2w /K (t,7)Pz(T)dr];

Fulat) = 2580 — s — s R0 = T2 < oy - 1) Py(o)

Fo(q.t) = 8%% ) oprw — u) — 2B P L (p — L(t)Py) + 2T [ /K (t, 7)P=(r)dr];

F., (q,t) = axl = 2T (w — u) — 2ELP*L*(p — L(t)Py) + 2T, [w /K (t,7)Pz(7)dr];

Fu(q,t) = 3F(§z; H = 2T (w — u) — 2E3 P*L*(p — L(t)Py) + 2T 3[@ /K (t,7)Pz(T)dr];

t1
F.(q,t) = 0F8(q,t) = —2P*L*(p— LPy) — 2 / P*K*(o,t)w(o)do+
z
t
’ (22)

2 / / P K (0, ) K (¢, €) P2(€)dé do

oF 7t * * ¥ T %
F.u(g,t) = 82((31)) = 2Ny (w —u) — 2N P*L*(p — LPy) + 2N /K (t,7)Pz(7)dr];

As it follows from (22), the partial derivatives F(q,t) = Fy(q,t)+ Fi(q,t) satisfy Lipschitz

conditions. Lemma is proved.
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Theorem 3 Let the matriz W (to,t1) > 0. Then the functional (21) at conditions (17) — (20)
18 continuously Frechet differentiable, the gradient of the functional

J'(0) = (J,(0), 1,(0), J,(0), T, (6), J, (0), Jo(0)) € H

Y o Y Tl

at any point 0 € X 1is calculated by the formula

s OF(q,t) \ s OF(qt) , ~  O0F(q,1)
J,(0) = 5 B*(t)(t), J,(0) = Bl , Jy0) = o
f oF(q.1 f oF(q.1 f oF(q.1
/ _ q,t / _ q,t Loy q,t
Tol0) = [ gt T (0) = [ =t Ji(6) = / S, (23)
to to to

where z(t) = z(t,v), t € I is a solution of differential equation (17), and function ¥(t), t € I
18 a solution of the adjoint system

t1
OF(q,1) OF(q,t)

b= S - ae). v - [ (24)

to
In addition, the gradient J'(0) € H satisfies Lipschitz condition
||J,(91) — J/(92)||H < K||01 — 92”[{, Vé’l, 0, € X. (25)

Proof. Let 6(t) € X, 6(t) + Af(t) € X. Then the increment of the functional

t1 t1

AJ = J(6+A0) — J(0) = / [F(g(t) + Aq(t), 1) — F(g(t), £))dt = / (8 Fu(a(t), )+
+Au*(t)F.(q(t), t)to—i- Ap*(t)F,(q,t) + AxjFyy (g, t) + AI’EOle (q,t)+ (26)

8
+Ad Fy(g,t) + Az (1) Falq,t) + Az (t) P (0. £)]dt + > Ry,

i=1

where Aq(t) = (h(t), Au(t), Ap(t), Axg, Axy, Ad, Az, Az(ty)).
Hence, by the fact that

Ax(t)] < / |0 (¢, 7)B@)[A(r)|dr < a1z,

/ A2 (1) P (a(t), )dt = Az (1) / Fuie(a(t), 1)t = A" (L1 (11) =

t1

—— [ Sz ouoli = - [182 00 + A7 @il -

to
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Constructive theory of boundary value problems ... 13

t1 t1

_ / A2 (0 A () + h* () B (O (t)dt — / A2 (1)[F.g(t).£) — A"(0)b(t))dt =

- [ roB @0 - [ A7 OGO,
/ Az Dt + / A= (1) o (at) 1) dt = — / B (0 B () (t)dt,

to

The increment of the functional (26) can be represented as

AT = /{h* ):0) = B(OU(0] + A’ (OF(a(t). 1) + A" (OF0,1)+
0

FAZEF, (q(t), 1) + Azt F, (q(t), 1) + Ad* Fy(q(t), t) Ydt + Z R;.

