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Abstract. The behavior thermocouple in a solid medium is an interesting opportunity problem for
accuracy of temperature measurement.This work considers interaction of thermocouple embedded
in the solid substance pyrolyzed by external heat source with heat wave propagating inside
the substance from the surface of its pyrolysis. Numerical simulation has shown that significant
difference in the values of thermal conductivity coefficients of solid substance and thermocouple
material results in the heat flow along thermocouple wires inside the substance that substantially
changes thermo junction temperature thus misrepresenting thermocouple data.

Keywords: numerical simulation, heat transfer in solids, finite-difference methods, thermocouple
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1 Introduction

Subsurface thermocouple sensors are widely applied in various technical apparat used for heat
flux measurement in complex heat-stressed structures [1] and in various heat transfer devices
[1] as well as at combustion of unitary solid fuels [2,3,4]. The evaluation of the consistency of
values determined on the basis of thermocouple data becomes a problem. Errors result from the
difference of thermophysical properties of thermocouple material and studied substance. At large
temperature gradients in the heated substance, as a rule, heat outflow from the surface increases
since thermal conductivity of metal thermocouples turns out to be substantially higher than
thermal conductivity of the studied object substance. Extra difficulties are caused by variability
of distance to the heat transfer surface conditioned by pyrolysis (carry-over) of the substance. In
axisymmetrical statement, this problem was considered earlier in the work [5].

2 Mathematical Model Of Heat Wave Interaction With Thermocouple

Consider the process of temperature profile measurement in condensed substance pyrolyzed under
the influence of external heat source. Formulate three-dimensional non-stationary problem of heat
transfer between the solid and the embedded thermocouple (Fig. 1) assuming that substance
pyrolysis rate and its surface temperature are constant. The thermocouple head is a sphere with
radius 𝑅𝑚 intersected at some angle 2𝛼 by two cylindrical conductors each with radius 𝑟𝑚. In
this case, there are two planes of symmetry which allow reducing the size of the calculated area to
a quarter from the full one. The view of solution area is shown in (Fig. 1a). Values of the angle 𝛼
changed from 0 to 60∘. It was assumed that at 𝛼−0 the wires were located so close to each other
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that they could be replaced by one wire with double section area. In Cartesian coordinate system,
this area is 𝐷{𝑥𝑠(𝑦, 𝑧, 𝑡) ≤ 𝑥 ≤ 𝑥max, 0 ≤ 𝑦 ≤ 𝑦max, 0 ≤ 𝑧 ≤ 𝑧max, 𝑡 ≥ 0}, which external
borders are selected at rather large distance from the thermocouple head to avoid the influence
of heat transfer between the substance and the thermocouple on temperature distribution. Left
boundary of the area is a plane surface of pyrolysis moving inside the substance with constant
velocity 𝑟𝑏, and its position is determined by the correlation 𝑥𝑠(𝑦, 𝑧, 𝑡) = 𝑥𝑠(𝑦, 𝑧, 0) + 𝑟𝑏𝑡.
Coordinate origin is in the geometry center of the thermocouple spherical head. Equation of
thermal conductivity in the area 𝐷 is written in divergence form
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where 𝐶, 𝜌 and 𝜆 are specific heat capacity, density, and coefficient of heat conductivity.
These values are assumed constant but different in the areas occupied by the substance and

thermocouple at which boundaries they change unevenly.
Recording of the equation (1) in divergence form provides correct calculation of heat fluxes

in the case of discontinuous values of thermophysical parameters.
For equation (1), the following boundary conditions were set:

𝑇 (𝑥𝑠, 𝑦, 𝑧, 𝑡) = 𝑇𝑠;
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Fig. 1. Thermocouple arrangement scheme (a) and area of solution (b).

Initial conditions were set from the known Michelson solution describing temperature
distribution in the plane heat wave moving along the 𝑂𝑋 axis with constant velocity 𝑟𝑏:

𝑇 (𝑥, 𝑦, 𝑧, 0) = 𝑇0 + (𝑇𝑠 − 𝑇0) exp(−𝑟𝑏(𝑥− 𝑥𝑠(0))𝐶𝑝𝜌𝑝/𝜆𝑝),



26 Вычислительные технологии, т.20, 2015 Вестник КазНУ, № 3(86), 2015

where index 𝑝 relates to the substance parameters, 𝑇𝑠 and 𝑇0 are the pyrolysis temperature
and initial temperature that were assumed constant. Initial position of the left boundary 𝑥 =
𝑥𝑠(0) is selected rather far from the thermocouple head top so that temperature distribution in
thermocouple becomes close to 𝑇0.

