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Applications of the Cayley-Hamilton Theorem in Linear Systems

The classical Cayley-Hamilton theorem says that every square matrix satisfies its own characteristic
equation. Cayley Hamilton theorem is widely applicable in many fields not only related to
mathematics, but in other scientific fields too. This theorem is used all over in linear algebra. It also
is quite useful in modern control theory, especially in the linear systems. This paper introduced the
applications of the Cayley-Hamilton theorem in linear systems, mainly from seven aspects: 1.The
transfer function matrix is derived from the state-space description. 2.Equivalent representation of
the uncontrollable subspace of the continuous system is presented. 3. The controllability canonical
form and observability canonical form of the single input — single output system is obtained. 4.
Controllable subspace of the discrete system is obtained. 5. The controllability of the linear time-
invariant continuous systems after time discretization is presented. 6. The equivalent representation
of the unobservable subspaces of a continuous system is obtained. 7. The observability of the linear
time-invariant discrete system is derived.
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Kymakan K.
ChI3BIKTHIK 2Kyiieseperi l'amuabTou-Ka/im TeopeMachbIHbIH,
KOJIJaHBLIBIMIapPhI

Knaccukanpik avMunbron-Kamu Teopemacs! OoiibIHIIA, OpKAHIai KBaApaT MaTPHUIA ©3iHiH Xapak-
TEPUCTUKAJIBIK, TEHIEYIH KaHaraTTaH bIpabl. [aMuibToH-K3/in TeopemMachl MaTeMaTHKaFra KaTbl-
CTHI CcajIaJlaH ChIPT, DACKA FHLIBIM CaJIAJapbIHIA J1a KEH KoJIeM/l KOJIJaHbLIbIMEFa re. Bysr Teopema
CBHI3BIKTHIK, aJIreOpaHbIH OapJblK Kepinge komanbuiagbl. OJ1 COHBIMEH KaTap, 3aMaHaynd OacKa-
Py TeopeMasiapbIHIa, 9cipece, ChI3BIKTBIK, Kyiesaepitme epekiine KOMIaHbicKa ne. by mMakasaama
2KeTi Heri3ri acmekTiger TypaThiH [aMuabTon-Kaam TeopeMachiHbIH KOMIaHBIIBIMBI KOPCETIITeH:
1. TabbicTama MaTpuiia GyHKIUICHI KYHIep OPTaChIHAH MIBIFAIbI. 2. Y 3/IIKCI3 9KBUBAJICHT Kyitecin
CUIIATTAWTHIH OaKbLIAyFa aJblHOANTHIH opTa KepceriireH. 3. KaHoHbIK hOpMaHbIH OaCKaPBLILYbI
JK9HE KAHOHJIBIK (hOPMAaHbBIH OipiHFail Kipic GaKbLIay bl - 2KAJIFBI3 Kipic 2Kyiteci aabiaasl 4. Jucpker-
Ti JKyiieHiH 6aKbIIayra 00JaTHIH OPTACHI AJIBIHILL. 5. YAKBIT JUCKPETH3AIIASICHIHAH KeHiHTl yaKbIT-
Tarbl CHI3BIKTHIK, 0aCKApMaJIbl MHBAPUAHT KOPCETLIARI. 6. Y3IiKci3 XKyieHiH aflkbIHIaIMaran opTa
9KBUBAJIEHTI QJIBIHIBI. 7. YaKbIT HHBAPUAHTHIHBIH ChI3BIKTHIK JUCKPETT 2KYiie OaKbIIay bl aJIbIH b
Tvyiiia ce3aep: KoygaHbLIbIM, ['aMuIbTOH-K3/111 TeopeMachl, ChIBBIKTHIK, XKYiie.

