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On constructive nilpotent groups

In connection with the development of the theory of algorithms a study of the problems
of computability of important classes of algebraic systems are currently relevant. Groups of
unitriangular matrices over the ring are a classic representative of the class of nilpotent groups
and have numerous applications both in group theory and in its applications. In this paper we
investigate the questions of computability of nilpotent groups. The connection between the bases
of the subgroup of the nilpotent torsion-free group and the quotient of this subgroup are found
here. Sufficient condition of computability of nilpotent groups in terms of their subgroups and
quotient by this subgroup are given. On the basis of these conditions, we exhibit find a large
class of computable subgroups of the group of unitriangular matrices of degree 3 over the ring of
polynomials in one variable with integer coefficients. In particular, it is proved that every Abelian
subgroup of this group is computable. It has been established that any computable numbering of
a non-Abelian subgroup of the group of all unitriangular matrices of degree 3 over the polynomial
ring in one variable with integer coefficients induces in any computable numbering its maximal
subgroups and quotient of it. We obtain a sufficient condition for computability of the quotient of
a computable nilpotent group by its periodic part. We find a sufficient condition for computability
of a nilpotent group, enriched by an additional predicate root extraction.

Key words: nilpotent group, unitriangular group of matrices over the ring of polynomials in one
variable with integer coefficients, the center of the group.

Hypusunos M.K., Tromobeprenes P.K., Xucammuen H.T.
EcenrrenineTiH HUJIBIIOTEHT TONTAP TYPAaJIbl

AsropuTMIep TEOPHUSICHIHBIH JaMyblHa OAMIAHBICTHI aareOpaJIblK, YKYieaep/iH MaHbI3/Ibl KIacTa-
PBIHBIH, eCENTeIMIIIIK MocesIeJIepiH MMyl 3epTTey 03eKTi MacesesepiiH, oipine ainapr. Caku-
HAJAFbl YHUYIIOYPBINITH MATPUNIAIAD TOOBI HUJIBIIOTEHTTI TONTApP KJACCTAPBIHBIH KJIACCUKAJIBIK,
OKiTi OOJIBIN TAOBLIAIBI XKOHE KOITEreH KOJIIAHBLIBIMIAPHI TEK KAaHA TOITap TEOPUSICHIHIIA FAHA
eMeC, OHBIH KOCBIMIAJAPBI VIMH Je MAHBI3JAbI OPbIH AJFaH. ByJ KYMBICTA HUJIBIIOTEHTTI TOII-
Tap/IbIH, ecenTeiMIl BOIYbl TypaJibl CYpakK 3eprTesireH. ANHAIBIMCHI3 HUJIBIOTEHTTI TOMTaPIbIH,
imKi TONTapBhIHBIH 6a3UCTEPi MEeH OCHI iMKi TOT OOMbIHIIA (haKTOPTONTAP/IBIH, apachiHIa OGailiaHbIC
Tabbural. HUIbIOTEeHTTI TOnTapAblH eCenTe/iMILIINHIH KeTKLIKTI MIapThl OHBIH IIIKI TOITAPHI
MEH OCBI immKi Tom 6oitbiaIIa (bakTopTOnTap TUTiHAE Oepinren. Ochl aJbIHFAH HOTHXKEJIED HETi3iHIe
6yTia kKoaddurenTTi 6ip AHBIMAIBI KOIIMYIIETIKTED CAKAHACHIHIA YITIHII PETTI OAPJIBbIK, YHAYII-
OYPBIIITHl MATPHUIIAJIAP TOITAPLIHBIH €CEeNTeIM/II 1IKi TOITapbIHbIH KeH K1ackl Tabbuiran. lepbec
JKaraaiiia, OChl TONTHIH Ke3 KeJreH abesTb/IiK iIKi ToObI ecenTeiM/Ii eKeHIiri aatesaenred. byrin
K03 DuIeHTTi 6ip aHBIMAJIBI KOIIMYIIIETIKTEp CAKUHACBIH/IA, VITHIN PeTTi OapJiblK YHUYIIOYPhI-
IITHI MATPHUIAJIAD TONTAPBIHBIH, a0 IbIIK eMeC 1MKi TONTAPBIHBIH Ke3 KEJINEeH eCeIrTe M I HoMipJie-
yi OHBIH K€3 KeJIT'€H MAKCAMAJIIIBI iK1 TOIITaphl MEH 0J1 GOUBIHITIA (DAKTOPTOIITAPBIHBIH, €CeIITeTIMI1
HeMipJieyin afikbiazaiiabl. EcernreiMal HUIBITOTEHTT] TOMTAPIBIH OHBIH, TIEPUOITHI OOJTir OOMBIHIITA,
daKTOPTONTAPBIHBIH, €CeNTeTIMIIIITHIH KETKITIKTI MapThl aJblHFaH. HUJIbIIOTEHTTI TONTAP/IHIH,
TyOip Taby KOCBIMIIIA MPEIUKATHIMEH TOJIBIKTBIPBIIFAH €CENITeTIMILTTIHIH KeTKUTKTI MmapThl Ta-
OBLITFaH.