3 Numerical Method Of Solution

For numerical solution of equation (1), the finite volume method was applied to carry out
calculations on random finite-difference grid. The equation was written in in-tegral form for
arbitrary fixed volume 𝑉 : ∫︁
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surface 𝑆 limiting the volume 𝑉 . In the area 𝐷, let us build arbitrary difference grid with
each cell topologically equivalent to parallelepiped. Designate the volume of such cell as 𝑉𝑖,𝑗,𝑘
and the average value 𝑄 on the 𝑛-th layer in time related to the center of such cell via 𝑄𝑛𝑖,𝑗,𝑘.
Then equation (2) is approximated by the following difference relation with the second order of
accuracy in time and space:
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where 𝜏 is the step in time. Scalar productions in square brackets are heat fluxes through
respective areas of the volume facets 𝑉𝑖,𝑗,𝑘 multiplied by single normal to them. Method of their
calculation is described in the work [6]. The obtained difference scheme is implicit, and for its
solution we may apply the following iteration scheme based on the introduction of pseudo-time
on each time layer in time:[︂
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where 𝜏1 is the step in pseudo-time and s is the number of iteration in pseudo-time. For realization
(4), the scheme of splitting in spatial variables is used [7] (the subscripts are partially omitted):
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Here 𝛿𝑠 are the corrections to the value 𝑄; 𝛬1, 𝛬2, 𝛬3 are the difference operators considering
only the second derivatives in respective directions. After iteration convergence on pseudo-time
𝛿𝑠 = 0, exact approximation of complete initial equation takes place. The boundary conditions
for 𝛿𝑠 are preset as follows. On the left boundary 𝛿𝑠 = 0, on the other ones, "soft"boundary
conditions are set. To calculate the value 𝑄 at the first step in time (𝑛 = 0) in in the scheme (5),
time approximation of the first order of accuracy was used since the values of the grid function
𝑄−1
𝑖,𝑗,𝑘 are not known.
To build the curvilinear spatial difference grid we used the method based on numerical solution

(scheme of stabilizing correction) of inverted two-dimensional Beltrami equations or diffusion in
relation to the control metric [8]. The advantage of this method is possibility to build adaptive
difference grids with preset properties. In particular, using the control metric we may control
thickening of the grid nodes. This technology served to build the curvilinear block difference
grid in the area 𝐷; it thickened towards the area boundaries occupied by thermocouple. The
grid was quasi-orthogonal in the vicinity of the section boundaries between the substance and
the thermocouple. Such grid provided acceptable accuracy of calculations at small number of its
nodes.

In the area between the left boundary and the thermocouple head, uneven rectangular
difference grid was built that served to use the method of pyrolysis surface "trap-ping"in the grid
node. The essence of the method is that the step in time was selected in such a way that at each
further step in time, a position of the left boundary 𝑥𝑠(𝑡+𝛥𝑡) = 𝑥𝑠(𝑡) + 𝑟𝑏𝛥𝑡 coincided with the
right closest vertical line of the difference grid. Then, a grid transformation during solution is
not needed. Positions of the upper and right boundaries were selected to avoid significant effect
on temperature distribution in the area occupied by thermocouple. The difference grid did not
match the area boundaries occupied by thermocouple. Therefore, values of thermal conductivity
coefficient at the cell boundaries were calculated as geometrical mean between its values at the
centers of the adjacent cells. The values of 𝐶 · 𝜌 were calculated at the cell centers considering
shares of these values for thermocouple and substance in the cell volume.

Accuracy of numerical solution was evaluated by calculations on progressively thickening
grids. As a result, it was ascertained that the difference scheme with the number of grids in
the area 𝐷 110 × 110 × 110 over the coordinate axes provided relative accuracy of temperature
calculations of approximately 0.1%.

