
Conducting computational experiments . . . 67

2-бөлiм

Информатика

Раздел 2

Информатика

Section 2

Computer
science

UDK 004.382

Aidarov K.A.∗, Akhmed-Zaki D.Zh.

Al-Farabi Kazakh National University, Republic of Kazakhstan, Almaty
∗E-mail: kanataidarov@yahoo.com

Conducting computational experiments for a module of integration of several
computational clusters into single computational complex building unified

communication environment

Given paper describes the new instrument of multicluster organization of distributed computations
and gives its detailed description using key components and implementation issues as autonomous
program module. The purpose of given module and attached broker is to provide framework
and execution environment of parallel applications in multicluster computational environments
for conducting computational experiments with applied problems of the numerical modeling
of the filtration theory merging into unified computational complex several computational
clusters. Therefore, built unified communication environment becomes multicluster distributed
computational system for solving large scale computational problems. Library part of the module,
used in program code of applied problems, is MPJ-Express framework add-on and developed using
Java programming language. Using Java in developed add-on allows integration into wide range
of computer platforms starting form standard desktop Windows systems and finishing with large
Linux clusters, which ensures general rule of the ubiquitous computing. The work presented in
given article is a part of grant funding project from Kazakhstan government.
Key words: distributed computing, multicluster systems, cluster unification, cluster merge,
parallel programming, MPJ-Express add-on, MPI, Java.

Айдаров К.А., Ахмед-Заки Д.Ж.
Бiрiккен ақпараттық коммуникациялық ортаны құру арқылы бiрнеше есептеу

кластерлерiн бiрлескен есептеу кешенiне интеграциялау үшiн есептеу тәжiрибелерiн
iске-асыру

Берiлген модульдiң және оған қосылатын брокердiң мақсаты болып параллельдi қолданба-
лардың фреймворкiн және орындалу ортасын ұсыну болып табылады. Бұл бiрнеше есептеу
кластерлерiн бiрiккен есептеу кешенiнiұ көмегiмен сандық модельдеудiң фильтрация тео-
риясының қолданбалы есептерiмен есептеу тәжiрибелерiн мультикластерлi есептеу ортала-
рында iске асыру арқылы жасалынады. Осылай құрылған бiрiккен коммуникациялық ор-
та iрi ауқымды есептеу мәселелерiн шешуге арналған мультикластерлi үлестiрiлген есептеу
жүйесiн болып табылады. Қолданбалы есептердiң бағдарламалық кодында қолданылатын
модульдiң кiтапханалық бөлiгi Java бағдарламалау тiлiнде құрастырылып, MPJ-Express ат-
ты фреймворкқа қосымша болып табылады. Бұл қосымшада Java платформасын қолдану
арқылы оны компьютерлiк орталардың кең ауқымына енгiзуге мүмкiндiк бередi стандартты
Windows жүйелерден бастап, iрi ауқымды Linux кластерлермен аяқтап. Осы арқылы жаппай
есептеу қағидасының негiзгi ережесi қанағаттандырылады.
Түйiн сөздер: үлестiрiлген есептеулер, мультикластерлiк жүйелер, көпкластерлiк жүйелер,
кластерлердiң бiрiгуi, параллельдi бағдарламалау, MPJ-Express қосымшасы, MPI, Java.

Вестник КазНУ. Серия математика, механика, информатика №4(84)2015

68 Aidarov K.A., Akhmed-Zaki D.Zh.

Айдаров К.А., Ахмед-Заки Д.Ж.
Проведение вычислительных экспериментов для модуля интеграции в единый

вычислительный комплекс нескольких вычислительных кластеров путем построения
единой коммуникационной среды

Задачей разработанного модуля и подключаемого к ней брокера является предоставление
фреймворка и среды исполнения параллельных приложений в мультикластерных вычисли-
тельных средах для проведения вычислительных экспериментов с прикладными задачами
численного моделирования теории фильтраций с помощью объединения в единый вычисли-
тельный комплекс нескольких вычислительных кластеров. Построенная, таким образом, еди-
ная коммуникационная среда представляет собой мультикластерную распределенную вычис-
лительную систему для решения крупномасштабных вычислительных задач. Библиотечная
часть модуля, использующаяся в программном коде прикладных задач, была разработана на
языке программирования Java и является надстройкой над фреймворком MPJ-Express. Ис-
пользование Java в надстройке позволяет интегрировать ее в широкий набор компьютерных
платформ, начиная со стандартных настольных Windows систем, и заканчивая крупными
Linux кластерами, что обеспечивает основное правило принципа повсеместных вычислений.
Ключевые слова: распределенные вычисления, мультикластерные системы, многокластер-
ные системы, объединение кластеров, параллельное программирование, надстройка над MPJ-
Express, MPI, Java.