TyiiiH ce3aep: HUIBIIOTEHT TOII, eCEeNTeNHETIH Toil, OyTiH Ko3ddunmenTTi O6ip AHBIMAJIBI KOTI-
MYIIETIKTED CAKUHACHI YCTiH/I€ AHBIKTAJIFAH OAPJIBIK VI JOPEXKesIi YHAYIIOYPHIIITH MATPHUIIATIAD
TOOBI, TOITHIH, IIEHTPI.
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Hypusunos M.K., Twomobeprenes P.K., Xucamues H.T.
O BBIYUCJIUMBIX HUJIBIIOTEHTHBIX TPYIIIIax

B cBs3m ¢ pasBuTHEM TEOPUU AJTOPUTMOB AKTYaJbHBIM SBJISIETCS UCCIIEI0BaHUE IIPOOJIEM BBIYHC-
JITMOCTH BaXKHBIX KJIACCOB ajredbpandeckux cucTeM. ['pymibl yHUTPEYTOIbHBIX MATPUIL HAJ KOJIb-
IIOM COCTABJISIIOT BaXKHBIN KJIACC HUJIBIIOTEHTHBIX I'PYIII, UMEIOMINIT MHOTOYNCIEHHBIE IPUMEHEHUST
KaK B CaMOI TEOPUU IPYIII, TAK U B €€ IPUIOKEHNAX. B TaHHON paboTe UCCIeIyI0TCA BOIIPOCHI BbI-
9UCJIUMOCTU HUJIBIIOTEHTHBIX rpyi. Haiiena ¢Bs3bp Mex 1y 6a3ncamMu MOATrPY bl HUJIBIIOTEHTHOM
rpynnsl 6e3 Kpydenus: u (pakTOPrpyImsl Mo 3Toi noAarpymie. /{aHo J10cTaToOYHOE YCIOBHE BBIYUC-
JIMMOCTHY HUJIBIIOTEHTHON T'PYIIIBI HA A3bIKE €€ MOArPYIIbI U (DAKTOPTPYIIILI IO 3TOH MOATPYIIIE.
Ha ocHoBe 3Tux pe3y/bTaToB HANJIEH MMUPOKUN KJIACC BHIMUCIUMBIX MOATPYIIT FPYIIIBI BCEX YHUT-
PEYTOJIbHBIX MATPUIL CTEIIEHW TPHU HaJ, KOJIBIIOM MHOTI'OYJIEHOB OT OJIHOI IEPEMEHHOI C IeJIbIMUA
ko3bdunmentamu. B gacTtHOCTH H0Ka3aHO, 9TO JI0Oast abesieBa MOAIPYIIIA STOM I'PYIIIBI BHIYUC-
JinMa. YCTAHOBJIEHO, UTO JiI00As BBIYMCINMAs HyMepalus HeabeseBOH MOJAIPYIIBI I'PYIIIBI BCEX
YHUTPEYTOJIbHBIX MATPHIL CTEIIeHN TPU HaJ, KOJIbIIOM MHOI'OY/ICHOB OT OJIHOM IePEeMEHHOH C IeJIbI-
MU KO3 pUIMeHTaMI UHYIIUPYET BBIYUCIUMbIE HyMEPAIUN JIF000I ee MaKCUMAaJIbHOMN O PYIIIIbI
u dakroprpymms! Mo Hei. [logydeHo gocTaTOYHOE yCIOBHE BBIYUCIUMOCTU (PaKTOPTPYIIILI BbI-
YUCAUMOIN HUJIBIIOTEHTHOHN T'PYIIIBI IO €€ meproamdeckoil yactu. Haitgeno mocrarodnoe yciaoBue
BBIYUCJIMMOCTA HUJIBIIOTEHTHONW T'PYIIIbI, ODOTAIIEHHON HOMOJIHUTEIPHBIM [IPEIUKATOM H3BJIEYE-
HUSA KOPHE.

