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Solvability and construction of solutions of integral equations

A class of integral equations with respect to one variable function as well as to multivariable
function that are solvable for any right hand side of an equation has been singled out. A necessary
and sufficient condition for existence of a solution has been obtained for the class of integral
equations and the general form of their exact solutions has been found. Necessary and sufficient
conditions for existence of solutions to the mentioned equations with a given right hand side
are obtained by reducing them to solving an extremal problem. An algorithm for solving the
extremal problem by constructing a minimizing sequence has been developed and a convergence
rate estimation has been obtained. A solvability criterion as a requirement on infimum of functional
has been formulated. A necessary and sufficient condition for solvability of an integral equation
with parameter has been obtained and its general solution has been found.
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Aiicaranmes C.A., AiicarasmeBa C.C., Kabumonmanosa A.A.
PaspemumocTs 1 mocTpoeHne peIIeHnii MHTErpaibHbIX yPaBHEHUN

OrpeiesieH KjacCc MHTErPAJIbHBIX YPABHEHUIT OT MCKOMOI (PyHKIUU OJIHOM IIEepEMEHHOil, a TaKKe
OT HECKOJIbKUX IIE€PEMEHHBIX, Pa3PelnMbIX Jjis JI000# mpaBoit yactu ypaBHeHus. Jljist maHHOTO
KJIACCA WHTErPaJIbHBIX YPABHEHUH ITOIyIeHbl HeOOXOAMMbIE U JIOCTATOYHBIE YCIOBUS CYIECTBOBA~
HUs PellleHusi, Hali/IeHbl X OOII¥e PEIIeHNs B BHJE CyMMbI YACTHOI'O PEIIeHUs] U PENIeHus OJ-
HOPOJIHOTO ypaBHeHus. [lokazaHbl OPTOTOHAJIBHOCTD YaCTHOTO PENIEHUS U PEIIEeHUsT OJTHOPOTHOTO
YPaBHEHHs, a TaKKe YTO YaCTHOE PeIleHUE sIBJIAeTCdA PelleHneM PacCMaTpPUBAaeMOr0 YypaBHEHUS C
MUHUMAJIbHON HOpMOii. [losrydenbl HEOOXOUMBIE U HOCTATOYHBIE YCIOBUS CYIECTBOBAHUS PEIIie-
HUI YKa3aHHBIX ypaBHEHU IIpU 33JaHHON IPaBOU YacTH, IIyTeM CBEJECHUS UX K PEIIeHUIO IKCTpe-
MaJIbHOM 33/1a41 CHEINaIbHOro Biua. PazpaboTan aaropuTM oCcTpOeHUs PeNeHns IKCTPEMAIBHOM
3a/1a9M IIyTeM IIOCTPOEHUsSI MUHUMU3UPYIOIEH I0CIe 0BaTeIbHOCTH, IIOJIydeHa OIleHKAa CKOPOCTH
CXOJIMMOCTH €€ K PEeIIeHUI0 HHTerpaJibHOro ypapaenusi. CchopMyImpoBaH Kpurepuil pa3permMoCTh
MHTErpajbHOTO yDAaBHEHUsI B BHJEe TPeOOBaHUS Ha 3HAYEHNE HUKHEN I'DaHU [EJIeBOTO (DYHKIINO-
nasa. VccaenoBano nHTErpasbHOE YPaBHEHNE C OTPAHMYEHIEM Ha MCKOMYIO (DYHKIIHIO, ITOIPOOHO
OIMCAHBI CIIOCOD IIPOBEPKH €r0 PA3PEIMIMMOCTA U METO/[[ IIOCTPOEHUS €r0 PEIIeHns], a TaKXKe JT0Ka-
3aHBI UX KOPPEKTHOCTh. Jljisi MHTErpaJIbHOrO ypaBHEHUS C IapaMEeTPOM IOJIydYeHbI HEOOXOIIMBbIE
U JIOCTATOYHBIE YCJIOBHUS PAa3PENINMOCTH U HaliieHO 0o0IIee ero pelreHue.