1. Introduction

Development of reliable and efficient distributed applications was scientific-engineering
problem for several decades, and recently achieved its new dimension with development of
multicluster distributed large scale systems. Applied examples of such systems can be parallel
scientific-computational application with use of the MPI for public computational cluster;
scientific work process for high-level distributed computational environments; application of
network monitoring, which allows scaling of thousands of nodes into multicluster distributed
large scale system; or peering network of file exchange run on thousands of unstable Internet
hosts. At development of given applications it is necessary not only develop appropriate
distributed algorithms, but also according strategies of resource allocation, which utilizes good
sides and avoids exploits of underlying computational platform. Unfortunately, implementation
of all of it spawns many issues. Therefore, estimation of application performance in complex
computational platforms very difficult and analytical models often based on unrealistic or
simplified assumptions. One way is to conduct direct experiments. However, executing actual
experiments on real platforms also spawns some complexities. At first, it is necessary to
have complete developed application, at the same time comparison of different models and
algorithms usually conducts at design and development stage. At second, experiments often
restricted by platform configurations, which constrains their general value and applicability.
At last, in majority of occasions experiments impossible to repeat (for example, because of
non-deterministic distribution of resources), which makes it very difficult to correctly compare
alternative approaches.

In the light of these complexities researchers and developers usually using computational
simulation. Although, in order to develop accurate and valid computation model, it is necessary
to conduct more complex and long-term computations, which makes them expensive by
time/resources. Given issue increases with deployment of large scale, long-term application
on supercomputer platform. Moreover, studies show that the program code written exclusively
for simulation significantly differs from real application code. In given circumstances there are

ISSN 1563–0285 KazNU Bulletin. Mathematics, Mechanics, Computer Science Series №4(84)2015

Conducting computational experiments . . . 69

two issues arising: both codes, sequential and parallel, can behave differently and efforts spent
on writing of code of computational model, will be ineffective. Given work provides module
of multicluster distributed system, consisting of following components: applied MPI program
add-on, written in Java programming language and using MPJ-Express library as the basis
of distributed resources broker, merging several computational clusters into united pool of
MPI processes. More importantly for applied program using add-on, calling MPI processes
located on the other computational cluster no different from usual MPI call. Therefore, MPI
program code written to execute in standard MPI environment requires minimal changes to
header information of MPI code and does not require change of structure of MPI code calls
at all.

2. Short description of the structure the module of multicluster distributed
computations

Architecture of multicluster environment in which MPJ-Express add-on deployed shown
in the Figure 1. A tasks distribution broker located outside a facility allocating computational
resources, however if there is appropriate rights, Broker can assign tasks on unified clusters.
Scheduled tasks for connected to broker clusters seems as usual tasks of these clusters. Local
task schedulers installed on clusters manage execution of separate tasks using their state
scheduling mechanisms, and completely independent for broker actions. However, efficient
management of task execution inside multicluster distributed network very complex because
of restrictions of cluster system organization and network infrastructure [1]. Key question
when simulating parallel programs using multiclustered distributed platforms is to distribute
resources, i.e. such fragments of provided resources (for example, processor clock rate, through
put in bytes/sec) will be allocated to each process of application using given resources
in parallel. One of implementation approaches of such resources distribution is to use low
level distribution models such as simulation of network packets [2] and execution of parallel
application code on virtualization layer [3] in a way resources distribution will take place
automatically (through packet transfer). Unfortunately, given approaches expensive in mainte
nance, which is very undesirable for simulation of applications on large scale, especially multi-
clustered, platforms with large time/resource expenses. Instead, developed module considers
multiserver platform as unified computational resource, consisting of set of independent
computational resources/nodes. At present user must specify number of resources to allocate
on each cluster by himself through special configuration file of applied user task execution.
Further the functionality to compute available resources fragment will be implemented, which
allows to automatically define amount of resources required for each process of the user
program.

