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Numerical investigation of interface motion between two immiscible fluids in a
channel

The main difficulty of the modeling of two immiscible viscous fluids flow in the channel (pipe,
etc.), is the choice of the boundary condition on the line (contact line) formed by intersection of
the interface between fluids with the solid surface. If the no-slip condition is used on the solid
boundary to determine the flow produced when a fluid interface moves along a solid boundary, the
viscous stress is approached to infinity at the vicinity of the contact line. It seems, unreasonable
to continue to apply a continuum model at the vicinity of the contact line. Thus an inner region,
close to the contact line, could be examined, where the molecular interactions between the two
fluids and the solid must be studied, and this region matched to an outer region, where the Navier-
Stokes equations would apply. Such an analysis would be very difficult, but it has been suggested
that the likely outcome would be equivalent to replacing the no-slip boundary condition by a
slip condition, and continuing to employ the Navier-Stokes equations. The effect of the slip on
the interface motion is numerically investigated in this work. Also relation between steady-state
contact angle and capillary number is investigated in this paper and compared with work [§].
Key words: Navier-Stokes equations; Flow of two immiscible fluids; Gerris program; Slip
boundary condition; Volume-of-fluid (VOF) method; Contact line; Contact angle; Capillary
number.

Kynaiikysio A.A., 2Kozepang K., Kairaes A.
YucjieHHOEe MOJeJIMPOBaHUE ABUXKEHUsI IPAHUIIBI pa3/elia JBYyX HECMeIINnBAIOIIUXCs
>KHUIKOCTE B KaHaJjie

OcHoOBHOIT 1TPO0JIEMOIT MOJETMPOBAHUS TEUYEHUS JIBYX HECMEIIMBAIOIINXCsI BZKUX KUIKOCTEN B
kanaje (Tpybe u T.J1.) sIBJIFETCs IOCTAHOBKA I'PAHUYHOIO YCJIOBUSA HA JMHUK (KOHTAKTHOM JIMHUM),
00pa30BaHHON MepecevueHneM MOBEPXHOCTH Pa3Jiesia »KUJIKOCTeH ¢ TBEPAON MOBEPXHOCTHIO. Keym
BBIOPATH IPAHUYIHOE YCJIOBHE IPUJINIIAHNS HA TBEPIO I'PAHNUIIE, TOTIA IIPH JIBIKEHNN [IOBEPXHOCTH
paz/iesa KMJKOCTe! 110 TBep/l0it IOBEPXHOCTH, B OKPECTHOCTU KOHTAKTHON JIMHUU, BA3KHUE HallP:-
JKEHUs CTpeMaTcsa K 6eckoHedHOCTH. Buainmo, mpuMeHeHre MOJIeNIN CIJIONTHON CpeJibl B 00JIacTH,
OJIM3KOM K KOHTAKTHOI JINHUU, SIBJIsIeTCsT HeOOOCHOBaHHBIM. Takum o6pa3oM, B 0bj1acTu, OJIM3KOIM
K KOHTAKTHOI JIMHWM, HEOOXOIMMO HCCJIe0BATHh MOJIEKYJISIDHOE B3aMMOJEHCTBUE MEXKJy JIBYMs
KHUJKOCTSME U TBEPJAOH MOBEPXHOCTHIO, U Ty 00JIACTH CBA3ATH C 00JIACTHIO BAAIN OT KOHTAKTHOM
JIMHUU, TJIe MOYKHO puMeHuTh ypasHerus: Hasbe-Crokca.Takoit ananus Gyaer 09eHb CJIOXKHBIM,
HO OH II03BOJIAET IIOATBEP/UTL IIPEJIIOIOXKeHNe, YTO BMECTO I'DAaHUYHOI'O YCJIOBUdA IIPUJIMIIAHUA
MOKHO HCIIOJIb30BaTh I'PDAHUYHOE YCJIOBUE ITPOCKAJIb3bIBAHUS.
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B nanHOi#t pabore UMCIEHHO MCCIEI0BAHO BJIUSHEE IMPOCKAIb3bIBAHUS KUIKOCTU 0 TBEPION ITO-
BEPXHOCTHU Ha JIBMIKEHUE TOBEPXHOCTHU pasjiesa Kujkocrteil. Tak:Ke HMccieloBaHa CBA3b MEXKTY
KOHTAKTHBIM YTJIOM W KalWJISPHBIM YHUCJIOM, IIPU YCTAHOBUBIIIEMCSI TE€UEHUH YKUJIKOCTH, U MOy~
“eHHbIE Pe3YJIBTATHI CPABHEHBI C pe3yJbraTaMu paboTsr [8].