Kymakan K.
IIpumenenne Teopembl 'amuabToHa-Ka/iu B JIMHEHHBIX cUCcTEMaX

Knaccuaeckas: reopema lammnbrona-Kamum yrBepKmaeT, 9T0 KaxKkIblit KBaJpaTHas MATPHUIA yJI0-
BJIETBOPSET CBOIT COOCTBEHHBIN XapaKTepHblit ypasHenue. Teopema Kamm FamuabTon mmpoko mpu-
MEHSIETCSI BO MHOTUX OOJIACTSIX HE TOJBKO CBIA3AHHBIX C MATEMATHKOW, HO U B JIPYTUX HAYIHBIX
00JIacTsIX TOXKe. DTa TeopeMa HCIOIb3yeTcs B JimHeiHo# anrebpe. OH Tak»Ke SIBJISIETCS BeCbMa
[IOJIE3HBIM B COBPEMEHHOU TEOpUHU YIIPABJIEHUs, OCOOEHHO B JIMHEHHBIX cucreMax. B 9Toit crarbe
[peJicTaBIeHa TpuMeHeHne Teopembl ['amuabrona-Kan B muHeHbIX cucremax,
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B OCHOBHOM, U3 cemu actekTtax: 1. Ilepemarounasi GyHKIMS MATPUIBI ITPOUCXOIAT U3 ONMUCAHUS
npocrpancTBa cocrosiauit. 2. [IpemcraBiieHo HEKOHTPOIMPYEMOI HOAIPOCTPAHCTBO IIPEICTABIIE-
HU€ CHCTEMbI HEIPEPBIBHOTO dKBUBajeHTA. 3. [loydeHo cucrema ¢ OJHUM BBIXOJOM - YIIPABJIsie-
MOCTH KAHOHUYIECKNX (OpPM ¥ HAOJIIOMAEMOCTh KAHOHIUIECKUX (popM eaunoro Bxoja. 4. Ilomy<eno
yIpaBJjisieMasi IOIIPOCTPAHCTBO JUCKPETHOM cuctembl. 5. IlpescraBiera ynpaBisieMoCThb JIMHEI-
HBIX MHBAPUAHTOB BO BPEMEHU HEITPEPBIBHBIX CUCTEM I0C/Ie qucKpern3amnuu spemenu. 6. [loyueno
SKBUBAJIEHT HEOUEBUIHBIX ITOIIPOCTPAHCTB HENIPePbIBHOI cucteMbl. 7. [lomydena HabromaeMocTsb
JIMHEWHBIX IUCKPETHBIX CHCTEM WHBAPUAHTA BPEMEHH.

KuaroueBblie ciioBa: mpuiioxkenne, Teopema Lamunbrona-Kamu, muneiinas cucrema.

1. Introduction

Modern control theory describes system with the state space. Its theory and the linear
algebra theory have the close relation. In the linear system, many concepts, conclusion
statements have the very big similarity with the linear algebra, and many conclusions are the
direct applications of the linear algebra theory. The theories and methods of linear algebra
is the important mathematical tool for the study of the linear systems theory. The classical
Cayley-Hamilton theorem says that every square matrix satisfies its own characteristic equation
[1]. The Cayley-Hamilton theorem and its generalizations have been used in control systems|3],
electrical circuits|2], systems with delays|5|, singular systems[6], 2-D linear systems|4], etc.
This paper introduced the applications of the Cayley-Hamilton theorem in linear systems,
mainly from seven aspects: 1.The transfer function matrix is derived from the state-space
description. 2.Equivalent representation of the uncontrollable subspace of the continuous
system is presented. 3. The controllability canonical form and observability canonical form of
the single input — single output system is obtained. 4. Controllable subspace of the discrete
system is obtained. 5. The controllability of the linear time-invariant continuous systems
after time discretization is presented. 6. The equivalent representation of the unobservable
subspaces of a continuous system is obtained. 7. The observability of the linear time-invariant
discrete system is derived.

2. Preliminaries

First,we introduce some basic concepts. Let A be an n X n square matrix, if there exists
nonzero vector X ,such that AX = AX, then X is called the eigenvalue of A, X is called the
eigenvector of A corresponding to eigenvalue A\, f(\) = |A\] — A| is called the characteristic
polynomial of A. The eigenvalue of A is the root of f(A) , the eigenvector of A corresponding
to A is the all nonzero solutions of the equation system.

Theorem 1 ( Cayley-Hamilton theorem) Let f(\) be the characteristic polynomial of matriz
A. Then f(A) =0.