KiroueBbie ciioBa: mHTErpajibHOE ypaBHEHHE, O0Iee pelleHne, CynecTBOBaHIE PelleHus, Heob-
XOAUMOE U JIOCTATOYHOEe YCJIOBHE, KPUTEPUIl pa3pelmMOCTH, SKCTpeMaJbHad 3aJa4a, MAHAMUA3U-
pyomas IoCJIeJOBATETIbHOCTD.
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Aitcaramues C.A., Aiicaramuesa C.C., Kabumomnanosa A.A.
NHTerpanabik TeHaEYyJEpAil HiemnriMaepidid, 6ap 6oJiybl >KoHe oJIapabl KYPY

OH KarbIHIa Ke3-KeJreH (DyHKIUsT Karaaibl VITiH mentiaeTin i3ae/ina 6ip alHbIMAJIbIHBIH YKOHE
KO affHBIMAJIBIHBIH, (DYHKITHIapPbIHA KATHICTH MHTETPAJIILIK, TEHIEYIep KIAChl OOTIHIT aJIbIH b
Ocbl KJtacc yIiH menmiMHiH 6ap 60JIybIHBIH KAXKETT] KoHe YKeTKIJIIKTI IapTTapbl TaObLIIbI, OJIap-
JIBIH, KaJIIbl IermiMaepi gepbec memnrimvi MeH 6ipTekTi GOIriHiH KaJIIbl MIeNIMIHIH KOCBIHIbICHI
periage KypoLaast. Jlepbec merntiym meH 6ipTekTi OeJTiriHIH KA MeITiMiHIH OPTOTOHAIBTIF] XKOHE
nepbec ImelmriM CoJl TeHJAEYAiH MUHAMAJIbLl HOPMAJIbl IIelliMi ekeHi KepceTiiai. Arajran TeHge-
yAEpIiH OH KaKTapbl Oepiiren pyHKIMS KA aiIapbiHaa MenriMIepiain 6ap 60y bIHBIH KayKeTTi
JKOHE KETKIJIKTI IapTrapbl TeHJeyJepi SKCTPeMaJsIbl eCellKe KeJITipy apKbLIbl aJIBIHJIbI. DKC-
TPEMaJIJIbI €CEIITI MUHUMYM/IAY bl Ti30€KTi Kypy apKbLIbI MIENTY aJrOPUTMi KYPACTBIPBLIIbLI YKOHE
Ti30eKTiH MHTErPAJIILIK, TeHJIEY/IiH, MIelliMiHe KUHAKTAJIY KbLIIaMIbFbl Oarajsanasl. VHTErpas-
JIBIK, TEHICY/IH MEeNIeTiH M HiH KpuTepuiii pyHKITHOHAIIBIH TOMEHT1 KbIPhIHA KOWBIIATHIH TAJIAIT
TypiHge anbiaabl. [3aeminai pyHKImara mekTeyi 6ap HHTErpasablK TeHIeY 3ePTTe/TeH, OHbIH IITe-
MIJIETIH/INH TEeKCePy KOJIbI YKOHe IIENIMIH KYypYy 9JICi CHIIaTTaIFaH, COJI dJIiCTEP/IIH, JTYPHICTHIFI
monengenrer. [lapaMerpsii mHTErpaIblK TEHJEY VIIMiH IIeNrMHiH 6ap OOMYybIHBIH KAaXKeTTi YKOHEe
JKETKITIKTI MapTTaphl aHBIKTAIIL YKOHE YKAJIIHI IIETiMi TaObLIIbI.

TvyiiiH ce3aep: UHTErPAJIILIK, TEHEY, YKAJIIIBI IIeMiM, enriMaiH 6ap O0Iybl, KAXKEeTTi KoHEe YKeT-
KITKTI mapT, meniIeTiHairinia, KpuTepniii, 9KCTPeMaJIIbl eCell, MIHUMYMIAyTIIbl Ti30eK.

1 Problem statement

Controllability problems solving for dynamical systems [1-3], solving problems of
mathematical theory of optimal processes [4-6], boundary value problems for differential
equations with phase and integral constraints [7-9] are reduced to solvability and construction
of a general solution to the integral equation

Kyw = /K(z*,T)w(T)dr — B, t. € [to,h] (1)

here K (t.,7) = K(7) = ||K;;(7)]], i = 1,n, j = 1,m is a given matrix with elements from the
space Lo, t, € [to,t1] is fixed, K;;(T ) 2(11, D), w(r) € Ly(I;, R™) is unknown function,
peR" I =labl.

Note that (1) is a special case of the Fredholm integral equation of the first kind

Ku= /K(t,T)u(T)dT = f(t), t € [to, t1],

where K(t,7) = ||[K;;(t,7)|, i = 1,n, j = 1,m is a given n x m matrix, elements of the
matrix K (¢, 7) the functions K;;(¢,7) are measurable and belong to the class Ly on the set
Si={{t,7) € R [ to <t <ty, a<T <D},

//| i(t, 7)|Pdtdr < o0,

the function f(t) € Lo(I, R") is given, u(7) € Lo(Iy, R™)isanunknown function, I = |a, b],
to, t1, a, b are fixed, t; > tg, b > a, K : Ly(I1, R™) — Lo(I, R").
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Problem 1. Provide a necessary and sufficient condition for existence of a solution to
integral equation (1) for any B € R™.