Further, taking into consideration that the partial derivatives F'(q,t) satisfy LIpschitz
condition we obtain Z |Ri| < e]|AG]]2, AO = (h, Au, Ap, Azg, Az, Ad). Then from (27)

follows that the gradlent J'(0) is defined by formula (23), where (t), t € I is solution (24).
Let 02 =6, 6, = 0 + AG. Then from (23) follows

|J'(01) = J'(02)] < L1|Aq(t)] + L2| Ah(t)| + L[| Aqll,
t1 t1

17(6:) — J(8)]> = / T'(6,) — J'(62)[2dt < La Aq|? + Ls / TNV
Since ‘
AG(t) = [Falq(t) + Aq(t), 1) — Fu(q(t), 1) — A(O)A(E), tel
t1
Ag(t) = — / Py (a(t) + Aq(t), £) — Fgy(a(t), D)dt,
that by using Granuolla’s lemma we obtain
AG()] < Lol|Aq|, tel. (29)

(25) follows from estimations (28), (29). Theorem is proved.
For solving of the applied problems can assume, that

v(t) e Vi ={v(:) € Loy(L, R™)/|v(t)] <40, 7 <00, mwB. t €1},
dEDl {dGRm/|d1|<71<oo}

where 79 > 0, 71 > 0 are sufficiency large numbers.
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14 Aisagaliev S.A., Aisagalieva S.S

Lemma 2 Let v(t) € Vi, d € Dy, S be bounded convex closed set. Then the functional (21)
at conditions (17) — (20) gets a lower bound on the set

X =VixU()xV(t)xSxD; CH,

Jo = inf J(0) = inf J(0) = min J(0) = J(0.), 0. € X;.

feX e X1 e X1

Proof. Since the set X; is bounded convex closed set in reflexible Banach space H,
that X is weakly bicompactly [12]. Continuous and convex functional (21) on the convex
set X is weakly semicontinuous below. Then acoording to Weierstrass’ theorem the weakly
semicontinuous functional gets a lower bound on the weakly bicompact set. Lemma is proved.

We construct the sequences {6,} C X; by the rules:

Up+1 = PV1 [Un - O‘anlj(en)]a Unp+1 = PUI [Un - an‘]/( )]7
Pn+1 = PV[ n anjzlg(en)]y Ton+1 = PS1 [xOn an']/ ( n)]7
Tin+1 = P31 [xln Oént]g/gé(en)]a dn+1 PD1 [d anf]d<0n)] <3O)

O<egg<Lap, < ——, >0, n=0,1,2,...,
o S _K—|—2€1 &1 n

where Py, [-] is a projection of the point on the set Wi, K = const is a Lipschitz constant

1
(25). In particular, at g = T =5 the value a,, — K= const > 0.

Theorem 4 Let the matriz be W (to,t1) > 0, the sequence {0,} C X is defined by formula
(30). Then

1) the sequence {0,} = {vn, Un, Dny Ton, T1n, dn} C X1 s minimizing, i.e.

lim J(0,) = J. = inf J(0);

n—00 feX,

2) the sequence {6,} C X weakly converges to the set X, C X1 C X, where

Xy = {0. = (Ui, Us, Piy To, T1a, di) € X/ J(0,) = Jo = inf J(0) = min J(0)}

0eX, 0e Xy

cn cn cn )
Up — Uy, Up — Us, Pn — Pry Ton — Tox, Tip — Tix, dp — dy Mpu n — 00;

3) the following estimation of the convergence rate is valid
J(0,) — J. < E, c=const >0, n=1,2,....
n

Proof. From (30), with taking into account the property of the point projection on the
set we obtain

< Upn+1 — Un + O‘an/)(en)a UV — Up+t1 >L22 0, < Up+1 — Up + aan/,,(en)a U — Up+1 >L22 07