From Cayley-Hamilton theorem,we can readily obtain the following results:
Lemma 1 A¥(k > n) can be written as a linear combination of I, A, A%, ... A""L,

Theorem 2 X is the eigenvector of A corresponding to X ,and |A| # 0 , then X is the
eigenvector of A~! corresponding to %

Lemma 2 . If A is nonsingular,then A does not have zero eigenvalue.
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Theorem 3 Let A be an s x n matriz. If P is an s X s invertible matriz,() is an n X n
invertible matriz,then r(A) = r(PA) = r(AQ)
3. Main Results

We introduce seven important applications of the Cayley-Hamilton theorem in linear
systems.

3.1 Deriving the transfer function matrix from the state-space description

Theorem 4 Given coefficient matriz (A,B,C) of the state-space description, it is obtained
that

a(s) =det(s] —A) = 5"+ a,_15" '+ ... +ais +ag (1)

(E, , = OB,
E, »=CAB+a, OB,

By = CA™2B + a, ,CA"3B + a,CB,
\EO = CAnilB + (ln_chn72B 4+ ...+ ach7

Then the corresponding transfer function matrix can be written as

1
G(S) = @(En_lsn_l + En_QSn_2 + ...+ Eis+ Eo) (3)
Proof. First we derive a relation of (sI — A)~!. Let P = (sI — A)™!, noticing that
(sI — A)P = I, we obtain

sP=AP+1,
§2P = sAP + sl = A’P + A+ sl

siP=AP+ A7 4 A25 1 4 Ast2 45T (4)

S"P = A"P 4+ AVl 4 Ar 25 4 As" T2 4 s
Applying Cayley-Hamilton Theorem, we have

A" fa, A" A+ agl =0 (5)
Thus, from (1), (4) and (5), it can be obtained that

a(s)P = A"P + A" 4 A" 25 + . 4 As" 2 + 5" 1]

tan 1 (AP + A"2 + A" Bs 4+ As"T3 4 5772

+...tag(A2P+ A+ sl) +a (AP + 1) + apP

= (A" + a1 A" + ..+ A+ al)P, (6)
+(A" +a, (A2 L+ asA+ ag)

+(A" 2 4 a, A"+ +agl)s

+. o+ (A+apI)s" 2+ Is" 1
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Further from (5) we obtain that

P=(s] —A)" = Sl(A" +a A" 4+ agAd + )

+HA" 2+ a, (A3 + . tagl)s+ ..., (7)
+<A+an71[)8n_2 +ISn_1]

Then by substituting (7) into

G(s)=C(sI — A)'B
We can obtain (3). The proof is completed.

Lemma 3 (sI — A)™! can be abbreviated as

n—1 n n—1 n
1 , o 1 . o
-1 _ A1 ot—i—1
(sl —A) = _a(s) E s7 | E a; AT = _a(s) . Al | E a;s'™?
7=0 i=j+1 7=0 i=j+1

where a, = 1. Therefore the transfer function matriz G(s) can also be written as

G(s)=C"- Srse S Zf:(:é-;l @izl B_C. Sk Al Z;n(:g;rl 0§l 5

3.2 The Equivalent Representation of the Uncontrollable Subspaces of a Continuous
System

Consider the known system
& = Az + Bu,z(0) = o, (8)
Its uncontrollable subspace X y¢ is the constant solution space of
ale™™B =0,t €[0,T] (9)
Theorem 5 The uncontrollable subspace X ¢ of the system is the solution space of

o'[B AB ... A"'B]=0, (10)

Proof. The uncontrollable subspace X y¢ is contained in the solution space of (10). Conversely,
if @ is the solution of (10), then we have

a’A'B=0,7=0,1,...,n—1, (11)

From Cayley-Hamilton Theorem, we know that all A*(k > n) can be written as a linear
combination of I, A, A, ..., A" ! Therefore we have

et = Z (f]j) = iAjaj(t), (12)

k=0 ’ j=0
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So that

n—1
R j{:/Va] )= AIB;(t), (13)
j=0

where «;(t), 5;(t) are the polynomials of ¢, then from (13), we get

n—1 n-l
a"e B =a"> AB(t)B =) a"ABB(t) =
§=0 §=0

That is, a is the constant solution of (9). Therefore a € Xy¢. The proof is completed.