Problem 2. Find a general solution to integral equation (1) for any B € R".

Problem 3. Provide a necessary and sufficient condition for existence of a solution to
integral equation (1) with a given 3 € R".

Problem 4. Find a solution to integral equation (1) with a given f € R™.

Problem 5. Provide a necessary and sufficient condition for existence of a solution
to integral equation (1) with a given € R™, and the unknown function w(t) € W(r) C
Ly(I1, R™);

Problem 6. Find a solution to integral equation (1) with a given § € R™, and w(T) €
W(r) C Lo(I1, R™), where W(T) is a given set.

Consider an integral equation with parameter of the following form

b
Ky(v) = /K(t,T)U(t,T)dT =u(t), tel=/ty,t], (2)

where K(t,7) = |K;;(t,7)|, i = 1,n, j = 1,m is a given matrix with elements from Lo,
v(t,7) € Ly(Sy, R™) is an unknown function, ¢ is a parameter, pu(t) € Lo(I, R™).

Problem 7. Provide a necessary and sufficient condition for existence of a solution to
integral equation (2) for any p(t) € Lo(1, R™);

Problem 8. Find a general solution to integral equation (2) for any u(t) € Lyo(I, R™);

Consider an integral equation with respect to multivariable function

bod
Ksw = //K(t,T)w(t,T)det =B, BeR", (3)

rne K(t,7) = ||Kij(t,7)|, i = 1,n, j = 1,m is a known n x m matrix, K;;(¢,7) € L2(G, RY),
w(t,7) € Lyo(G,R™) is unknown function, G = {(t,7)/a < t < b, ¢ < 7 < d},

b d
[ [|Kij(t,7)Pdrdt < oo, K3 : Lo(G, R™) — R™.

Problem 9. Provide a necessary and sufficient condition for existence of a solution to
integral equation (3) for any [ € R™;

Problem 10. Find a general solution to integral equation (3) for any B € R™;

As it is obvious from the foregoing investigation of solvability and solving integral
equations (1) — (3) are topical for solving boundary value problems for differential equations.

The aim of this paper is to provide new methods for investigation of solvability and
construction general solutions to integral equations (1) — (3).

This paper is an extension of scientific research presented in [10-12].

2 Integral equation solvable for any right hand side

Consider problems 1, 2. The following theorem provides a necessary and sufficient condition
for existence of a solution to integral equation (1).
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Theorem 1. A necessary and sufficient condition for existence a solution to integral
equation (1) for any B € R™ is that the n X n matriz

b
C = /K(T)K*(T)dT (4)

be positive definite for all a, b, b > a, where the superscript (x) means transposed.
Proof. Sufficiency. Let the matrix C' be positive definite. Show that integral equation (1)
has a solution for any 3 € R". Choose w(7) = K*(7)C™'8, 7 € I, = [a,b]. Then

b
Kyw = /K(T)K*(T)dTC_lﬂ = 0.

Consequently in the case C' > 0, integral equation (1) has at least one solution
w(T)=K*(1)C~'8, 7 € I}, here B € R" is an arbitrary vector. The sufficiency is proved.

Necessity. Let us assume that integral equation (1) has a solution for any fixed g € R".
Show that the matrix C' > 0. Since C' > 0, it is sufficient to show that the matrix C is
nonsingular.

Assume the converse. Then the matrix C' is singular. Therefore there exists a vector ¢ €
R™, ¢ # 0 such that ¢*Cc = 0. Define the function v(7) = K*(7)c, 7 € I, v(-) € Lo(I1, R™).

Note that ,

/ Vr)u(r)dr = ¢ /b K(7)K*(r)dre = ¢*Ce = 0.

This means that the function v(t) = 0, V7, 7 € I;. Since integral equation (1) has a solution
for any 6 € R", in particular, there exists a function w(-) € Ly(I;, R™) such that (8 = ¢)

Then we have ,

0= / o ()T (r)dr = ¢ /b K(F)m(r)dr = c*e.

a

This contradicts the fact that ¢ # 0. The necessity is proved. The theorem if proved.
The following theorem provides a general solution to the integral equation(3).
Theorem 2. Let the matriz C' defined by (4) be positive definite. Then for any B € R™

b
w(r) = K*(r)C'B + p(t) — K*(r)C! / K(myp(n)dn, 7€ I = [a,b], (5)

is a general solution to integral equation (2), where p(-) € Lo(Iy, R™) is an arbitrary function,
B € R™ is an arbitrary vector.
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Proof. Let us introduce the sets
b
W = {w() € Lo(Iy, R™) | /K(T)w(f)df _ 8y, (6)

Q= {0() € La(h ™) [ w(r) = K*()C™ 5+ plt)-
CKH(R)C [ Kmyp(mdn, ¥p(), p() € La(ly, R™)}. @)

The set W contains all solutions of the integral equation (1) under the condition C' > 0. The
theorem states that the function w(-) € Ly(I1, R™) belongs to the set W if and only if it is
contained in @, i.e. W = (). Show that W = ). In order to prove this it is sufficient to show
that Q C W and W C Q.