Naturally, clusters participating represent heterogeneous environment, i.e. geographically
distributed and self-sufficient for administration. Network connection provided by Internet
usually unsafe and unpredictable in respect of performance. Successful completion of the
application sent for execution depends of completion of all program tasks assigned on different
clusters. Most unproductive computational cluster becomes bottleneck when executing user
task in multicluster environment. Execution of the application also has high risk of system
failure call inside one of deployed clusters.

3. Computational experiments

Вестник КазНУ. Серия математика, механика, информатика №4(84)2015

70 Aidarov K.A., Akhmed-Zaki D.Zh.

Figure 1 – Architecture of multicluster add-on for MPJ-Express and the User tasks Broker connected to it

Numerical simulation theory of filtration taken as test task. Given task is the standard
Laplace equation in two-dimensional (2D) and three-dimensional (3D) case with different
boundary coefficients, approximated in finite-difference scheme, solved by red-black strings
alternation method in 2D case, and explicit Jacobi method in 3D case. Further part of this
paper describes applied task in two- and three- dimensional case, its solution, as well as
implementation in sequential and parallel algorithm, which then slightly modified in order to
execute in multicluster distributed computational environment.

4. The problem of Heat transfer in 2D domain

Given problem belongs to problems with local synchronization. Let us consider square
metallic plate that has fixed temperature on each of its sides except top side. Temperature of
internal surface will be dependable of temperature around it on outside borders. Distribution
of temperature can be found by dividing the domain into grid of points, u(i, j). Temperature
of the inside point can be taken as an average of four neighbour points. In order to do
computations it is convenient to describe boundaries by points adjacent with internal points.
Internal points, u(i, j lie in interval 1 ≤ i ≤ n, 1 ≤ j ≤ n (internal domain [n − 1]x[n − 1]).
Boundary points at i = 1, i = m, j = 1, j = n, and equal to values, corresponding to
temperature on the boundary. Temperature of each point can be calculated iteratively for
equation

ui,j =
ui−1,j + ui+1,j + ui,j−1 + ui−1,j

4
(1)

where 1≤ i≤ n, 1≤ j≤ n for fixed number of iterations or while difference between iteration
values less than some very small specified number. This iterative equation appears in other

ISSN 1563–0285 KazNU Bulletin. Mathematics, Mechanics, Computer Science Series №4(84)2015

Conducting computational experiments . . . 71

similar problems, for example, with pressure and concentration. Actually, system of linear
algebraic equations solving. Given method known as finite difference equations method.
Appropriate equation has the following form:

∂2u

∂x2
+
∂2u

∂x2
= 0 (2)

and called two dimensional Laplace equation. Boundary conditions for given problem
defined as

u| x=0 = u| x=L = u| y=0 = 0, 2
∂u

∂y

∣∣∣
y=L

= 0
(3)

Appropriate graphical representation of the solution of the heat transfer in 2D domain
problem shown in Figure 2.

Obtained finite difference equation can be solved with different algorithm called red-
black string alternation. Given approach allows to get rid of mutual dependencies of parallel
threads. In given algorithm, grid of points divided to "red"and "black"points. Given scheme
assumes that on each iteration of method execution the grid divides by two sequential stages.
At first stage only strings with even indices processed, second stage processes strings with
odd indices. Given scheme can be generalized for parallel execution to strings and columns
(chess scheme of decomposition) of the computational domain.

5. The problem of heat transfer in 3D domain

The above problem can be expanded for three dimensions, and its solving method takes
the average of six neighbour points, two in each dimension. Appropriate Laplace equation
has the following form:

∂2u

∂x2
+
∂2u

∂x2
+
∂2u

∂z2
= 0 (4)

Approximation in partial derivatives of given equation similar to two-dimensional version,
only two additional points added according to coordinate grid:

ui,j,k =
ui−1,j,k + ui+1,j,k + ui,j−1,k + ui−1,j,k + ui,j,k−1 + ui,j,k+1

6
(5)

Let us produce from equation (5), the linear equation of the following form:

−6ui−1,j,k + ui+1,j,k + ui,j−1,k + ui−1,j,k + ui,j,k−1 + ui,j,k+1 = 0 (6)