< Pnt+1 — DPn + OszZ/)(Qn), P — Pn+1 >L22 07 < Zon41 — Ton + O‘nJ;/po (9n>> Lo — Ton+1 >Rn> 07
< Tin+1 — Lin + anJg/pl (Qn), X1 — Tin+1 >R"Z O> < dn+1 - dn + O‘nJ(/j(Qn)y d— dn+1 >Rm Z 07
Yu, veVy, Yu, ue U, Vp, peV, VYxg, Y1, (x0,21) €S, Vd, d € D;.
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Constructive theory of boundary value problems ... 15

Hence, in particular, when 0 = (v, u, p, xg, z1,d) = 60,,, we get

1 1
< Jy(0n), v = Vng1 >1,> a_an — vl < T (0n), tn — g1 >1,> a_Hun — tnp1 %,
n n

1 1
< J(0n); P = Pnt1 >1,> a—||Pn = Parll?, < T5o(0n)s Zon — Tont1 >pn> a—||$0n — Zons1 ||’
n

n

1 1
< ']521 <9n)>x1n_x1n+1 >R”2 Q_Hxln_xanrl”za < Jcll(en)adn_dn+l >L22 a_Hdn_dn+1H2
n n

(31)
Since the functional J(6) € C*'(X}), that the inequality is valid
! K 2
J(0,) — J(Ons1) >< J'(0,),0, — Opi1 > —?Hen e | (32)
Then of (31), (32) follows, that
1 K 9 9
J(en) - J(0n+1) > a_ - 3 ||0n - 0n+1|| = 51“971 - Hn-l—l” ) (33)

1 K+2 1 K
where — > —; 61, ) > ¢;. From (33) follows, that the numeric sequence {J(6,)}
ay, ay,

decreases strictly. Since the value of the functional J(6,,) is bounded from below, i.e. J(6,) >
0, V0, 6 € Xy, that the numeric sequence {J(6,)} is converged. Consequently, lim [J(6,) —
n—oo

J(0,41)] = 0. Then by transferring to the limit from (33) we get |0, —0,11]] — 0, at n — 0.

We show, that the sequence {6,} C X; is minimizing. As it follows from the lemma 1,
the functional J() € C*'(X}) is convex. Then necessarily and sufficiently the inequality is
satisfied

J(eg) — J(Gl) << Jl(eg),ez — 91 >Lo) V91, 92 € Xl.
From the inequality at 6, =60, € X, C X1, 6, =46, € X, we get

J(0,)—J(0,) << J(0,),0,—0, >1,=< J'(0,),0n—0n11>— < J(0,),0.— 0,1 >. (34)

From (31) at 6 = 6,,, we obtain

1
< J(0,),0, — 0pi1 >> — < 0p — 011,05 — 01 > . (35)

n

From (34), (35) we get

J(0n) = J(0.) << J'(0,) —

1
_<9* - 6n+1); en - 9n+1 >§

! 1 ! T
<1 (00) = 6 = )16 = Bl < (500 1760+ 2 ) 16, = Bhuall = 9

= 1|0, — Op11]|, | = const >0,
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16 Aisagaliev S.A., Aisagalieva S.S

where r is a diameter of the set Xy, 0, — 0,1 <r, — < —, 0 <gg < .

n €0
Since ||0,—0,11]||—0 at n—oo, that from (36) follows lim J(@n):J(Q*):J*:eirg J(0).
n—00 c€X1

This means, that the sequence {6,} C X; is minimizing,.
We show, that the sequence {6,,} C X weakly converges to the point 6, € X,. In fact, the
set X is weakly bicompactly, the sequence {6,,} C X;. Consequently, the sequence {6,,} C X;

has at least one subsequence {6, } C X; such, that 6y o, at m— oo, moreover 6, € X.
Since the sequence {J(6,)} converges to J(6,), that the numeric sequence J(0y,,) as well as
converges to the number J(6.) i.e. lim J(0,) = J(0.).

m—0oQ

From the inequality (33), (36) follows, that

an S luen - 9n+1H7 Ap — Qp+1 2 <C:1H9n - 0n+1Ha Qp = J<0n) - J(e*)