Kurouesbie cioBa: Ypasuenusi Hapbe-Crokca; TedeHne JByX HECMEIIMBAIONIUXCS YKUJIKOCTEIR;
nporpamma Gerris; ['panndanoe ycjioBue npockasb3biBanust; Meros oobema kugkoctu; KonTakT-
Has JmHudA; KonTakTHbI yros; KanuaaspHoe 9uciio.

Kynaiixymnos A.A., 2Kozepaux K., Kaaraes A.
Kanasngarsl eki apajacnaiTblH CYUBIKTapAbIH 06JIiHY HIeKapaChIHBIH, KO3FAJIbICHIH CAH/IBIK,
apKbLJIbl MOAEJIbAEY

Kanasnmarsr exi apasacnaiiTelH CYIBIKTaPIbIH OOJIIHY MEKAPACHIHBIH KO3FAJIBICHIH CAHIBIK, ADKHLIbI
MO/JIEJIBJIEY/IiH, HeTri3ri KbIMH/BIFBI - KATTHI OeTTerl IeKapaJsblK, IIapTTapAbl TaHIay OOJIbII TaObI-
sganpl. Erep KaTThl mekapaa KaObICKAK, MEeKAPAJIBIK, MapPTThl TAHJACAK, OHIa OOJIHY MeKapachl
KATTHI OeT OOMBIHINA KO3FaIFaHIa, TYTKBIPJIBIK, KEPHEYl IEeKCI3MIKKe YMThLIabl. TYiiCKeH ChI3bI-
KIIEH KATThl OET apachlHIAFbl aifMaKTa arblHIAD MOJIEKYJISPJIBIK, MaciTabra eTce, TyTac OpTa
MOJIEIIH KOJIJIaHy oJyiberTe Jypbic eMec. COHBIMEH, TYHICKEH CBHI3BIKIIEH KATTHI OET apachIHJIarbl
aliMakTa eKi CyHbIKIIeH KATThl OETTIH MOJIEKYJISADJIBIK ©3apa dPEKETECYIH 3ePTTEY KAXKET KOHE OChI
aiimakThl HaBbe-CTOKC TeHJieyiH KoJaHyFa 60JIaThiH TYHICKEH ChI3BIKTAH IIeT aifilMakKIileH Daiiyia-
HBICTBIPY KepeK. OchiHgail Taanay eTe Kyp/esi 6ojapl, bipak HaBbe-CToKC TeH ieyiH Ienry yImu
2KAOBICKAK, IIIEKAPAJIBIK, IIIAPTTHIH, OPHBIHA CHIPFAHAK, IIIEKAPAJIBIK, MAPTTHI KOJIIAHYFa OOJIaIbl J1e-
PeH YKOPAMAJIBIMBI3/IBI pacTayra MyMKIiHiK 6epe/ii. OChl JKyMBICTA KAHAJJIAFBI €Ki apajaclaiThiH
cy#bIKTapablH, arblHbl yIniH Hapbe-CTOKC TeHJEYiH HIeltyre CyiblK KeJjeM ojicin Koaanran. Co-
HBIMEH KaTap OChl MaKaJIaJ1a TyHiCKeH OYPBIIIIEeH KAMJLISIPJIbIK CAH apachbIHIarbl OaflIaHbIC 3epT-
TeJIe .

Tvyiitia cesmep: Hasne-Croke Tenmeynep; Exi apamacnaiitoin cyiibikTapasis, arbiabl; Gerris 6ar-
napiama; Ceipranak, mekapasibik, mapt; Cyibik kesem ojaici; Tyiticken cpi3bik; Tyiticken 6ypsir;
Kamumnapabik cam.

Introduction

When an interface between two immiscible fluids joins a solid boundary, a line is formed.
This line is sometimes known as the three-phase line or the contact line. A moving contact
line can be found in many different situations; some cases in which it plays a central role are
the spreading of adhesives, the flowing of lubricants into inaccessible locations, the coating
of solid surfaces with a thin uniform layer of liquid, the displacement of oil by water through
a porous medium, etc. However, the dynamics of the fluid surrounding the contact line, and
hence the contact line itself, are poorly understood. The main difficulty of the modeling of the
contact line motion is the choice of the boundary condition on the solid surface. If the no-slip
condition is used on the solid boundary to determine the flow produced when a fluid interface
moves along a solid boundary, a viscous stress is approached to infinity [1-3], nevertheless
the no-slip boundary condition has been verified for a number of liquid-solid combinations
by careful experimental studies [4]. It seems, unreasonable to continue to apply a continuum
model at the vicinity of the contact line. Thus an inner region, close to the contact line, could
be examined, where the molecular interactions between the two fluids and the solid must be
studied, and this region matched to an outer region, where the Navier-Stokes equations would
apply. Such an analysis would be very difficult, but it has been suggested that the likely
outcome would be equivalent to replacing the no-slip boundary condition by a slip condition,
and continuing to employ the Navier-Stokes equations. Introduction of the precursor film
into the model clearly allows one to remove the viscous stress singularity [2]. Experiments
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indicate that this is not always the case and is in fact unlikely when the observed value of the
contact angle is not small. The physical mechanisms of slip for smooth solid surfaces are still
not completely understood, with possible explanations including formation of a layer of gas
or small-scale bubbles between the liquid and the solid [4,5]. Significant slip can be achieved
for flows near structured surfaces [6]. There are exist many models to simulate slip flow along
the solid surface but one of the most popular is the Navier slip boundary condition, which in
our 2D Cartesian coordinates is written as:

u:/\g—z, aty = 0, (1)
where u is the horizontal velocity component in the x-direction, and \ is a constant called
the slip length. The latter can be interpreted as the distance below the solid-liquid interface
at which the velocity u(y) extrapolates to zero, as sketched in fig. 1. The viscous stress
singularity is avoided when this condition is used instead of the classical no-slip condition [7].
The effect of the slip on the interface motion is numerically investigated in this work. The
incompressible, two immiscible, viscous fluids flow in 2D channel is considered in this article.
In order to find the shape and location of the interface between two fluids, the volume-of-fluid
method is used in this work [9,10,13|. The Navier-Stokes equations are numerically solved
using projection method on non-staggered grid to find the velocities and pressure of the two
fluids flow in the channel [11]. The relation between steady-state contact angle and capillary
number is investigated in this paper and compared with work [8]. All numerical calculations
are performed using Gerris program [14].

v Liquid
u(y)
AL Solid

Figure 1 — Navier slip boundary condition

Formulation of the problem

We numerically solve the Navier-Stokes equations for incompressible, two immiscible,
viscous fluids flow in 2D channel:

a —
% +V - (piil) = —Vp+V - (2uE), )
Lo
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V.-i=0, (4)
dp ,

5 TV () =0, (5)
p="Fpi+(1—F)ps, (6)
p=Fpy+ (1= F)ps, (7)

where F is the parameter that identify a given fluid i (i=1 or 2) is present at a particular
location x:

1, if z is in fluid 7
F@y‘{a if 2 is not in fluid ¢ ®)

If we substitute the equation (6) into the equation (5), we have that:

oF

— +u-VF=0. 9

at " ©)
In order to find the shape and location of the interface between the two fluids, we use the

volume-of-fluid method and advect this interface using equation (9). Equations (2, 4 and 9)

numerically solved using the projection method on non-staggered grid [11] and the following

boundary conditions were used (see fig. 2):

Figure 2 — The steady movement of a interface between two fluids in a channel

1) Inlet boundary condition:

8 Uin

ox

=0, (10)
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2) At the walls of the channel:

Uy = )\%, (13)
Uy = 0, (14)
% =0, (15)
where A is the slip length and 77 is the normal vector to the wall.
3) At the interface between the two fluids - S:
[u]s =0, (16)
—[—p+2un - E-7]s = ok, (17)
k=-V-1i, (18)
—[2ut- E -#i]s =1 Vgo, (19)

where o is the surface tension, k is the curvature, 77 is the normal vector to the interface
S and  is the tangent vector to the interface S. In order to solve the equations (2, 4 and 9)
we need set outlet boundary conditions too. The outflow conditions are not known a priori.
But nevertheless, we need to prescribe suitable conditions to make the problem determinate.
An analysis of outflow boundary conditions is given in the literature [12]. Here the following
outlet boundary conditions were used:

auout

ox

—0, (20)
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® ©

Figure 3 — Formation of fingering pattern in unstable interface between two fluids, when y = 1, 0 = 1 and
A =0.01

0.55 T T T
aty=-04 —— aty=-0.3 -------

0.45 - .

03 R

0.25 B

02 | .