Computation domain D specified for approximating Laplace equation within this domain.
For this, it is necessary to specify boundary values along all six limiting domain planes,

Вестник КазНУ. Серия математика, механика, информатика №4(84)2015

72 Aidarov K.A., Akhmed-Zaki D.Zh.

Figure 2 – Graphical representation of the solution of the heat transfer in 2D domain problem with
1000x1000 grid size

in Laplace equation case it is cube. Domain boundaries making impact on temperature
distribution within specified cube contour. Obviously, in the center of studied domain the
temperature equals to average value of temperature of all cube edges. Therefore, boundary
values for solved problem looks like

In the 1D case our model problem becomes:

u| x=0 = u| x=L = 0, 2
u| y=0 = u| y=L = 0, 2

u| z=0 = 0, 2
∂u

∂z

∣∣
z=L

= 0

(7)

Corresponding graphical representation of calculation result of the problem of heat transfer
in 3D domain shown in Figure 3. Figure shows three intersecting slices of the solution of
simulation domain in each of three directions of diffusion distribution. Parallel implementation
of 3D problem. Parallel algorithms for solving Laplace equation for isolated systems can be
divided into following groups:

1. Approximation of potentials on the boundary of the finite domain and parallel solution
of finite difference scheme [4];

2. Parallel convolution using Fourier transformations [5];

3. Method of local corrections [6].

ISSN 1563–0285 KazNU Bulletin. Mathematics, Mechanics, Computer Science Series №4(84)2015

Conducting computational experiments . . . 73

Explicit Jacobi method for parallel implementation of described above sequential algorithm
chosen. Like in sequential case with the Jacobi algorithm solution at each point depends on
six neighbour points. Consequently, parallel algorithm using explicit Jacobi method requires
numerous steps. Considering equation (5) most important steps include dividing the domain
and exchanging messages between neighbour boundary points. Domain D can be divided
to internal domains across any of axes. Schematic single dimensional domain of dividing
given problem shown in Figure 4. After dividing the domain and distributing it between
parallel processes, neighbour points, located on boundaries of two neighbour processes require
exchange of boundary values at each iteration. Hence, calculations require local usage of
parallel processes.

Figure 3 – Graphical representation of the solution of the heat transfer problem in 3D domain

6. Analysis of efficiency of parallel algorithms

Time spent on sequential algorithm execution can be calculated with the following formula:

T1 = t(2mn− n) (8)

where t – number of performed iterations, m and n grid size of simulation domain.
Time spent on parallel algorithm execution on p processors without taking into account
data transfer, can be expressed as

Tp =
t(2mn− n)

p
(9)

Then overall speedup equals to

Вестник КазНУ. Серия математика, механика, информатика №4(84)2015

74 Aidarov K.A., Akhmed-Zaki D.Zh.

Figure 4 – Schematic 1D decomposition across x axis distributed on p=4 processes to calculate of the
heat transfer in 3D domain problem

S =
T1
Tp

(10)

And appropriate efficiency:

E =
T1
pTp

(11)

However given estimations correspond to ideal (linear) increase of speedup and efficiency
which in practice unachievable cause of initialization and data transfer cost. Given costs,
arise at exchange of boundary values of neighbour processes. Let us define time spent on
data transfer. In order to do this the Hockney model used [7].

Initial data transfer requires following time:

TC1 = (p− 1)(4θl +

mn
p

+ n

θt
) (12)

where θl – latency, θt – network throughput. Data transfer conducted in iteration process
affects following time:

TC2 = t(p− 1)(3θl +

m
p
+ n

θt
) (13)

ISSN 1563–0285 KazNU Bulletin. Mathematics, Mechanics, Computer Science Series №4(84)2015

Conducting computational experiments . . . 75

where t – number of completed iterations. As a result overall data transfer time can
expressed by following formula:

TC = (p− 1)(4θl +

mn
p

+ n

θt
) + t(p− 1)(3θl +

m
p
+ n

θt
) (14)

Given time depends on number of iterations. Generally, number of iterations less than
grid size of calculation domain, mn, which means that time spent on data transfer can be
estimated as:

TC = O(mn) (15)

Consequently, same estimation can be applied to execution time of the algorithm. If
number of iterations will be comparable to m then for execution time of the algorithm another
estimation will be valid:

TC = O(m2n) (16)