Show that @ C W. Indeed, if w(7) € @ , then as it follows from (7), the following equality
holds

b b b

/ K (Fyw(r)dr / K(r)K*(r)drC18 + /b K(r)p(r)dr — / K (r)K*(7)drC—x

a a a

b b b
x/Kmmmm:@+/Kvwﬂw—/Kmmmmzﬂ

This implies that w(7) € W.
Show that W C Q. Let w.(7) € W, i.e. the equality(6) holds for the function w,(t) € W :

/bK(T)w*(T)dT =p.

Note that the function p(t) € Lo(I;, R™) is an arbitrary in the relation (5). In particular, we
can choose p(t) = w,(7), 7 € I;. Now the function w(7) € Q) can be rewritten in the form

w(r) = K*(7)C18 + w.(r) — K*(r)C~) / K(r)w.(r)dr = K*(r)CY] / K (7)w.(7)dr] +

a

b
Hw, (1) — K*(1)C™* /K(T)’w*(T)dT =w,(7), 7€l

Consequently w,(t) = w(t) € @. This yields that W C Q. It follows from the inclusions
QCW, W C @ that W = Q. The theorem is proved.

The main properties of solutions of the integral equation (1):

1. The function w(7), 7 € I; can be represented in the form w(7) = wi(7) + wa(7),
where wy(7) = K*(7)C~'3 is a particular solution of the integral equation (2), wy(7) =
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b
=p(t) — K*(1)C~' [ K(n)p(n)dn, T € I1, is a solution of the homogeneous integral equation

b
[ K(1)ws(7)dr = 0, where p(t) € Lo(Iy, R™) is an arbitrary function.
’ Indeed,

/K(T)wl(T)dT = /K(T)K*(T)C'_lﬁdT =p, V3, Be€R",

b

/ K (F)wn(r)dr = / K (r)p(r)dr — / K(r)K*(r)C~Ydr /b K(n)p(n)dy = 0.

a

2. The functions w(7) € La(Iy, R™), we(T) € Lo(Iy, R™) are orthogonal in Lo, i.e. wy L
wy. Indeed,

b b b
< Wi, Wy >p,= /wT(T)wg(T)dT:/B*C’_lK(T)p(T)dT—/5*0_1K(T)K*(7)d7><

xC~ /K n)dn = g*C~ /K —B*C‘l/bK(n)p(n)dn: 0.

3. The function wy(7) = K*(7)C~'8, 7 € I; is a solution of the integral equation (1)
with minimal norm in Ly(I;, R™). Indeed, ||w(7)||*> = |Jw1(7)||* + ||we(7)]|?. Hence |Jw(7)||* >
|lwy (7)||%. If the function p(7) = 0, 7 € I, then the function wy(7) = 0, 7 € I;. Hence
w(r) = wi(7), lw] = flwi;

4. The solution set for the integral equation (1) is convex. As it follows from the proof of
theorem 2 the set of all solutions to the equation (1) is Q. Show that @ is a convex set. Let

b

T(r) = K*(1)C' B + p(r) — K*(1)C~* / K (m)p(n)dn,

a

b
T(r) = K108 4+ 5(r) — K* (1) / K(n)B(n)dn

a

be arbitrary elements of the set ). The function

wo(7) = aw(7) + (1 — Q)w(r) = K*(7)C '8 + palT)—

K (r)C! / K(npa(n)dn € Q, Yo, a € [0,1],

a

where p,(7) = ap(7) + (1 — a)p(7) € Lo(I1, R™).
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1
Example 1. Consider the integral equation Kow = [w(r)dr = f3, where K(1) = 1,
0

1

w(-) € Lo(I1, R"), I; = [0,1]. For this example C' = [ dr =1 > 0. Consequently this integral
0

equation has a solution for any 8 € R'. By formula (5), the general solution is w(7) =

B+ p(r fp Ydn, T € I, where p(7) € Ly(I;, R') is an arbitrary function. The particular

1

solution wy(7) = f, the solution of the homogeneous integral equation [ ws(7)dr = 0 is
0

w2( fp d77, Tel = [ ’1]7 VP(')7 p() S LQ(Ith)'

Consider problems 9, 10. The results described above hold true for integral equations
with respect to multivariable unknown function. In particular, for the integral equation (3)
we have the following theorems.