1
Then a, < o= 1,2,..., A= — >0 (see. [5]). Hence it follows the third statement of

the lemma. Theorem is proved.
5. Solution existence

Let 0, = (vi(t), us(t), p«(t), Tox, 14, di) € X1 be a solution of the optimization problem
(16) — (20). Then

w*<t> — U*<t) + )\1(t7m0*7x1*> + Nl(t)Z(tl,U*), t € _[, U*(t) < ‘/1, t S _[,

Ylt) = 2(t, ) + Aa(t, Lors E1) + Na(t)z(t1,v0), palt) €VI(E), tET,

where £p = (Tox, Oma1)s E1x = (7,C), G = (€1 — diss -+ Cmy — Qs Cng 415 -+ -5 Cmy )y A =
<d1*7 cee 7dm1*) c D17 (xO*a xl*) € S.
We notice, that the value J(f) > 0, V0, 6 € X;. In particular, the value J(6,) = 0.

Theorem 5 Let the matriz be W (ty,t1) > 0. For existence of a solution of the boundary value
problem (1) — (5) necessarily and sufficiently, that the value J(0.) = 0, where 0, = 0,(t) € X,
is the solution of the optimization problem (16) — (20).

Proof. Let the value be J(6,) = 0. We show, that the boundary value problem (1) — (5)
has a solution x,(t) = Py.(t), t € I. As it follows from optimization problem (16) — (20) the
value J(6,) = 0 if and only if

w*<t) - U*(t) + )\1(t7$0*,$1*) + Nl(t)z<t1av*) = u*(t)v le ]a

() = LOPY.(t), t€T, wa(t) = / K(t,7) Py, (v)dr.

where u,(t) € U(t), p.(t) € V(t), (xos,21+) € S, di € D;. The function y,.(t), t € [ is a
solution of the linear controllable system (9) — (11). Consequently, the equality is valid

Gul(t) = A@)y(t) + B(t)ua(t) + m(t), tel, (37)

y*(t[)) = fo* - ("IJ‘O*?OmQ,l)) y*(tl) - 51* = (xl*ya*); (38>

ISSN 1563-0285 KazNU Bulletin. Mathematics, Mechanics, Computer Science Series Ne4(87)2015



Constructive theory of boundary value problems ... 17

(Tos, T14) € S, di € Dy, u,(t) €U(t), te€l, (39)
From the equality

Wi (t) = us(t) = /K(t,T)Py*(T)dT eU(t), tel

and relations (37) — (39) follow that &.(t) = y.(t), Py.(t) = z.(t), t € I, where &(t) =
(@4 (),04(1)), 2u(to) = Zow, Tu(t) = 14, Nulto) = 0, 1u(l1) = o Since PE(t) = Py.(1)
x4(t), t € I, that the function

2, (t) = Py.(t) = Plz(t,v.) + Aa(t, ox, 14) + Na(t)2(t1,v4)], t €T

is the solution of the boundary value problem (1) — (5). We notice, that from inclusion
pu(t) € V(t), t € I, u.(t) € U(t) follows the function z.(t) € G(t), t € I. From the conditions
that the function 7.(t), t € I satisfies to the conditions 7.(tg) = 0, n.(t1) = ¢, follows
satisfication of the integral constraints (4), (5). Theorem is proved.

6. Construction of a solution of the boundary value problem (1) — (5)

From the theorem 5 follows the algorithm for solving of the boundary value problem (1)
—(5):

1) By introducing the auxiliary variables 7(t), t € I, the origin boundary value problem
(1) = (5) is transformed to the form (6) — (8).

2) To make sure, that the matrix W (¢, t1) is positive defined. The condition W (¢q,%;) > 0
is necessary and sufficient condition for solvability of the integral equation (12) at any a €
R™™2_ However this condition is necessry condition for solvability of the boundary value
problem (1) — (5). If the matrix W (¢, ¢;) is not positive defined, than the boundary value
problem (1) — (5) has not a solution.