KuroueBble cj10Ba: HUILIIOTEHTHAS TPYIIIA, BLIMACIUMA TPYIIIA, YHUTPEYTOJIbHAS TPYIIIA MaT-
PUIL Pa3MEPHOCTH 3 HaJ| KOJIBIOM MHOTOYJIEHOB OT OJIHOI IMePEMEHHOI ¢ 1esibiMu KoahduimenTa-
MU, IIEHTP I'PYIIIbL.

1. Introduction

The study of computable groups was begun in [1], where A.I. Mal’cev posed the general
problem: Determine the constructive numberings that given abstractly defined groups admit.
Also in the same work some description was given of computable torsion-free Abelian groups.
This problem was studied by Yu.L. Ershov, S.S. Goncharov, and other mathematicians (cm.
[2]). For the results on constructivizations of nilpotent groups see, for example, [3|, where
it was proved that each constructivization of a torsion-free locally nilpotent group naturally
extends to a constructivization of its completion; [4], [5], where, for each n > 0, a nilpotent
group was constructed whose algorithmic dimension is equal to n and sufficient conditions
were given for the autostability of these groups; [6], where an example of a computable
nilpotent group was constructed whose quotient group is noncomputable in the periodic
part. Connections between the constructivization of a commutative associative ring K with
unity and matrix groups over K were studied in [7], [8]. It was proved in [7] that the matrix
groups GL,(K), SL,(K) and UT,(K) for n > 3 are constructive if and only if the ring K
is constructive. In [8] an example was constructed of a nonconstructive ring K for which
the group G Ly(K) is constructive. In [9]-[13], some criteria were obtained for the existence
of a positive (constructive) numbering of a torsion-free nilpotent group. In this paper, we
obtain conditions of the computability of the group and on its basis is described a broad
class of computable subgroups of the group UT3(Z[x]) of all unitriangular matrices of degree
3 over the ring of polynomials in one variable with integer coefficients. It is proved that any
Abelian subgroup of the group UT5(Z[z]) and the quotient of this group by any maximal
Abelian subgroup is computable. It is obtained the sufficient condition of not computability
of periodic nilpotent group of class 2. It is proved that there is an algorithm of root extraction
in a finitely generated torsion-free nilpotent group. Sufficient conditions for the existence of
this algorithm for nilpotent groups without torsion stage 2 and computability of the quotient
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On constructive nilpotent groups 37

of computable nilpotent group on its periodic part. All notions of the theory of constructive
groups, can be found in [2| and [15] ; and those of the theory of abstract groups, can be
found in — [16], [17]. We only recall some of them. Suppose that w is the set of all naturals,
G is a group, and v : w — G is a mapping from w onto G. The pair (G, v) is called an
numbered group. A numbered group is called constructive if there is an algorithm that, from
all naturals n, m and s, verifies the validity of the equalities vn = vm and vn - vm = vs. A
group G is called computable if there exists an numbering v : w — G of G such that (G, v)
is a constructive group. A subgroup H in an numbered group (G,v) is called computable
(computably enumerated) in (G, v) if the set v'H is computable (computably enumerated).
If (G, v) is a constructive group then v is called a computable numbering of G. By UTs(Z][x])
we denote the group of all unitriangular matrices of degree 3 over the ring of polynomials in
one variable with integer coefficients, Z(G) is the center of the group G, C(g) is centralizer
of element g.