Theorem 3. A necessary and sufficient condition for existence a solution of the integral
equation (3) for any § € R™ is that the n X n matriz

T(a,b,c,d) ://K(t,T)K*(t,T)det (8)

be positive definite.
Theorem 4. Let the matriz T'(a,b,c,d) defined by (8) be positive definite. Then for any
g e R

w(t,7) =v(t,7) + K*(t,7)T  (a,b,¢c,d)a — K*(t,7)T *(a, b, c,d)x
b d
< [ [ Ko pdsan ©)

is a general solution of the integral equation (3), here v(t,7) € Lo(G, R™) is an arbitrary
function, B € R™ is an arbitrary vector.

The main properties of the solution. The general solution of the integral equation
(3) defined by (9) has the following properties:

1. The function w(t,7) = wi(t,7) + welt,7), (t,7) € G where wy(t,7) =
K*(t,7)T *a,b,c,d)B € Ly(G,R™) is a particular solution to the integral equation (3),
and the function wy (¢, 7) is a solution of the homogeneous integral equation

b od
//KtngtT)det—O

2. The functions wy (¢, 7) € Lo(G, R™) and wy(t, 7) € Lo(G, R™) are orthogonal wy L ws.

3. The function wy(t,7) € Lo(G, R™) is a solution with minimal norm for the integral
equation (3).

4. The solution set for the integral equation (3) is convex.
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3 Solvability of an integral equation with fixed right hand side

The question naturally arises: if the matrix C'is not positive definite, has the integral equation
(1) a solution? The answer is unambiguous, in this case the integral equation (1) can have
solution, but not for any vector g € R". The condition C' > 0 is a rigid for the kernel of the
integral equation. The analogue of this condition is an existence of the inverse matrix A~! for
the linear algebraic equation Az = b, which provides an existence of a solution for any b € R".
The algebraic equation Ax = b can have solution in the case of non-existence of the inverse
matrix too, but not for any vector b € R™ (rangA = rang(A,b), by the Kronecker-Capelli
theorem).

Solutions of problems 3,4. An investigation of the extremal problem is needed in order to
solve problems 3, 4:

b
J(w) = |8 - / K(r)w(r)dr|?dt — inf (10)

under the condition
w() € LQ(Il,Rm), (11)
where § € R" is a given vector.
Theorem 5. Let a kernel of the operator K (1) be measurable and belong to the class L.
Then:

1) the functional (10) under the condition (11) is continuously Frechet differentiable, the
gradient of the functional J'(w) € Lo(Iy, R™) for any point w(-) € Lo(Iy, R™) is defined by

J'(w) = =2K*(1)5 + Z/K*(T)K(J)w(a)da, T € Iy; (12)

2) the gradient of the functional J'(w) € Ly(Iy, R™) satisfies the Lipchitz condition

| (w+h) — J(w)|| <I|hl, Yw, w+h € Ly(I1, R™); (13)

3) the functional (10) under the condition (11) is convex, i.e.

J(aw+ (1 —a)u) < aJ(w) + (1 —a)J(u), Yw,u € Ly(I1, R™), Vo, a € [0,1]; (14)

4) the second Frechet derivative is defined by

J"(w) =2K*(0)K (1), o, T € I1; (15)

ISSN 1563-0285 KazNU Bulletin. Mathematics, Mechanics, Computer Science Series Ne2(89) 2016
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5) if the inequality

b

/b / £ (0) K (0) K (r)é(r)drdor = [ / K(ﬂs(r)mr >

a

(16)
> u/ E(r)Pdr, p> 0, VE, E(r) € Lo(L, R™),

holds, then the functional (10) under the condition (11) is strongly convez.
Proof. As it follows from (10), the functional

J(w) =p"6 — Qﬁ*jK(a)w(U)da—i- /b/bw*(T)K*(T)K(U)w(J)deT.