Fundamental matrix of the solutions 6(t), ¢ € I of the linear system w = A(t)w is a
solution of the initial problem 0(t) = A(£)0(t), 0(to) = Inimy, t € I, where Iy, is an
unitary matrix of the order (n 4 ms) X (n+ms). The matrix §(¢), t € I can be calculated by
an accuracy.

3) To solve an optimization problem (16) — (20) by constructing a minimizing sequence
{6,} C Xi. As result, we find 0, € Xy, J(0,) = aien)gl J(0) = ;Ielﬁ(ri J(0). The point 6, € X,

always exists at W(tg,t;) > 0. For existing of a solution for the boundary value problem
(1) — (5) necessarily and sufficiently, that J(6,) = 0. If J(6,) > 0, then the boundary value
problem (1) — (5) has not any solution.

In the case J(0,) = 0 we find: w.(t) = u.(t), y.(t), t € I. We define the function z,(t) =
Py.(t), where P = (I,,, Oppm,) is known matrix.

The function x,.(t), ¢ € I is the solution of the boundary value problem (1) — (5). We
consider the following particular cases:

1) In the absence of the integral constraints (4), (5). In this case, A(t) = Ao(t), B(t) =
By(t), pa(t) = u(t), t € I. Linear controllable system (9) — (11) is written as

gy =Ao(t)y + Bo(t)w(t) + p(t), tel, w(-)e Lo(l, R")
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18 Aisagaliev S.A., Aisagalieva S.S

y(to) = w0, y(t1) =1, (w0, 71) €5,
function &(t) = x(t), t € I, and function z(¢), t € I is a solution of the differential equation

2= Ao(t)z+ Bo(t)v(t), z(to) =0, v(-) € Lo(I,R™).

2) In the absence of the integral constraints (4), (5) and phase constraints (3). In this
case, the optimization problem (16) — (20) is written as: minimize the functional

t1
J(v, zg, 1) —/|w /K (7)dr|* — inf
to

at conditions
z=Ao(t)z + Bo(t)v(t), 2(to) =0, v() € Lo(1, R™), (wg,21) € S.
We show the example of the basic results considered above.

Example. We consider the following boundary value problem:

‘%.'1:

~ | —

2
Ty =21 — /etszl(T)dT + pa(t),
1

where ,

O A B PRI S W V| i
251 _2t t2 t2 ) )

t2
€ 2
palt) = 55 [(2152 e — 24 1] telL2).
The boundary conditions have the form

z1(1) + 22(1) — 21(2) — 22(2) = —5/2, (41)
—y (1) + 225(1) + 21(2) + 32(2) = 11/2.

The phase constraints are defined by relations:
2(t) = (1(1), wa(1) € G(1) : G(1) = {w € R/1 < my(t) <2,

3 € tT 1
0 <a5(t) < 3; S/e wa(r)dr < 536"+ %) (42)
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The integral constraints have the form

2 2

g1(x) = /xl(t)dt <2, gox) = /xg(t)dt =2/3.

As it follows from (40) — (43):

Let /
1 1 -1 -1 —5/11
E_<—1 2)’F—(1 3)’6—(11/2)'
Then the boundary conditions (41) are written in the form
Exg+ Fxi =e.

A. Transformation. Being introduced the functions

t t

m(t) = /l’l(T)dT, ne(t) = /xg(T)dT, to=1, tell,2]

to to
the integral constrains (43) we write in the form
7?1 = X, ?7221’2, 7]1(1) :0, 771(2) :Q—d, 772(2):2/3,

de D=1{dec R'/d>0}.
Then the boundary value problem (40) — (43) is written as

= A(E+ B(1) /K(t, (e + (1), te 1,2 =1,

X9 Iy
) =&=10], {t)==(2-4d],
0 2/3
(z0,21) € S = {(20,71) € R'/Exg+ Fzy =e}, d€ D, PE(t) € G(t),
where .
=000 1 0
t f1(t)
1 000 0 -1 i
01 00 0 O
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20 Aisagaliev S.A., Aisagalieva S.S

P=(p 1 0 0)s Pe=a e=cn= (1) 0= (1))

B. Linear controllable system. For this example the relations (9) — (11) are written

" j = A(t)y + Bw(t) + at), te[1,2]=1,

o o 2 —d
y=&=(0], y2)=&=|2-d ,E=(2/3),
0 2/3
(zo,m1) €S, d€ D, w(-) € Ly(I,R?), n=2, my=2, m=2.