7. Results of computation experiments and their analysis

In given section will be given the estimation of numerical simulation results and parallel
system performance for single sequential and two parallel implementations of the heat transfer
problems algorithm. Numerical profiles of solutions depend on variable u and its gradient
shown in Figure 3. Numerical slices of contour looks realistic and correctly represents transition
of solutions values from high values to low ones. At more careful discretization obtained
solution refine formidably. Results of numerical simulation shows healthy scalability in either
for 2D domain case and for 3D domain case. This shows significant efficiency of the explicit
method for resources economy as well as parallel execution quality. However, scalability by
processes in both cases has its own limit, when efficiency stops its growth at large number of
processes, which means than further increase of computational power does not lead to growth
of speedup. Nevertheless, there is still space to grow computational resources on other types
of distributed memory and new architectures, such as GPU.

Figures 5–8 shows comparisons of speedups and efficiencies in 2D and 3D domain for
algorithms of the heat transfer in closed contour for sequential, parallel with use of MPJ-
Express library, and parallel with use of MPJ-Express add-on, cases. As a result it can be
seen that add-on insignificantly behind in efficiency from standard MPJ-Express library,
as well as both parallel implementations show consistent growth when number of parallel
processes increase. In conclusion, it can be shown that developed add-on applicable enough
as replacement to MPJ-Express library in case of necessity to merge clusters for large scale
computations.

8. Conclusion
Given paper describes the new instrument of multicluster organization of distributed

computations and gives its detailed description using key components and implementation
issues. Given instrument applied to applicable applications, specifically to parallel implementations

Вестник КазНУ. Серия математика, механика, информатика №4(84)2015

76 Aidarov K.A., Akhmed-Zaki D.Zh.

Figure 5 – Comparison of speedups for the heat transfer in 2D domain problem

Figure 6 – Comparison of efficiencies in the heat transfer in 2D domain problem

of MPI technology – in particular under its extended Java implementation called MPJ-
Express. It has been shown that multicluster interaction model can be successfully adopted to
filtration theory problems while insignificantly lacking in performance because of communication
delays. At the same time surpassing them in scale of available computational resources.

ISSN 1563–0285 KazNU Bulletin. Mathematics, Mechanics, Computer Science Series №4(84)2015

Conducting computational experiments . . . 77

Figure 7 – Comparison of speedups in the heat transfer in 3D domain problem

Figure 8 – Comparison of efficiencies of the heat transfer in 3D domain problem

The work presented in given article is a part of grant funding project of the Ministry of
Education and Science of the Republic of Kazakhstan (No. 1549/ГФ3 from 15 Apr 2013).

Вестник КазНУ. Серия математика, механика, информатика №4(84)2015

78 Aidarov K.A., Akhmed-Zaki D.Zh.

References

[1] Foster I., Kesselman C., Tuecke S. The anatomy of the Grid: enabling scalable virtual organizations //International
Journal of High Performance Computing Applications. – 2001. – Vol. 15(3). – P.200-222.

[2] Lamanna M. The LHC computing grid project at CERN //Nuclear Instruments and Methods in Physics Research A:
Accelerators, Spectrometers, Detectors and Associated Equipmen. – 2004. – Vol. 534, No. 1-2. – P. 1-6.

[3] Pordes R. The Open Science Grid – its status and implementation architecture //JPCS Proceedings of International
Conference on Computing in High Energy and Nuclear Physics (CHEP07). – 2007. – P.1-20.

[4] Snytnikov N., Vshivkov V., Snytnikov V. Study of 3D dynamics of gravitating systems using supercomputers: methods
and applications //Parallel Computing Technologies. – 2007. – P. 162-173.

[5] Springel V., Yoshida N., White S.D.M. GADGET: a code for collisionless and gasdynamical cosmological simulation
//New Astronomy. – 2001. – Vol. 6. – P. 79-117.

[6] Balls G.T., Colella P. A finite difference domain decomposition method using local corrections for the solution of Poissons
equation //Journal of Computational Physics. – 2002. – Vol. 180. – P. 25-53.

[7] Hockney, R.W., Jesshope, C.R. Parallel Computers 2: Architecture, Programming and Algorithms. CRC Press. – 1988.

– 642 p.

ISSN 1563–0285 KazNU Bulletin. Mathematics, Mechanics, Computer Science Series №4(84)2015