Then the increment of the functional (w, w + h € Lo(I, R™))

AJ = J(w+h) — J(w) = / < _2K(0)B+2 / K*(0)K (*)w(r)dr, h(o) > do+
bob ¢ ¢ (17)
+//h*(T)K*(T)K(U)h(J)dadT =< J'(w),h >, +o(h),

where
o)l =1 [ [ 1 ()K" (0K (0)h(o)dodr < e,

It follows from (17) that J'(w) is defined by (12). As

J'(w + h) — J'(w) = 2K (7) / K (0)h(0)do,

we have \
|J'(w +h) = J'(w)| < 2IIK*(T)II/IIK(U)II |h(o)|do <
< ()b, 7€ h.
Hence

1/2

b
1 (w +h) = J'(w)ll L, = / | J'(w+h) = J(w)dr ) <Al

for any w, w+ h € Lyo(I;, R™). This implies the inequality (13).
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Show that the functional (10) is convex. Since the functional J(w)eC™ (Ly(Iy, R™)), for
the functional (10) to be convex it is necessary and sufficient to have

< J'(wy) — J'(wq), wy — wg >p,=< Q/K*(T)K(a)[wl(a) — wy(0)]do,

wi(7) = wa(T) >1,= 2//[w1(7) — wy(7)]"K*(7) K (0)[wi(0) — wy(0)]dodr = 0.

This means that the functional (10) is convex, i.e. the inequality (14) holds. As it follows
from (12), the increment

T'(w+h) — J'(w) =< J"(w), h >=< 2K*(0)K(r), h(c) >p,=

Consequently J”(w) is defined by (15). It follows from (15), (16) that
< J"(w)E, & >,> pllél?, Yw, w e Ly(I1, R™), V¢, € € Ly(l, R™).

This means that the functional J(w) is strongly convex in Ly(/;, R™). The theorem is proved.
Theorem 6. Let the sequence {w,(7)} € La(I1, R™) be constructed for extremal problem
(10), (11) by the rule

W1 (T) = Wy (T) — O‘njl<wn>a Inlam) = I;liggn(a),

gn(@) = J(w, — aJ'(w,)), n=0,1,2,.... (18)

Then the numerical sequence {J(w,)} decreases monotonically, the limit lim J'(w,) = 0.
n—oo

If besides the set M(wo) = {w(7) € Lao(I1, R™)/J(w) < J(wo)} is bounded, then:

1) the sequence {w,(7)} is minimizing, i.e.

weakly

7}13)10 J(wy) = Jo =inf J(w), w(-) € Ly(I,R™), w, — ~ w, as n — 0o,
where w, = w, (1) € W,
We={w(r) € Lo(h, R™)/J(w) = min J(w)=J.= _ inf J(w)}
2) the following convergence rate estimation holds
O§J(wn)—J(w*)§%, mo =const >0, n=1,2,... (19)
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3) there exists a solution to the integral equation (1) iff J(w.) =0, w, € W,. In this case
w, € W, is a solution of the integral equation (1).

4) if J(wy) > 0, then the integral equation (1) hasn’t a solution.

5) if the inequality (16) holds, then ||w, — w.| — 0 as n — oo.

Proof. Minimization methods in Hilbert space [13| can be applied to a proof of the
theorem. The conditions g, (a,) < gn(a), J(w) € CH(Ly(I;, R™)) imply that

l
J(wy) — J(w, —aJ (w,)) > a(l — Oé)||J'(wn)||2, a>0, n—0,1,2,...,
where [ = const > 0 is the Lipchitz constant from (13). Then
1
T(wa) = J(@ng1) 2 o5 |7 (wn)I* > 0.

This yields that lim J'(u,) = 0 and the numerical sequence {J(u,)} decreases monotonically.
n—oo

The first statement of the theorem is proved.
As the functional J(w) is convex the set M (wy) is convex. Then

0 < J(wn) = J(w.) << J'(wn), wn — wy >, < [T (w)l] [[wn — w]| < D[S (wn)]l,

here D is a diameter of set M (wy). Since M (wy) is weakly bicompact, the functional J(w)
is weakly lower semicontinuous, it follows that the set W, # @&, W, C M(wp) and {w,} C
M (wy), w, € M(wy). Note that

0 < lim J(w,) — J(ws) < D lim ||J'(w,)| =0, lm J(w,) = J(w.) = Js.
n—oo n—oo n—oo

Consequently the sequence {w, } C M (wj) is minimizing. Estimation (19), where my = 2D?[,

follows from the inequalities

J(wn) = J(wns1) < Sl (wn)lI*, 0 < J(wa) = J(ws) < DI (wy)]],

1

21
weakly

W, — W, as n — oo.

The second statement of the theorem is proved.
It follows from (10) that J(w) > 0, Vw, w € Ly(I1, R™). The sequence {w,} C Lo(I;, R™
is minimizing for any initial guess wy = wo(7) € Lo(I1, R™), i.e. J(wy) = er(l}nR )J(w) =
weLa(l1,R™
Jo= inf  J(w). If J(w,) =0, then

'LUELQ(I:hRm)

8= /b K (r)w,(r)dr.