Fundamental matrix of the solutions 6(t) of the lineat homogeneous system w = A(t)w is
defined by solution of the equation

0(t) = At)0, 0(1) =1, tel,

where I is unitary matrix of the order 4 x 4. Solution of the equation is the matrix

t 0 00
21
L—= 1 00
= 2 1;2].
3 1
E—Ll4l t—-101
Inverse matrix 671(¢) equals
3 0 00
t 1
—5+3 1 00
07'(t) = 77
( t2_5j§1 ! -
T3 T —(t—=1) 0 1

The matrixes
D(to,t) = ®(1,t) = O(1)07(t) = 07(t), P(to,t1) = P(1,2) =0(1)671(2) = 071(2),

vector

1
and integral equation (12) for this example has the form
2
/@(1, DB w(t)dt — a.
1

As it follows from theorem 1, the matrix

W(1,2):/<I>(1,t)B(t)B*(t)<I>*(1,t)dt:/0‘1(t)B(t)B*(t)0*_1(t)dt:

1 1
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/2 Std Goare (347

L e G (547
b (S RG---) C5E- G-

1, 1 _ - -
372 o T S
2
(%_%t)(_%jL%_é)_(t_l) _i % % _172
dt =
2
G- D5 +s-d) 14 & b
(G+i-gr+e-1> 1 ls 5 "B %
The main minors of the matrix W(1,2) equal
1 12 —1/4] 13

1/2 _1/4 —1/4 61
Ag=|-1/4 29/24 5/24| =22 >0, Ay=|W(L2)| = ;505 > 0.
—1/4 5/24 5/24

Consequently, the matrix W (1,2) is positive defined.
The inverse matrix

93 1 _61 1 310 310 g 60
5184 7 28 288 61 61 61
) TR T\ B % b, s
- —_ — | &76 17280 17280 48 | — | 61 61 61
W (172) - A 61 6l 793 0 - 6 -1 793 0
2830 17280 17280 61
1 1 0 1 60 360 720
288 13 24 61 61 61
h A=A 01 Matri
where A = Ay = ———. Matrixes
17280
t
W(l,t) = f9_1(7)3(7)3*(7)9*_1(7)d7 =
1
r_1 _t_ 1
;T 1 5 "ot 1
t 1 3 t 1 1
5 3 T 1 zts— %3
t 1 3 t 1 2
_2_2t+1 12_2_4t+3
2 _t_ 1,1 ¢t 8 52 1,24 05
Lt 3 "6 T2 21 T 12 12 12t+3t 24
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ERERE i wts '
Bt —ntn- N om it
Bt mti —nth- it E-mta
“Gth- R -Hth EoRtE-omti-H -
The matrix W (t,2) = W(1,2) — W(1,t) =
b+ SRR
il Eof-itd
T|-ieied BBl
R R At NS
“fid §-f+ied |
H-f+i+d - b+-Be
HtE T m BT momtm o Bt oot

By known matrixes 0(t), 0(1) = 071(1) = Iy, 671(¢), 67 (7), W(1,2), WI(1,2), W(1,t),
W(t,2) we define

a = 971(2)51 — &0 — /Ql(t)ﬁ(t)dt, )\1(?57 50,51) = B*(t)e*fl(t)x
xW™H1,2)a, Ni(t)=-B*)0* )W (1,2)07(2),
Ao(t, €0, &1) = O()W (£, 2)W (1, 2)€0 + O()W (1, )W (1, 2)07" (t1)&1+

