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Numerical implementation of the one-dimensional microscopic model of in-situ
leaching

This publication is devoted to the numerical implementation of the mathematical model on a
microscopic level of in-situ leaching process in the case of one space variable. The mathematical
model is based on the common system of differential equations, when the fluid dynamics is
described by the equation of motion of an incompressible fluid filling the pores of absolute solid
ground skeleton, and dynamics of the active solution is described by the equation of diffusion-
convection with point boundary conditions on the unknown free boundary between the fluid and
the solid skeleton, expressing the conservation law of reagents. Numerical simulation by finite
difference method is applied for the numerical solution of the problem. The nonlinear boundary
conditions defined on the unknown free boundary is numerically solved by the iterative Newton’s
method. For a more precise description of the movement of the free boundary, interpolation method
is detailed. The significance of computer modelling of in-situ leaching process on a micro scales is
an ability to study the basic mechanisms of the flow of physical and chemical process comprises
reacting an active solutions with a solid skeleton and its movement through the capillary. The
article presents the results of the problem in the case of one space variable in the form of graphs,
obtained in mathematical environment Matlab.
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Kymam A.C.
YucaeHHas peaqus3alnusi OJHOMEPHON MUKPOCKOMUYIECKON MOAEU MOJ3E€MHOI0
BBIIIEJIAYUBAHUS

IIpemraraemast myOIuKaIys MOCBSIIEHA YACTEHHON PeAJIM3aI[ii MATEeMATHIECKOW MOJIE/IA Ha MUK-
POCKOTIMYIECKOM yPOBHE IIPOIECCa TOI3EMHOTO BHIIIEIAYNBAHNUS B CIy9ae OJHON MPOCTPAHCTBEHHOM
mepeMenHoi. MaTemMaTudeckasi MOJIe/Ib OCHOBBIBAETCS Ha OOIMENPUHATON cucTeMe anddepeHIm-
AJIBHBIX yPABHEHWIA, KOTJa JIMHAMUKA XKUJIKOCTU OIMCHIBAETCS YPABHEHNEM JIBUYKEHUsT HECXKUMAE-
MOM YKUJKOCTH, 3aIIOJIHSIOIIEH TIOPbI aOCOJIOTHO TBEPIOIO CKejleTa IPYHTA, a JUHAMHUKA aKTHUBHOM
IIPUMECH OIACHIBAETCH ypaBHeHneM Mud}y3un-KOHBEKITUU C TOYCIHBIMU KPAEBBIMU YCJIOBUSIMU HA
HEU3BECTHOM CBOOOIHON IPAHUIIE MEYKTY KHUITKOCTBIO U TBEPBIM CKEJIETOM, BHIPAYKAIOIUMA 3aKOH
COXpaHeHUsI KOJUIEeCTBa peareHToB. JIJis YMCIeHHOrO pelreHus TOCTABIEHHON 3a/1adu TPUMEHsI-
JIOCh YHCJIEHHOE MOJIEJTNPOBAHIE METOIOM KOHEYIHBIX pasHocTell. HesnmmeitHoe rpanutHoe ycaoBue,
3aJlaHHOE Ha HEM3BECTHOI CBOOOIHOM IpaHuIle, YUCJIEHHO PEIIaeTCs NTepariOHHBIM MeT0o10M Hbro-
ToHa. [lj1s1 6oJiee TOYHOrO ONUCAHUST IBUKEHNS CBODOIHON IPAHUIIBI I€TAJTM3UPYETCS METOJ HHTEP-
MOJIATAN. SHAYUMOCTH KOMIIBIOTEPHOTO MOJIEIMPOBAHUS IIPOIIECCA TIO3EMHOT0 BBIETAYNBAHIS HA
MHKPO MACIITabax 3aKJI0YAETCs B BO3MOXKHOCTHU HMCCJIEIOBAHNST OCHOBHBIX MEXAHU3MOB IIPOTEKa~
HUsT (PUBUKO-XUMUIECKOTO TIPOTIECCA, 3aKIIIOYAIONIErOCs BO B3AUMOJIEHCTBIN AKTUBHON MPUMECH €
TBEP/IBIM CKEJIETOM U €€ JIBHXKEHUS 110 KAIWIAPY. B cTarbhe mpecTaBieHbl pe3ysibTaThl INCIeH-
HOT'O PeIlleHns 3a/a9l B CJIydae OJHOI IIPOCTPAHCTBEHHON IepeMEHHON B BUjle IPA(UKOB, IIOJIY-
YEeHHBIX B MaTeMaTH4ecKoil cpeme Matlab.