Therefore the integral equation (1) has solution if and only if J(w,) = 0, where w, = w.(7) €
Ly(11, R™) is a solution to the integral equation (1). If J(w,) > 0, then w, = w.(7), 7 € I} is
not a solution of the integral equation (1). In other words, whenever J(w,) > 0, the integral
equation (1) hasn’t a solution for the given § € R". Thus the statements 3, 4 are proved.
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14 Aisagaliev S.A., et al.

If the inequality (16) holds, then the functional (10) under the condition (11) is strongly
convex. Whence

J(wy,) — J(w,) << J'(wy), w, — wy > —gHwn —w,|* < 2ullJ (wy)]|?, n=0,1,2,...,

1
J(wn) = J(wpy1) > Q—HJ'(wn)Hz n=0,1,2,....

Hence a,—a, 1 > %an, where a,, = J(w,)—J(w,). Consequently 0 < a,.; < an(l—%) = qa,.

Then a, < qan_1 < ¢?an_o < ... < q"ay. This implies

USJWM—JWQSLHMO—ﬂwayqzl—%,OSqSL > 0.

It can be shown that the estimation
2 n
i =l < (2) ) = S, n =012,

holds for any strongly convex functional. Then |w, —w.|| — 0 as n — oo. Theorem is proved.
Consider problems 5, 6. In particular, the set W (7) is defined by: either

W(r) ={w(:) € Lo(I1, R") /(1) < w;(7) < Bi(1), 1 =1,m, a.e. 7€ I},

or

W(r) = {w(") € Ly(I,, R™)/|w|]* < R*}.

where a(7) = (a1(7), ..., (1)), B(T) = (51(7),...,Bm(7)), T € I, are given continuous
functions, R > 0 is a given number.
Solving problems 5, 6 is reduced to investigation the extremal problem:

(w,u) =8 — /K T)dr| 4 [Jw — u||%2 — inf (20)

under the conditions
w(:) € Lo(I1, R™), u(r) € W(r), 7€ L. (21)

Theorem 7. Let a kernel of the operator K (1) be mesurable and belong to Lo. Then:
1) the functional (20) under the condition (21) is continuously Frechet differentiable, the
gradient
Ji(w,u) = (J1,(w,u), Ji,(w,u)) € Lo(I1, R™) x Lo(Iy, R™)

for any point (w,u) € Ly(Iy, R™) x W (1) is defined by
T (w,) = —2K*(r)f +2 / K* (1)K (0)u(0)do + 2(w — u) € Ly(I, R™), (22)

ISSN 1563-0285 KazNU Bulletin. Mathematics, Mechanics, Computer Science Series Ne2(89) 2016
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Ji,(w,u) = =2(w —u) € Ly(I1, R™); (23)

2) the gradient of the functional Ji(w,u) satisfies the Lipchitz condition

171 (w + by hy) — Jy(w, w)|| < L[] 4[| ]]),

V(w, ), (w+h,uth) € Lo(Ii, R™) x Ly(Iy, R™): dn, (24)

3) the functional (20) under the condition (21) is conver.
A proof the theorem is similar to theorem 5’s proof.
Theorem 8. Let for extremal problem (20), (21) the sequences be constructed by

Wo1(T) = wp(T) — an iy, (W, uy), n=0,1,2,...,
Un+1(7) = Py lun(7) — anJy, (W, un)], n=0,1,2,....

where Py -] is a projection of a point onto the set W,

g < a<
0= _l2+2€1

, €0>0, >0, n=0,1,2,...,

li is the Lipchitz constant from (24), in the case e1 = 4, g9 = , = %, Lo (Wi ),
J1 (W, uy,) are defined by (22), (23) respectively. Then the numerical sequence {Jy(wn1, un)}
is monotone decreasing, the limits lim ||w, — wp41]| =0, lim ||u, — upeq|| = 0.

n—oo n—oo

If in addition the set M(wq,up) = {(w,u) € Ly x W/Ji(w,u) < J(wo,up)} is bounded,
then:
1) the sequence {wy,u,} C M(wog,up) is minimizing, i.e.

lim Jy(wy, u,) = J, = inf J(w,u), (w,u) € Ly x W;

n—oo

2) the sequence {wy,u,} C M(wo,up) weakly converges to the set

X, = {(ws, us) € Ly x W/ Ji(wy, uy) = min Jy (w,u) = J, = inf Jy(w,u), (w,u) € Ly x W};

3) a necessary and sufficient condition for integral equation (1) under the condition w(r) €
W to have a solution is that Jy(w., us) = Ji. = 0.
A proof of theorem is similar to the proof of theorem 6.