3.3 The controllability canonical form and observability canonical form of the
single input —single output system

Consider the completely controllable single input-single output linear time-invariant system
ri = Az + bu (14)
Yy =cx

where A is an n X n constant matrix, b and ¢ are n X 1 and 1 x n constant matrices
respectively. As the system is completely controllable, according to the Controllability Matrix
Test [7], we have

ranklb Ab ... A"7'b] =n.
Let the characteristic polynomial of the system be
det(sI — A) = a(s) = s" + a,_18"' + ...+ a15 + ao.
Construct matrix
ar ... Qp_q 1
Peles es . e]=D A .. A ©
p_1 -

1
As the system is completely controllable, we know that P is nonsingular. Let us define

Bn-1 = Cep, Pn—a = Cepn_1,..., s = cey.

Theorem 6 By applying a nonsingular transformation v = PZ to system(14), we can get
its controllability canonical form as

X = Ax—i—bcu
Yy =
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where
0 1 0
A =P AP =| be=P b= ||
0 1 0
—ap —ap -+ —ap-1 1

Cc:CP:[ﬁo ﬁl ﬁn—l]

Proof. Expand eq,e,, ..., ¢, as

er =ab+ ayAb+ ... +a,_ 1 A" 20+ A"t
€9 = (lgb + agAb + ...+ an_lA"*3b —+ An72b

5 (15)
Cp—1 = an_lb + Ab
e,=0b
(1) First, we derive A.. Using A, = P7'AP, it can be derived that
PA. = AP = Ale; e ...ey] =[Ae; Aey ... Ae,)] (16)
Applying Cayley-Hamilton Theorem, we have
a(A) =A"+a, A"+ ..+ a1 A+ al =0
Further from (15), it can be obtained that
Aey = (agh + a1 Ab + as A%b + ... + a, 1 A"Ib + A™D) — agh = —age,
Aey = (a1 + asAb + azA%b + ... + a, 1 A" 2b+ A7) — a1b = e; — aye,
: (17)

Aep 1 = (an_2b~+ an_ 1 Ab+ A%D) — ap_ob = €, 5 — a,_2e,
Ae, = Ab=¢,_1 — a,_16,

Substituting (17) into (16) yields

PAC - [_aoen €1 — 1€y €pn—9 — Ap—2€n €Ep—_1 — an—len)] -
0 1
le1 ea ... en]| - a
0 1
—G —ai -0 —Qp-1

Because [e; ey e,] = P, through left multiplying the both sides of above equation by
P~1 we can get the expression of A..
(2) Now, we derive b.. Using b. = P~'b and e, = b, we can derive
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0 0
Pb.=b=¢e¢,=1e; €5 ... e, =P ;
e e ] 0 0
1 1

By left multiplying above equation by P!, we can get the expression of b,.
(3) We derive c.. From ¢, = ¢P, we can obtain

ce=cP=cley eg ... eyllcer cea ... cey) =00 P ... Ba-i]
The proof is completed.
Similarly, the completely observable single input-single output linear time-invariant system

&= Az + bu Yy =cx (18)

has its observability canonical form, where A is an n X n constant matrix, b and ¢ are
n X 1 and 1 X n constant matrices respectively:

Theorem 7 By applying a nonsingular transformation x = Q71T to system(18), we can get
its observability canonical form as

T =A.T+ b.u
Y = CT
where
0 0 —ao Bo
1 ... —a
A, =QAQ = | S be=0b= 5,1 ce=cQ T =1[0...01]
1 —Ap—1 anl

3.4 Controllable subspace of the discrete system

It is known that, when G is nonsingular, the controllable subspace X. of the discrete
system (G, H) is

X, =span[G™"H G-"YH ... G7'H],
Using the Cayley-Hamilton Theorem, we have

Theorem 8 If G is nonsingular, then the controllable subspace X. of the discrete system
(G,H) is

X.=span|[H GH ... G"'H]

Proof. Because of the known conditions above, we only need to proof that
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span|G"H G~""VH ... G'H|=span[H GH ... G"'H)]
Suppose that the characteristic polynomial of G is

det(sI —G) = s" 4+ a, 15" '+ ...+ a15 + ap,
Applying the Cayley-Hamilton Theorem, we have

G"+a, 1G" '+ .. . +a.G+agl =0

As G is nonsingular, then according to Lemma3, G does not have a zero eigenvalue,
therefore we have ag # 0,thus we obtain