2. On computable subgroups of nilpotent groups

Here, it is obtained a sufficient condition for the computability of a certain class of
nilpotent groups. Based on this it is proven computability of subgroup G of group of all
unitriangular matrices of dimension 3 over the ring of polynomials in one variable with integer
coefficients such that for some integers m and any matrix g € G of degree g11(x)(ge3(x)) is
not more than m.

Theorem 1 Let G be nilpotent torsion-free group of stage 2, go € G\Z(G). Then for the
sequence of elements

91,092,393, - . (1)

from G and subgroup
GO = gr({glag%g?)u c } U 0(90))

15 valid equivalence:
sequence of commutators

(90, 911, 90, 92], [90, 9], - - - (2)
is basis of subgroup [go, G] if and only, if

G192, 935 - - - (3)
is basis of quotient Gy = Go/C(go)

PROOF. =. Let the sequence (2) be a basis of subgroup [go, G]. Suppose that

gi =g gie,
where k, ki, ..., k, are integers, nonzero and ¢ € C(gp), 0 < s, 0 < i3 < ... < iy, § &
{7:1, . 7Zn} Then
[907gs]k = [g())gh]kl et [g()ag’in]kna
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i.e. the sequence (2) is linearly dependent, which is contrary to the assumption. Hence the
sequence (3) is linearly dependent modulo C(go).
Let a element g € Go\C(go) is given. Since (2) is basis of subgroup [go, G], then

90 91" = [g90, )™ - .- [90, gu)™
for some numbers k, kq, ..., k,, where k # 0. Then
90, 9" - - g = 1,
ie.
g =g .- g (mod C(go)).

Hence the sequence (3) is basis of a group Gp.
<. Let the sequence (3) is basis of the group Gy. Let’s prove, that the sequence (2) is
linearly independent. Assume the contrary, i.e.

(90, 9] -+ 90, gin )" = 1.
Then
90,91 - gl =1,
g =1,

that it is impossible. Hence the sequence (2) is linearly independent.
Let element g ¢ C'(go) is given. Since the sequence (3) is a basis of the group G , then

g =9r .9
for some integers k., ki,...,k,, where k& # 0. Thence ¢* = glfl ...gFc for some element
¢ € C(go). Then
[g(bg]k - [90791]1431 et [907gn]kn7
i.e. (2) is a basis of a subgroup [go, G] O

Theorem 2 Let G be a group and H be its normal subgroup such, that the followings are
valid:
1°. There exist computable numberings a and B of groups H and G = G/H respectively;
20, There exists computably enumerable sequence of elements in (G, B)

90,91, 92, - - - (4)
such that
G=m@o@me... ()

3. [9i, 951 = af (i, j) for some computable function f(i,j).
Then a group G is computable.
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PROOF. For any element g € G\ H there exists a sequence of integers
Tg = <i07 kU? cee 72'5717 ]{73,1, m)

such that
k ks—
g=Gi - 9, llozm

and an element ¢ is uniquely determined by the sequence m,. From 1%, 2° follows that a set
m = {m,|g € G} is computable. Let element

li—1

h = gég Co gy, an
is given.
Then from the (5) and 3° follow that by sequences m, and 7, ones can effectively
determines the sequence 7y, and also an equality of elements g and h. O

Theorem 3 Let G be a subgroup of a group of all unitriangular matrices of degree 3 over the
ring of polynomaials in one variable with integer coefficients such that the following conditions
are true:

1. There exists a natural number m such that for any matrix g € G a degree deg g2 < m;

2. There exists matriz g € G such that deg go3 > n for any number n € w .

Then the group G is computable.

We preface the proof the following statement.

Lemma 1 There exists a subgroup Gy in G such that for it the condition 2 of the theorem
is true and for any matriz g € Gy the gia(x) = 0 is true.

PROOF. From conditions 1, 2 of the theorem follow that there exists the smallest number
mg such that there are infinitely many matrices

from G, for which the following is true
deg g13 () = mq

deg g3 () < deg g5 (x) < ...

i=0,1,2,...