4 Calculation Results

The calculations were performed for various radii of thermocouple head 𝑅𝑚, the wires’ radii
𝑟𝑚 were determined from the correlations 𝑟𝑚/𝑅𝑚 = 0.2 and 0.75. The following values of
thermophysical parameters were used:
𝜌𝑝 = 1.6[g/cm3], 𝜌𝑚 = 8[g/cm3], 𝐶𝑝 = 0.3[cal/(g·K)], 𝐶𝑚 = 0.2[cal/(g·K)], 𝜆𝑝 =
0.00072[cal/(cm·s·K)], 𝜆𝑚 = 0.16[cal/(cm·s·K)],
where index𝑚 stands for thermocouple material and index 𝑝 for substance material. Temperature
of pyrolysis surface 𝑇𝑠 = 650K, initial temperature 𝑇0 = 300K.

Calculations were carried out up to the moment of time when the pyrolysis surface contacted
the thermocouple head. Values of thermocouple geometry parameters varied. Since spatial
distribution of metal contacts forming thermocouple head and its voltage in seal is not clear
we took the geometry center as a point for determination of thermocouple head temperature.
Temperature at this point was determined by averaging over the volume of thermocouple head
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𝑉 :
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The relative error of thermocouple temperature measurement was determined from the
expression
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where 𝑇∞ = 𝑇 (0, 𝑦max, 𝑧max, 𝑡) is the temperature at the point on the outer boundary of solution
area rather remote from the thermocouple.

Two series of calculations were carried out, the first — at the pyrolysis rate 𝑟𝑏 = 0, 1cm/s,
the second — at 𝑟𝑏 = 1cm/s. Results of calculations are presented as dependence of relative
error of temperature measurement 𝛿(𝜉) on dimensionless distance between pyrolysis surface and
thermocouple head 𝜉 = 𝑅𝑚 − 𝑥𝑠(𝑡)/𝛥, where 𝛥 = 𝜆𝑝/𝐶𝑝𝜌𝑝𝑟𝑏 is the width of the heat front of
pyrolysis wave. Hatches designate variation of the relations of heat flux values from pyrolysis
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at the points on symmetry axis and outer boundary. Width of heat front was 𝛥 = 150𝜇𝑚 at
pyrolysis rate 𝑟𝑏 = 0.1cm/s and 𝛥 = 15𝜇𝑚 — at 𝑟𝑏 = 1cm/s, respectively. Behavior of the 𝛿(𝜉)
value at 𝑟𝑏 = 0.1cm/s is shown in (Fig. 2, 3, 4, 5). It is seen that wire configuration determined
by the angle 𝛼 significantly influences the value of the measurement error. The least measurement
error is provided by the thermocouple with the least head radius. Presence of maximum on the
curves is bound with the fact that when the pyrolysis front approaches the thermocouple head
the heat outflow over the wires inside the solid substance increases, however, further at small
distances 𝜉 the thermocouple head heating sharply increases that results in the decrease of the
value 𝛿(𝜉).

Fig. 2. Variation of 𝛿(𝜉) for 𝑅𝑚 = 12𝜇𝑚 (𝑟𝑚/𝑅𝑚 = 0.2). ≡Figure 6 𝛼 = 0∘ (1), 15∘ (2), 45∘ (3), 60∘ (4).

In (Fig. 6, 7, 8, 9) there are results of analogous calculations at pyrolysis rate 𝑟𝑏 = 1cm/s.
It is seen that along with the increase in a thermocouple head radius the measurement error
decreases, and at 𝑅𝑚 > 40𝜇𝑚 it even becomes negative. This is bound with the fact that at
larger dimensions of thermocouple head, the width of the heat wave becomes lesser than the head
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Fig. 3. Variation of 𝛿(𝜉) for 𝑅𝑚 = 20𝜇𝑚 (𝑟𝑚/𝑅𝑚 = 0.2). ≡Figure 7 𝛼 = 0∘ (1), 15∘ (2), 45∘ (3), 60∘ (4).

Fig. 4. Variation of 𝛿(𝜉) for 𝑅𝑚 = 45𝜇𝑚 (𝑟𝑚/𝑅𝑚 = 0.2). ≡Figure 8 𝛼 = 0∘ (1), 15∘ (2), 45∘ (3), 60∘ (4).