KuroueBbie cjioBa: BbIIEIaINBaHNE, CBOOOIHAST TPAHUIA, MUKPOCKOIMUIECKAS MO, IUCICH-
Hasl PEAJIABAIIMA.
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Kymomi A.C.
2Kepactsl epitinaineyain 6ip esrmeMal MUKPOCKOMUSJIBIK, MO/IEJIiH CAHIBIK »KY3€ere acbipy

Y CBIHBLIBII OTHIPFaH OACBLIBIMIA OIp KEHICTIKTIK aflHBIMAJIBI KAFJIANBIHIAFbl YKEPACTHI epiTiH-
Jijiey YPIiCiHIH MUKPOCKOIUSIIBIK, JeHrelteri 6ip eJimmeM/1i MaTeMaTUKAJIBIK, MOJIEIIH CAHJIBIK, XKY-
3ere acplpy cumartajrad. MareMaTuKaablK, MOMIENb YKAJIBIFa MOIIM AuddEePEeHITHAIBIK, TeHIe-
yiep »kyiiecine Herizzeseni, ArHU CYHBIK JIMHAMUKACHI 2KED KBIPTHICHIHBIH, abCOIOT KATTHI CKe-
JIETiHIH KeyeKTePiH TOJTHIPATHIH CHIFBIIMANTBHIH CYHBIK KO3Fajachl TEHJEYIMEH CHIIATTAJIa b, aJl
OesiceH/Ii Kocra JIMHAMUKACKHI, PEATEHTTEP MOJIIIEPIHIH CAKTAIYbl 3aHbIH OPHEKTEUTIH, CYHBIKTDIK,
[IeH KATTHI CKeJIET apAChIHIAFbl OeJIrici3 epKiH IeKapara KOWBLIFAH HAKTHI IIIEKAPAJIBIK, IIIaPTTaphl
6ap muddy3us-KOHBEKIH TEHIEYIMeH cuaTTaaa bl. KobIFan ecenTi CaHIbIK, TYP/I€ IIeITy YITiH
AKBIPJIbI afbIPBIMIAD OMiCIMEH CAHIBIK MOJE/IEY KOJIAHBLIILI. DBenriciz epkin mekapara KONbI-
JIFAH CBI3BIKCHI3 MMEKAPAJIBIK, IAPT UTeparusibiK HbioToH o1iciMen cau bIK, TYp/ae mrerrineai. Epkin
IeKapa, KO3FAJIBICHIH JJIIPEK CUTIATTAY MaKCATBIHIA WHTEPIIONATIAA 9/iCi Taaganaabl. 2KepacTs
epiTiHiIey YpIiciH MUKPO Macmradrap/a KOMIBIOTEDJIK MOJEJIEYiH, MAHBI3IBLIBIFLL O€JICeH T
KOCITaHBIH, KATTHI CKEJIETIIEH OalJIAHBICKA TYCYiHE Heri3ereH (bU3NKAJBIK, XUMUSIIBIK, YPIICTIH
HETI3Ti epeKIIeiKTePl MeH OHBIH KallHJIISIPAArbl KO3FAIbICBIH 3€PTTey MYMKIH/IIriHe HeTi3Jiesesm].
Maxkastaza 6ip emmeM Il ecenTiH caHablK IernmiMinid noTmxkemepi Matlab maremaTuka bk opra-
CBHIH/Ia aJIbIHFaH rpaduKTep TYpiHJle KeJaTipiiareH.

Tvyiiia ce3aep: epirinjiiey, epKiH IeKapa, MUKPOCKOIMSIBIK, MOJIEJIb, CAHJIBIK, YKY3€ere achipy.

1 Introduction

The process of in-situ leaching is an environmentally friendly method of mining minerals
such as uranium, copper, nickel, gold, etc. It is held by filing the active solution into a
porous ground wherein the solution reacts with the solid material. The resulting product of
the chemical interaction enters the liquid. This physical process is considered in a bounded
domain €2 . The area €2 consists of the area 2y modeling the pore space, the area )5 simulating
a solid skeleton and the boundary X (¢) between the pore space and solid skeleton (see fig.
1). The boundary X (t) is unknown, because in the process of leaching the part of the soil
dissolves and the soil is deformed over time. Such boundary is called free boundary and such
problems are called free boundary problems.

Currently the leaching of rocks describes by the large range of mathematical models
describing the physical processes at the macroscopic level (see [1] - [6] and references there
in). In these models at each point of a continuous medium there are the solid skeleton and the
liquid in pores. R. Burridge and J. B. Keller [7] and E. Sanchez-Palencia [8] were the first to
state explicitly that mathematical models for filtration and seismic must be derived rigorously
from the microstructure. Various particular cases of accurate models of acoustics and fluid
filtration in rocks intensively studied by many authors: G. Nguetseng [9], J.L. Buchanan, R.P.
Gilbert [10], M.J. Buckingham [11], R.P. Gilbert, A. Mikelic [12]|, T.H. Clopeau, J.L. Ferrin,
R.P. Gilbert, A. Mikelic [13|, J.L. Ferrin, A. Mikelic [14] and others. Detailed analysis can be
found in [15], [16]. The most systematic investigations of accurate models of physical processes
in poroelastic media were conducted by A.M. Meirmanov [16]| - [18]. These models on the
micro level are based on the known equations of continuum mechanics [19] and chemical laws.