Figure 4 — Profile of horizontal component velocity, when g = 1, 0 = 1 and A = 0.01

® ©

Figure 5 — Shape of the interface between two fluids, when p = 1, 0 = 5 and A = 0.01

0.45 T . :
aty=-04 —— aty=-0.3 -------

04

0.2

0.15

Figure 6 — Profile of horizontal component velocity, when p = 1, 0 = 5 and A = 0.01
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Vout = 07 (21)
Pout = 0. (22)
Results

The steady state solution of the equations (2, 4) with boundary conditions at the walls of
the channel (13 - 15) and with boundary conditions at the interface between the two fluids

(16 - 19) can be obtained by neglecting the viscous force on the interface between the two
fluids (19):

h2—y2
2

U= DPin — Pout _pc<
uL

+AR), (23)

where p. is the capillary pressure. The value of capillary pressure can be obtained from
Young-Laplace equation and for 2D case (see fig. 2):

ocost
= , 24

The average value of (23):

Pin — Pout — Pec h'2
— + Ah).
wL ( 3 )

u =

(25)

The value of the steady state contact angle € is unknown in the equation (23) or (25).
The numerical investigation of interface motion between two immiscible fluids in a channel
is performed in this paper to find this contact angle. In this work the equations (2 - 9) are
dimensionless. The width of the channel is 2h = 1 and length of the channel is L = 5 (see
fig. 2). The viscosities of the two fluids are the same: u = 1 = pp = 1. Initially, the contact
angle equals 90 degrees. The apparent contact angle is introduced in this article, and it is
difference between initial contact angle and steady state contact angle:

Oapp = 90° — 0. (26)

When the surface tension is sufficiently small the fingering pattern is formed in unstable
interface between two fluids (see fig. 3), and as can be seen in fig. 4, the velocities are different
along the transverse section of the channel at the interface between two fluids. However, if
we increase the surface tension, the fingering pattern is no longer formed in the interface
between two fluids (see fig. 5), and the velocities are same along the transverse section of the
channel at the interface between two fluids (see fig. 6). In this paper we only considered the
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case when the fingering pattern is not formed in the interface between two fluids. Three cases
considered in this article to verify the relation between apparent contact angle and capillary
number, which is investigated in [§]:

02, ~ Ca, (27)

where Ca is the capillary number. Capillary number is the ratio between viscous force
and surface tension force:

Ca = 1YL, (28)

g

0.5

T T T
UcL = Ucl®) ——
0.48 B

0.46 - ]
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0.34 ]

0.32 - ]

03 | | | | | |
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A

Figure 7 — Relation between contact line velocity and slip length, when y =1, 0 =5
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Figure 8 — Relation between apparent contact angle and slip length, when y =1, 0 =5
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Figure 9 — Relation between contact line velocity and surface tension, when ¢ = 1 and A = 0.01
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Figure 10 — Relation between apparent contact angle and surface tension, when g = 1, A = 0.01

where Ugy, is the contact line velocity. In the first case, the surface tension is constant, and
relation between the apparent contact angle and slip length is investigated. As can be seen
in fig. 7, the contact line velocity are linearly depends on the slip length, so it is mean that
the viscous stress is constant at the walls of the channel. Since the viscous stress is constant
at the walls of the channel (1) and surface tension is constant too, therefore as can be seen
in fig. 8, the apparent contact angle almost doesn’t depend on the slip length. In the second
case, the slip length is constant, but the surface tension is changed, and relation between the
apparent contact angle and surface tension is investigated (see fig. 10). As can be seen in
fig. 9, the contact line velocity is slowly changed when surface tension is greater than 5, so
in this region the viscous stress at the walls is almost constant. We can verify the relation
between the apparent contact angle and capillary number for this case (see fig. 11). In the
third case, the slip length and surface tension is constant, but the pressure drop is changed,
and relation between the apparent contact angle and pressure drop is investigated (see fig.
13). The relation between the apparent contact angle and capillary number also verified for
this case (see fig. 14).
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0.5

T T T
t98,pp = 196,p(Ca™’)

04

03

tgeapp

0.2

0.1

Il Il Il Il
015 02 025 03 035 04 045 05
Ca1/3

Figure 11 — Relation between apparent contact angle and capillary number, when p = 1, A = 0.01
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Figure 12 — Relation between contact line velocity and pressure drop, when u = 1, 0 = 20, A = 0.01
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Figure 13 — Relation between apparent contact angle and pressure drop, when © = 1, ¢ = 20, A = 0.01
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Figure 14 — Relation between apparent contact angle and capillary number, when p = 1, 0 = 20, A = 0.01

Conclusion

A moving contact line can be found in many different situations; some cases in which it
plays a central role are the spreading of adhesives, the flowing of lubricants into inaccessible
locations, the coating of solid surfaces with a thin uniform layer of liquid, the displacement of
oil by water through a porous medium, etc. In most cases it is necessary to calculate the steady
state contact angle, to find the capillary pressure (24) or at least find the relation between
steady state contact angle and other parameters (surface tension, viscosity etc.). In this
article the relation between steady state contact angle and capillary number is numerically
investigated, and this relation is reasonably good matched with [§].
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