4 Integral equation with parameter

Consider problems 7, 8 for the integral equation (2).
Theorem 9. A necessary and sufficient condition for the integral equation (2) to have
solution for any u(t) € Lo(I, R™) is that the n X n matric

b
O(t) = / K(t,7)K*(t,7)dr tel (25)

a
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16 Aisagaliev S.A., et al.

be positive definite for all t € I, where (x) means transposed.

A proof of theorem is similar to the proof of theorem 1.

Theorem 10. Let the matriz C(t), Vt, t € I given by (25) be positive definite. Then a
general solution of integral equation (2) for any u(t) € Lo(I, R™) is given by

v(t,7) = K*(t,7)C ) ut)+~(t, ) —K*(t, 7)C(t) /K(t,T)’y(t,T)dT, tel, el (26)

where y(t,7) € Lo(S1, R™) is an arbitrary function, u(t) € Lo(I, R™).

The proof of the theorem is similar to the proof of theorem 2.

The main properties of solutions to the integral equation (2):

1. The function v(t, 7) from (26) can be represented in the form v(t T) vl (t,7)+va(t, 7),
where vy (t,7) = K*(t,7)C Y (t)u(t), valt,7) = ~(t,7) — K*(t,7) f K(t,7)y(t,7)dr,

to

~(t,T) € La(Sy, R™) is an arbitrary function. The function vy (¢, 7) is a particular solution of
the integral equation (3), and the function v,(¢, 7) is a solution to the homogeneous integral

equation
b

/K(t,’?’)vg(t, 7)dr = 0.

a

Indeed,

/ K(t, 7)o (t, 7)dr = / Kt ) K (1, ) dre= (Op(t) = u(t), te T,

b

/b K(t, )us(t, 7)dr = /b K(t, 7)y(t, 7)dr — / K(t, 7 K" drC-! / K(t,7)y(t, )dr = 0:

a

2. The functions vy (t,7) € Lo(S1, R™), va(t,T) € Lo(Sy, R™) are orthogonal, i.e. v; L vs.

Indeed,
b

< o Sr,= / Ui (b, 7)a(t, 7 = / (OO K (1, 7) [t 7)

a

—K*(t,7) /K (t, 7)y(t,7)7]dT = *(t)C_l(t)/K(t,T)’y(t,T)dT—

—pt(t)C~ t/Kt,TK(t,T)dTC' /KtT v(t,T)dr =0, (t,7) € Sy;

3. The function vy (¢t,7) = K*(t,7)C~ (t)u(t), (t,7) € Si is a solution of the integral
equation (3) with minimal norm in Ly(Sy, R™). Indeed, |[v(t,7)||* = ||vi(¢, 7)||* + |Jva(t, 7) >
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This implies that |[v(¢,7)]|* > [Jui(¢, 7)||?. If the function (¢,7) = 0, (¢,7) € S, then the
function vy(t,7) =0, (¢, 7) € Sy. Hence v(t,7) = vi(t,7), ||v|| = ||v1]l;

4. A solution set for the integral equation (3) is convex.

Example 2. The integral equation

b
Kyv = /etT?}(t,T)dT =sint, t€[1;2], 7€]0,1],

is given. For this example K (¢,7) = e'". Then

1
/thTdr =—[e*—1] >0, Vt, t € [1,1].
0

This yields that this integral equation has solution

1
2t ) 2t
T 16” sint +~y(t,7) — T 1€tT / e y(t, T)dr,

0

v(t,T) =

2t
where C_l(t) = 2t—1’
6 JR—

is an arbitrary function.

te[1,2], v(t,7) € La(S1, RY), Sy ={(t,7) /1<t <2, 0<7<1}

The function v(t,7) = wvi(t,7) + va(t, 7), where vy (t,7) =

1
'™ [e'Ty(t,T)dT is a solution of the
0

62t_le”sint, (t,7) € Sy

is a particular solution, vy(t,7) = (t,7) — —; 1

e _
1

homogeneous integral equation [ e7vy(t,7)dr = 0. It’s easily shown that < vy, vy >p,= 0,

0
Vt, t € [1,2].

This work was partially supported by the grant of the Committee of Science of the
Ministry of Education and Science of the Republic of Kazakhstan (project 3311/GF4 MON
RK)

5 Conclusion

A necessary and sufficient condition for existence of a solution to an integral equation with an
arbitrary right-hand side has been obtained, and a general solution to the equation has been
constructed. A solvability criterion in the form of requirement for an infimum of a specified
functional has been formulated and proved, and a method for the solution construction has
been developed. An integral equation with constrained unknown function is reduced to an
extremal problem which allows to construct a solution satisfying a given constraint. A test
method for existence of a solution to an integral equation with a parameter and a method
for solution construction are described in detail and their correctness has been proved.
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