Fig. 5. Variation of 𝛿(𝜉) for 𝑅𝑚 = 120𝜇𝑚 (𝑟𝑚/𝑅𝑚 = 0.2). ≡Figure 9 𝛼 = 0∘ (1), 15∘ (2), 45∘ (3), 60∘ (4).
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Fig. 6. Variation of 𝛿(𝜉) for 𝑅𝑚 = 12𝜇𝑚 (𝑟𝑚/𝑅𝑚 = 0.2). ≡Figure 2 𝛼 = 0∘ (1), 15∘ (2), 45∘ (3), 60∘ (4).

Fig. 7. Variation of 𝛿(𝜉) for 𝑅𝑚 = 20𝜇𝑚 (𝑟𝑚/𝑅𝑚 = 0.2). ≡Figure 3 𝛼 = 0∘ (1), 15∘ (2), 45∘ (3), 60∘ (4).

Fig. 8. Variation of 𝛿(𝜉) for 𝑅𝑚 = 45𝜇𝑚 (𝑟𝑚/𝑅𝑚 = 0.2). ≡Figure 4 𝛼 = 0∘ (1), 15∘ (2), 45∘ (3), 60∘ (4).
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Fig. 9. Variation of 𝛿(𝜉) for 𝑅𝑚 = 120𝜇𝑚 (𝑟𝑚/𝑅𝑚 = 0.2). ≡Figure 5 𝛼 = 0∘ (1), 15∘ (2), 45∘ (3), 60∘ (4).

diameter. Therefore, in this case the head simply has insufficient time for heating that influences
the error value.

Absolutely analogous behavior of the value 𝛿 shown in (Fig. 10), takes place at small pyrolysis
rate for rather large dimensions of thermocouple head as well. For thermocouples with relatively
large radii of wires with correlation 𝑟𝑚/𝑅𝑚 = 0.75, the measurement error turns out to be much
higher (Fig. 11), that is bound with the increase in heat flux in the wires because of the increase
in the areas of their transverse sections.

Fig. 10. Variation of 𝛿(𝜉) for 𝑅𝑚 = 400𝜇𝑚 (𝑟𝑏 = 0.1cm, 𝑟𝑚/𝑅𝑚 = 0.2). 𝛼 = 0∘ (1), 15∘ (2), 45∘ (3), 60∘ (4).

The obtained results prove that accuracy of information on temperature distribution in near-
surface layer of solid substance which thickness is comparable with the front width of pyrolysis
hear-wave may be rather unreliable. Moreover, heat sink into thermocouple results in significant
increase of heat outflow from pyrolysis surface at its approaching a thermocouple that may result
in significant change of pyrolysis rate in the vicinity of thermocouple head. Values 𝑞(𝛼) in the
moment of pyrolysis surface approach to thermocouple head are given in the table for two rates
of pyrolysis. It is seen that the behavior of this value at the increase of the angle 𝛼 significantly
depends on thermocouple head size and pyrolysis rate determinant for heat overflows between
the head and wires. This fact may serve an additional source for inaccuracy at thermocouple
temperature measurement in the near-surface layer.

5 Conclusions
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Fig. 11. Variation of 𝛿(𝜉) for 𝑟𝑚/𝑅𝑚 = 120𝜇𝑚 (𝑟𝑏 = 0.1cm/s, 𝛼 = 60∘). 𝛼 = 0∘ (1), 15∘ (2), 45∘ (3), 60∘ (4).

Table 1. Dependencies of heat flux values on the angle 𝛼

𝑟𝑏 = 0.1cm/s 𝑟𝑏 = 1.0cm/s
𝑅𝑚𝜇𝑚 0∘ 15∘ 45∘ 60∘ 0∘ 15∘ 45∘ 60∘

12 53.4 23.8 19.8 19.8 123.8 120.7 131.8 145.3
20 94.4 56.6 44.3 43.9 91.0 105.2 121.7 137.7
45 137.5 110.9 101.8 105.7 59.8 61.5 73.2 84.1
120 128.8 125.8 138.6 153.9 27.4 28.2 33.8 40.0
400 64.2 66.0 77.7 88.4

1. Numerical simulation has revealed significant error at thermocouple temperature
measurement in solid at its pyrolysis, and the error value depends both on pyrolysis rate
and geometry dimensions of thermocouple.

2. The obtained results may be used to correct the error of temperature measurement with the
use of thermocouples at experimental investigations of solids pyrolysis.
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