+/(9(t)9_1(7')ﬂ(7')d7' — (W (1, )W 1(1,2) /H_I(T)E(T)dT,
Ny(t) = —=0(t)W (1, )W ~H(1,2)07 (1),
as well as the functions,

w(t) = v(t) + Ai(t, &, &) + Ni(t)z(2,0),

y(t) = 2(t) + Aa(t, 80, &1) + Na(t)2(2,0), t €T =[1;2],
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(t,v), t € I is a solution of the differential equation

where z(t) =
v(-) € Ly(I, R?).

i = A(t)z + B(t)o(t), 2(1) =0,

We notice, that

t T

A = [ 608 (OBr)dr, (1) = [ 0007 ) B

1 1
—(20) has the

Optimization problem. For this example, an optimization problem (16)
form
J(U7 u,p,xo, I, d) -

= /{!wl(t) —ur(t)]” + [wa(t) — ua(t)*+

) = 3 OF + pa(®) ~ (OF + fun(®) ~ [ a(r)ar+

2
+|wa(t) — /etQTyl(T)dTF}dt — inf
1

at conditions
Z2=A(t)z+ B(t)v(t), z(1) =0, v(:) = (vi(:),v2
(3e* +€?), tel},

()) € LZ(I’ RQ)?

OOI>—‘

u(t) € Uy = {uy(-) € Ly(I, RY)/e?/2 < uq(t) <
(76 -3)},
, tel},

, tel},

r—t|®
[«

uy(t) € Uy = {us(-) € Ly(I, RY)/e? < uy(t) <
pi(t) € Vi ={p() € Lo(I, R")/1 < pu(t) <
pa(t) € Va = {p2(") € La(I, R')/0 < pa(t) <

Exg+ Fzy=e, de{de R'/d >0} =D,
U(t) = (Ul(t)vv2(t))7 U() € LQ(IaRQ)v S =

W N

where w(t) = (wy,wy(t)), w(-) € Lo(I, R?),

{(x9,21) € R*/Exo + Fx1 = €}.
The sets X = Lo(I,R') X Lo(I, RY) x Uy x Uy x Vi X Vo x S x D, H = Lo(I, R') x
=1

Ly(I,RY) x Lo(I, RY) X Ly(I,RY) x Lo(I, RY) x Lo(I,R*) x R* x R, n =2, my
Since the function

Ul(t) + Tll(t)l'o + Tgll'l + Tgl(t)d + ,Un(t) + Nll(t)Z(Q, V1, ’Ug), te ],

wl(t) =

wy(t) = va(t) + Tia(t) o + Toowy + Taa(t)d + paa(t) + Nia(t)2(2, v1, v2),
y1(t) = z1(t,v1,v2) + E11(t)xg + Eo(t)z1 + Es1(t)d + psi(t) + Naa(8)2(2,0), t €1,
(t) Zg(t U1, 112) + Elg(t)x() + Egg(t)l'l + Egg(t)d + Mgg(t) + NQQ(t)Z(Q, U), te I,
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yg(t) = Zg(t, U) -+ Em(f)(l?o + Egg(t)ilfl -+ Egg(t)d + ,U35(t) + Ngg(t)Z(
ya(t)

2,v), tel,
Z4(t, U) + E14(t)$0 + E24(t)£li'1 + E34(t)d + M34(t) + NQ4(t)Z(2, ’U), t e I,

2
that Fy(q(t),t) = Jwi—ui [P+ Jwe—us*+ |p1 —y1|* +p2 —v2|%, Fi(g,t) = w1 — [ eTya(7)d7|* +
1