The goal of this work is the numerical implementation of the one-dimensional problem.
Using numerical simulation of the leaching process, we explore the changes of the free
boundary over time and positions of the boundary at different values of the parameters
in the system of differential equations.
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2 Equations
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Figure 1 - One dimensional structure

For the case of one space variable differential equations for an incompressible fluid in the
area Qs(t) ={z: 0 <x < X(t)} (see fig. 1) for ¢t > 0 have the form

dp
or 0 W
ov
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+v—

ot or  “oa

Boundary and initial conditions

p(0,t) =p*(t), c(0,) =c*(t), t>0, (4)
dd_);:mc, r=X(t), t>0, (5)
(%—l—ﬁ—v)c—%%%—(), r=X(t), t >0, (6)
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X(0) = Xo, c(x,0) =co(x), 0<z< X (8)

Equations are written in dimensionless form. Here p is the pressure, v is the speed, ¢ is the

concentration of the active acid, a, = %, D is the diffusion coefficient, T is the characteristic
time, L is the characteristic size of the area, X is the free boundary, (3, are given constants,

ps, ps are dimensionless densities of the solid skeleton and liquid, respectively.

3 Numerical solution of the problem

For the numerical solution of the problem it is applied numerical simulation by finite difference
method. Finite difference equations were derived using a simple explicit scheme. To solve the
equation (6) at each time step Newton’s method is used.

Finite-difference analog of the equation (3) is written as:

o N\t At
C:;H_l = (C?—i-l - 26? + C?—l) - ’UlnT<

ch— )+ 9)
Finite-difference analog of the equation (6) is written as:

Ps Qe Qe
p—fﬁycf + (B + z)cl — XCH =0. (10)

Applying the Newton’s method, we rewrite equation (10):

k+1 _ k

B y(cf)? + (B + 9)ck — %cry -
2L Brycf + B+ 8= '

Here h is the spatial step size, the lower index i is the order of the nodes, the upper index
n denotes a variable evaluated at the current time ¢ and n + 1 is a variable at the end of the
time step (time t + At), k is the index of iteration and the lower index [ denotes values at
the free boundary.

By virtue of equations (2), (7) the speed of the liquid depends only on time. It is the same
everywhere and equals to the speed at the free boundary. Therefore, the speed of the liquid
at the free boundary is used in the equation (9).

For the exact description of the dynamics of the interface between the liquid and the solid
skeleton, it is used interpolation method, which allows you to track the movement of the
free boundary with sufficient accuracy. The method is implemented as follows. We know the
initial position of the free boundary. We find regular grid nodes closest to the point of the
free boundary and the values of the acid concentration in these nodes. Then, it is calculated
the weighted value of the acid concentration at the free boundary by the found coordinates
of points and values of the acid concentration. To distinguish the weighted value of the acid
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concentration at the free boundary obtained by interpolation, let’s denote it by ¢X, ie with
index X:

k+1 k+1

X = bl %(xn —1n), (12)

There is no acid concentration at the solid skeleton, so cﬁf = 0. Hence:
n
=t - =+ 1). (13)

h

Interpolation can be done in different ways, in this case, linear interpolation is used. After
determining the value of the acid concentration at the free boundary by the formula (13),
the boundary can be moved. We find the new location of the free boundary using a simple
explicit scheme:

X" = pyAte + X7 (14)

For v =1, D = 2822 %2, L = 56, T = 0.00005 s., and different values of 3 and ¢t we
found the concentration ¢ of active impurity on the free boundary and positions of the free
boundary (fig. 1-4).

0.15¢

0.1

concentration

0.05f

0 0.00025 0.00005
time

Figure 2 - Change of the active impurity concentration on the free boundary over time at various /3
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Figure 3 - Positions of the free boundary at various

0.1
0.075}
c \
S
©
c 0.05f E
[}
(8]
c
(o]
(8]
+_
0.025 c'=0.4 |
c*=0.55
c'=0.7
o ¢'=0.85 ‘
0 0.000025 0.00005

time

Figure 4 - Change of the active impurity concentration on the free boundary over time at various ¢t
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Figure 5 - Positions of the free boundary at various ¢t
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4 Conclusion

This article considers the numerical implementation of microscopic mathematical model
describing the active impurity interaction with a solid skeleton. Numerical calculations of the
one-dimensional problem implemented in Matlab mathematical environment. In numerical
implementations you can see the distinctive features of the model. For example, smaller
values of impurity concentration on the free boundary correspond to the greater values of the
constant [ (fig. 2). But the free boundary for a greater value /3 faster than the boundary for
smaller 5 (fig. 3). It’s quite a strange phenomenon for chemists. On the other hand, greater
values of impurity concentration on the free boundary always correspond to greater values
of concentration at the input ¢ (fig. 4), and the free boundary for greater value ¢t moves
faster than the boundary for smaller ¢t (fig. 5).

From a practical point of view, the mathematical model is useful in possibility of studying
the main features of the flow of physical and chemical processes on the free boundary between
the liquid and solid skeleton.
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