Let’s prove that mg = 0. Suppose that my # 0. Then for any ¢ > 0 there exist such
numbers k; and [;, that . N

deg(g”™" - g a(x) < my,
deg(g " - ¢ )aa(x) = deg gy (),

which contradicts of the choice of number mgy.Hence my = 0 and subgroup Gy = {g12(z) =
0| g € G} will be required. O

Lemma 2 Let Gy be a subgroup of the group G, which is defined in Lemma 1 and the element
g% € Go\{1}. Then a dimension of subgroup [g°), G is finite.
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PROOF. Let ¢ € G\Gy be any element . Then, by condition 1, we have deg gi2(x) < m.
Thence
i 10 g3 (1)gn2(x)
0 g] = 1 0
1

g

Then, by condition 1, we have
deala© < 40
eglg™ ghs < ga3 (z) +m

Hence the dimension of the Abelian group [¢?), G] is finite. O
Now we prove that for the group G all the conditions of Theorem 2 are valid. By the
lemma 2 the dimension of a subgroup [go, G] is finite. Let

(90,911, - - -, [905 Gn] (6)

be a basis of the subgroup [go, G], and Go < C(go), where G be subgroup, which is defined
in lemma 1 and G = G/Gy. From (6) and the theorem 1 follow that

is a basis of subgroup G. If a matrix g ¢ C(go), then g12(x) # 0. From this and condition 1
follow that deg gi2(x) < m. Then it is easy to check that G is a subgroup of direct sum of
m-copies of the infinitive cycle group. Therefore, there are matrices hy, ..., hs_1,5 < m such
that

G=(h)®...® (he1) (7)

The centralizer C'(gy) consists from all matrices g € G, where gja(x) = 0. Therefore
C(g0) < Z[z] ® Z[x], i.e. C(go) ~ Z*. Hence the subgroup C(g) is computable. Since G has
a finite basis, then [h;, h;] is effectively found. Therefore all conditions of the theorem 2 are
valid. Hence the group G is computable. U

Remark 1 The theorem 3 is true and for the case when condition 2 is replaced by "there are
such number n, that for any matriz g the degree deg goz(x) < n'.

So the following is true.

Theorem 4 Let G < UT3(Zx]) and there exists such number m, that for any matric g is
true deg gi2(z) < m(deg gas(x) < m). Then the group G is computable.

3. On computability of Abelian subgroups of a group UT;(Z[z])

Theorem 5 Any Abelian subgroup of the group UTs(Z[x]) is isomorphic to the direct sum
of infinite cyclic groups.

ISSN 1563-0285 KazNU Bulletin. Mathematics, Mechanics, Computer Science Series Ne4(87)2015



On constructive nilpotent groups 41

PROOF. Let G be Abelian subgroup of the group UT5(Z[x]). Let’s consider the possible cases:
1Y, There exists matrix g € G such that gio(x) = 0, go3(x) # 0. We prove that for any
matrix h € G is true

hlg(l') =0 (8)
Let’s assume the contrary, i.e. his(z) # 0. Then

10 —923<l‘>h12(l’)
g, h] = 1 0 # 1,
1

i.e. the group G is not Abelian. We have get a contradiction. Hence (8) is valid.
Let a subgroup Gy < G consists from matrices g € GG such that

g12(x) = gas(x) = 0.

Then Gy is isomorphic to the some subgroup Z[z]. Then Gy is isomorphic to the direct sum
of cyclic groups and it is pure in G.

Quotient G = G /G is also isomorphic to the direct sum of cyclic groups. From this and
the L.Ya. Kulikov’s theorem [17] follow that G ~ G, ® G, i.e. G is isomorphic to the direct
sum of cyclic groups.

20, There exists matrix g € G such that go3(z) = 0, g12(x) # 0. This case is similar.

3%, For any matrix g € G is true gia(x) = go3(x) = 0. Then G < < Z[z],+ >. Therefore
G is a direct sum of cyclic groups.