2
lwy — [ e Tyy(T)d7|?, where

2

Ti(t) = Ty(t /tTE12 Ydr, T (t) = Ty (t) —

1

'™ By (1)dr,

——

Tor(t) = T (1) — / e By (r)dr, Ty () = juus(f) — / " 3o () I,

Nll(t) = Nll(t) — /etTNQQ(T)dT, @_Ul(t) = U1(t) + Tll(t)l'g —l—Tzl(t)l’l—{—

+T31 (t)d + N11<t)2(27 ’U), U)l(t) — /etTyQ(T)dT = El(t)—

2

jezQTU&'wﬂﬂ /‘ "y (r)d je

1

1
Partial derivatives of the functions F'(q,t) = Fy(q,t) + Fi(q,t) are calculated by formula
(22) and sequences {6#,,} C X are defined by algorithm (30):

Uny1 = Py [vn — anJy, (00)], U72z+1 = Py vy — atnJy, (00)],
Uy 1 = Po,[u,, — o J,
P = Py o, — an]

n+1l __ n /
xg " = Pslxy — anJ.

dn+1 = PDl[dn - anJC/l(en)]v n=0,1,2,...
We notice, that

(25 21™) = (25 — andy, (0n), 27 — anJy, (0n))—
(e - (@) e - (ki)
wn®)-(4 ) mn(®) (2 1)
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Construction of the minimizing sequence.
1. The initial point is choosen 6y = (v}, v2, up, u2, pd, P2, 2], 29, dy) € X. In particular,
ub(t) = sint, 0R(t) — cost, ud(t) = [+ £(Te —3)]/2, wb(t) = [5 +1(3¢+¢2)) /2, pb(t) — 3/
pg(t) = 3/47 Z)Zg = (‘Tl(l) = =3, xQ(l) = 1)7 x? = (I1(2) = 1/27 x2<2) = O) (x07x1) €5.
2. To find a solution of the differential equation Zy = A(t)zo + B(t)vo(t), z0(1) = 0,
vo(t) = (v3(t),vE(t)). As result we get zo(t) = zo(t,v5,v}), t € I = [1;2].
20F
f <QO( ) )dt, QO( ) _

t) = (UéaUg’Uéaug,péapa558,95?7610,20(15),
1 Oz(t)

2p(t1)). Solve the differential equation

3. To find a value ¢y(2) =

F OF (q0(t), 1)
/ Dalt)

o) = ZROD ey, of2) = -

1

and determine a function ¢y (¢), t € [1,2].
4. To compute the partial derivatives in the initial point 90 6 X Finally, it is known

OF (qo(t),t) OF(qo(t),t) OF(qo(t),t) % OF(qo(t), 2 3F 1 OF(qo(t),t)
ov ’ ou ’ op ’ 1f g d ‘1[ d f 8 dt.
5. To find
U% - PV1 [UO - O‘O‘]zl;l (90>]7 U% PVl[ ( )]7
up = Py, [ug — oo, (60)], ui = Py,lug — aoJ' (60)],
p1 = Py, [po — aody, (00)], T = Py,lpg — o0}, (00)],
= Pslzg — ol (60)], x1 = Ps[a} — anJ, (6o)],

dy = Pp,[do — o J(0p)], n=0,1,2,..., «g=const > 0.

6. To repeat the items 1 — 5.
As it follows from theorem 4, the constructed sequences is minimizing i.e. lim J(6,) =
n—oo
Ji = eigg J(0) = J(0.), where 0.=(v1.(t), vau(t), U1 (1), Ugu(t), Pr4(t), P2x(t), Tow, T14,di) € X
1

is solution of the optimization problem. If J(6,) = 0, then y1.(t) = x1.(t), yo.(t) = z2.(1),
t € [1;2] is solution of the boundary value problem (40) — (43). For this example the following
results are obtained: 1, (t) = t, xo.(t) = ﬁ—— €1 2] zox = (1;0), 1. = (2;3/2), d = 1/2,

un(t) = L[5 (32 — 4t +2) — L(-2t + 2)] UQ*( ) = t—4[(2t2 —1)e’” =241, t € [1;2].

This work was supported by the grant of the Committee of Science of the Ministry of
Education and Science of the Republic of Kazakhstan (project No 0758/GF4).
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