I= ;—Ol(G” +a, 1G" + a)G)
Furthermore,we have

G 1= ;—;(Gnil + an_lG"*Q + ...+ all)

That is, G~! can be written as a linear combination of I, G, ..., G" !. Furthermore,we
have

G2 = ;—;(GniQ + an_lG”*Q + ...+ asl + alel)

Because G~! can be written as a linear combination of I,G,...,G" ' then G2 can
be written as a linear combination of I,G,...,G" !. Proceeding forward like this, we can
conclude that G~ can be written as a linear combination of I, G, ..., G"!. Therefore we have

span|G"H G~"VH ... G'H|Cspan[H GH ... G"'H|

Also from

[H GH ... G"'H]=G"[G"H G- YH ... G7'H]

and according to Theorem3,we can get

rank[H GH ... G"'H]=rank[G™"H G-"YH ... G 'H]
Therefore
span[G™"H G=-YH ... G7'H]=span]H GH ... G" 'H]

The proof for the theorem is completed.
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3.5 The controllability of the linear time-invariant continuous systems after
time discretization

Consider the linear time-invariant continuous system

t = Ax + Bu,
The discrete-time system with a sampling period T is
z(k +1) = Gx(k) + Hu(k),

where

G=e'Tand H = [ eMdtB

Theorem 9 If the discrete-time system (G, H) is controllable,then the continuous system
(A, B) is controllable.

Proof. If (G, H) is controllable,then according to the Controllability Matrix Test|7], we
have
rank[H GH ... G" 'H]=n,

Therefore, as long as

span[H GH ... G" 'H] C span[B AB... A" 'B)]

we can readily get

rank|[A AB ... A"'B)]=n

thus (A, B) is controllable.

Next we prove that (19) holds. From the Cayley-Hamilton Theorem, we have

0o n—1
=) a;(T)A

k=0 J

Il
o

T -1 T n—1
H:/ eATdt~B:/ Z tYAMdt - B = ZAJB/ a;(t)dt = AIBry(T
0 =0 0 =0

7=0

where a;(T"), 7;(T) are the scalars. From (21) we get
spanH C span[B AB ... A" 'B)]
From (20), (21), we can derive
n—1
GH = a;(T)A'H, A*H ZAMBTJ
=0

Therefore

spanA*H C span[B AB ... A" 'B)],
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Thus

spanGH C span[B AB ... A" 'B] (24)

Proceeding forward like this,we can obtain

spanG™'H C span|B AB ... A" 'B] (25)
Integrating (22),(24),(25),we can readily obtain that (19) holds.The proof is completed.

3.6 The Equivalent Representation of the Unobservable Subspaces of a Continuous
System

Consider the known system
T = Az, x(ty) = xo
y=Cx

Its unobservable subspace X o is the constant solution space of
CeAlt=t)g = 0,t € [0, T

Theorem 10 The unobservable subspace Xno of the system is the solution space of

C
CA

. a=0,
CAn—l

The proof of this theorem is similar to that of Theorem 5.

3.7 The Observability of the Linear Time-Invariant Discrete System

Consider the linear time-invariant discrete system

z(k+1)=Gz(k),k=0,1,2,...
y(k) = Cux(k) (26)

where z(k) is the n-dimensional state variables, y(k) is the q-dimensional output variables,
G and C are the n x n and g X n constant matrices respectively.

According to the definition, for the system (26), there is a given non-zero initial state
x(0) = xo, if the output y(k) ,k =0,1,2,...,n—1,... of the system trajectory x(k) starting
from xg is constantly zero, then xq is called the unobservable state. If z( is the unobservable
state of the system (26), then

y(0) = Cz(0) = Czo = 0,
y(1) = CGz(0) = CGxy = 0,

y(n—1)=CG"'z(0) = CG" 'zy =0,
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From the Cayley-Hamilton Theorem,we know that, when & > n, then G* can be written
as a linear combination of I,G,...,G" . Therefore, zy, can be the unobservable state, as
long as y(0) = y(1) = ... =y(n — 1) = 0 holds, that is

C

e
Ty = O, (27)

oGt

Thus, the unobservable subspace Xyo of the system is the solution space of equation
system(27).
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