49, Case 1° - 3° does not hold. Then any matrix G is hold:

gi2(z) = 0 if and only if gos(x) = 0.
Let g and h are matrices from G such that
g12(z) # 0, hya(z) # 0.
Then go3(z) # 0, hog(z) = 0 are true. Let’s prove that

g12(x) _ haa(x)
923(5U) h23(£13)

Indeed, the commutator

Lo 912($)h23(33) - h12(33)923(33)
[ga h} = 1 0 — 17
1

From this we have the equality (9). If we fix some matrix g € G such that gi5(z) # 0 and

let
g12(7)
g23()

= Az)
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then for any matrix h € G, where hos(x) # 0, we have
hia(z) = has(z)A(2),

From this follows, that quotient G/G| is isomorphic to the some subgroup of the group <
Z|x],+ >. Again applying the mentioned L.Ya.Kulikov’s theorem we get that G is isomorphic
to the direct sum of the infinite cyclic groups.

Corollary 1 Any Abelian subgroup of the group UT3(Z|x]) is computable.

Indeed, let G < UT3(Z[z]) and G Abelian groups. Then by the theorem 5 G is isomorphic
to the direct sum of no more than a countable number of copies of the infinite cyclic group.
Therefore the GG is computable.

Corollary 2 Any maximal Abelian subgroup G < UTs3(Z[x]) is the centralizer of any of its
elements g € G\Z(G).

Corollary 3 Let G be not Abelian subgroup of the group UTs(Z[zx]). Then any mazimal
Abelian subgroup A of the group G is the the centralizer of any its elements a € A\Z(G).

PROOF. A subgroup A # Z(G). Indeed, otherwise, a group would not be maximal.
Therefore there exists an element a € A\Z(G). Suppose that aja(x) = 0, asz(z) # 0. Then
for the element a there is a case 1° of the proof of the theorem. Therefore for any element
b € G is true.

[b, CL] =1< blg(l’) = 0.

From this A = {b | [b,a] = 1}, i.e. the group A consists from all centralizers of the element
a € A. Similarly, the remaining cases are considered proof. ([l
Similarly to the corollary 3 the followings are proved.

Corollary 4 Let G be not Abelian subgroup of the group UTs(Zx]). Then any mazimal
Abelian subgroup of the group G is normal in G.

Corollary 5 Let G be not Abelian subgroup of the group UTs(Z[z]) and v :— G be some its
computable and numbering. Then any mazimal Abelian subgroup is computable (recursive)
in (G,v), and therefore the subgroup A and quotient G /A have computable numberings vy u
vy, induced by the numbering v.

4. On a sufficient condition of the computability of the quotient of a nilpotent
group of its periodic part

Theorem 6 Let G be computable nilpotent group and T is its periodic part. If the dimension
of the commutant of a quotient G/T is finite, then G /T is computable group.

PROOF. Let (G, v) be constructive (i.e. computable numbered group). A subgroup 7 is
computably enumerable in (G, v), i.e. a set v 'T = {n|v, € T} is computably enumerable.
Then quotient G /T is computably enumerable (i.e. recursively enumerable) defined nilpotent
torsion-free group. By condition of the theorem the dimension of the commutant of this group
is finite. In work [13] is proved the following
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Theorem 7 A recursively enumerable defined nilpotent torsion-free group, the dimension of
its commutant is finite, constructive, i.e. computable.

Thus for the group G the all conditions of the theorem are true, and therefore it is
computable. O

5. The condition of not computability of periodic nilpotent group
Theorem 8 If (G,v) is computably numbered periodic nilpotent group of stage 2, then a set
Gy={9€G|Ing” =1}
is computable subgroup in (G,v) for any prime number p.

PROOF. Firstly, let’s establish that the G, is a subgroup of the group G. Let elements
x,y € G are given . Then

for some numbers 0 < m < n. Then

(o n

(wy)?" =2 -y [y a] = (@) 11, 2] = 1,
()" = (") =1

From this follow, that the G, is a subgroup. Similar it is proved that the G, is a normal
subgroup.

Let’s prove that the subgroup G, is computable in (G,v). Let m be a natural number.
We need to effectively determine that element vm is belongs to the subgroup G,. It could be
considered vm # 1. Since the group G is periodic, then we can effectively find such number
k > 0, that (vm)* = 1. Now let’s factorize k into prime factors. If k = p* for some s, then
vm € Gp, and if not, then vm ¢ G,,. O

Corollary 6 If G is computable periodic nilpotent group of stage 2, then for any prime
number p primary component G, and quotient G, = G /G, are computable.

Corollary 7 If G is a periodic nilpotent group of stage 2 and ones can find a prime number
p such that either G,, or quotient G are not computable, then and the group G is not
computable.

Corollary 8 If G is a periodic nilpotent group of stage 2 and for some its primary component
the subgroup G, (G’ is not computable, then the subgroup G is not computable, where G’ is
commutant of the group G.

Indeed, suppose, that GG is computable. Then ones can find a computable numbering v of
the group G. Then by the theorem 1 a primary component G, of the group G is computable
in (G,v), and commutant G’ is computably enumerable in (G,v). From this G, G’ is
computably enumerable subgroup in (G, v), and therefore it is computable. Hence the group
GG is not computable.

6.0n an algorithm of root extraction for a nilpotent torsion-free group
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If (G,v) is a numbered group and from any natural numbers k and n ones can effectively
determine whether there are {/vn, then we can say that in (G, v) there exists an algorithm
of root extraction.

Theorem 9 There exists an algorithm of root extraction in a finitely generated nilpotent
group G.

PROOF. Let GG be nilpotent group of stage s and are given the following equation
" =g (10)

where n € w. If s = 1, i.e. the group G is Abelian, then G is a direct sum of finite number of
cyclic groups (a;), ¢ < m. From this
g=apair .. -akm

Then by the degrees k; and the order of element a; ones can effectively find out whether
the equation (10) has solution, and if it has, then find out how many solutions.

Let class of the nilpotent group G is equal s + 1 and G = G/C™, where C is the center
of the group G. Let’s prove that: if the equation (10) has solution in G, then it has solution
and in G.

Let g = gj. Then g = g{c, c € C". From this ¢ = ¢ for some element ¢, € C, and
therefore g = (gocp)™, i.e. the equation (10) has solution and in G. Obliviously, that if (10)
does not have solution in G, then it does not have solution and in G. Therefore it is s sufficient
to prove that there exists required algorithm in the group G. For this let’s consider quotient.

G=G/C

where C = C/C™. Since a class of nilpotent group G is less than s, then by induction
hypothesis there exists the required algorithm in G . If the equation (10) does not have
solution in G, then it does not have solution and in G. Let the equation (10) has solution
and g = gg.

Since quotient C is finite, then ones can effectively check is there any element ¢ € C,
that (goCo)" = .

From this in G, and therefore in the GG, has the required algorithm. O

Theorem 10 Let (G,v) be computable torsion-free nilpotent group and its central series is
given.

1=Gy <G <Gy <G (11)

where Gy is the center of the group G u v=1Gy is computable set. Then the following is true:
if in the factors G; = G;/G;_1, i = 1,2 there exists an algorithm of root extraction, then there
exists such algorithm also in (G,v).

PROOF. Let vn = g are some element. If g € (G1, then by the condition of the theorem
ones can effectively determine the existence of element /vn for any k € w.
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Let g ¢ G). Since in G there exists an algorithm of root extraction,then ones can
effectively determine is there {/g.

Let’s consider the possible cases:

1. Let for any element g; € G5 is true following

=3 (12)
Then the element ¢ € G; can be found such that
k., _
gnic=49g (13)

Since in (G; there exists an algorithm of root extractions, then ones can effectively define
is there /c. Let’s see possible cases:

a) there exists, i.e. ¢ = ¢k, where ¢y € G;. From this and (13) we have gfck = (g1c0)* = g,
i.e. there exists /g in G.

b) there does not exist /c in Gj.

Let’s prove,that then there does not exist {/g. Let’s assume the contrary, i.e for some
element gy € G is true g = g&

From this and (13) we have gfc = ¢, i.e.

gtgy" =c! (14)

Since G is torsion-free nilpotent group of class 2, then

_ _ _ 2
9v95" = (9195 ") ¥g195 11"

From this and (14) we get
_ _ 192

i.e. there exists v/c=1. Then there exists /c, which contradicts the condition b) Thus g
does not exists. Hence for any element g € G ones can effectively define is there {/g in G,
where k € w\{0, 1}. O
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