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Abstract. The third order finite-difference shock-capturing essentially non-oscillatory (ENO)
scheme for a non-uniform grid has been developed. The design of the ENO scheme is based on
the methodology for uniform grids. The efficiency of the developed algorithm is demonstrated by
the numerical experiments on the simulation of the three-dimensional turbulent steady flowfield
generated by the transverse hydrogen injection into the supersonic air cross-flow. The analysis of
the different variations of the limiter functions for the developed algorithm is provided to define the
optimal function producing the smallest spread of the solution. The effect of the limiter choice on the
mixing layer dynamics is studied for the non-uniform grid. The numerical experiments revealed that
the nonoptimal choice of limiter can result in the overgrowth of the mixing layer, that is important
for the numerical modeling of the combustion.
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1 Introduction

The study of the transverse injection into a supersonic flow is an important issue in the modeling
of the supersonic combustion in scramjets. The mixing flowfield is very complex, the Fig. 1
shows the general structure of the supersonic freestream with the transverse injected jet [1,2]. A
three-dimensional bow shock forms ahead the injection and interacts with the boundary layer,
producing the separation shock. The separated region results in a smaller weak shock, and these
three shocks create the lambda shock structure. The underexpanded jet jet emerges from the
orifice and expands to the freestream pressure at the jet boundary, the barrel shock occurs.
Acceleration of the jet flow continues until a normal shock (Mach disk) forms, behind which
the flow becomes subsonic and accelerates then downstream to the mainflow velocity value.
Further downstream the jet boundary takes the form of a pair of the counter rotating vortices.
The horseshoe-vortex wraps around the jet and forms the wake vortices. Also there is another
recirculation zone downstream of the jet due to the rarefaction behind the jet.

To capture these complex structures, in the regions of the large gradients (in the boundary
layer, near the wall and on the jet exit) condensation of the grid is introduced and schemes
of the high order of accuracy are used. At the present, TVD (Total Variation Diminishing),
ENO (essentially non-oscillatory) and WENO (weighted ENO) schemes are successful tools for
numerical simulations of supersonic flows. Traditionally these schemes have been derived for a
uniform grid with a coordinate system transformation [3,4,5]. Recently, a number of authors
[6,7] have investigated applications of TVD schemes to non-uniform grids and analyzed the slope
limiters on non-uniform grids.

The objective of the present paper is development of the third order finite-difference shock-
capturing ENO scheme for a non-uniform grid. The design of the ENO scheme is based on the
methodology for uniform grids proposed by the authors in [8]. Here, the Newton interpolant
of the third order degree was adapted for the non-uniform grid to construct the essentially
non-oscillatory piecewise polynomial. The efficiency of the developed algorithm is demonstrated
by the numerical simulation of the three-dimensional turbulent steady flowfield generated by
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the transverse hydrogen injection into the supersonic air cross-flow by solving the Reynolds-
averaged Navier-Stokes equations closed by the 𝑘−𝜔 turbulent model. Additionally, the effective
adiabatic parameter of the gas mixture is introduced. It allows one to calculate the derivatives
of the pressure with respect to independent variables for determining the Jacobian matrices,
and thus to construct an efficient implicit algorithm of the solution. The analysis of the effect
of the modified limiter choice on the solution is provided for the numerical simulation of the
three-dimensional supersonic air flow with the perpendicular injected hydrogen.

a b

Fig. 1. Schematic diagram of the flowfield [1] (a), in the symmetry section xz [2] (b)

1.1 Governing Equations

Basic equations for the problem are the system of the three-dimensional Reynolds averaged
Navier-Stokes equations for the compressible turbulent multispecies gas in the Cartesian
coordinate system written in the conservative form as

𝜕𝑈

𝜕𝑡
+
𝜕 (𝐸 −𝐸𝑣)

𝜕𝑥
+
𝜕 (𝐹 − 𝐹 𝑣)

𝜕𝑦
+
𝜕 (𝐺−𝐺𝑣)

𝜕𝑧
= 0 . (1)

Vectors 𝑈 ,𝐸,𝐹 ,𝐺 are defined by

𝑈 = (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤,𝐸𝑡, 𝜌𝑌𝑘)
𝑇 ,

𝐸 =
(︀
𝜌𝑢, 𝜌𝑢2 + 𝑝, 𝜌𝑢𝑣, 𝜌𝑢𝑤, (𝐸𝑡 + 𝑝)𝑢, 𝜌𝑢𝑌𝑘

)︀𝑇
,

𝐹 =
(︀
𝜌𝑣, 𝜌𝑢𝑣, 𝜌𝑣2 + 𝑝, 𝜌𝑣𝑤, (𝐸𝑡 + 𝑝) 𝑣, 𝜌𝑣𝑌𝑘

)︀𝑇
,

𝐺 =
(︀
𝜌𝑤, 𝜌𝑢𝑤, 𝜌𝑣𝑤, 𝜌𝑤2 + 𝑝, (𝐸𝑡 + 𝑝)𝑤, 𝜌𝑤𝑌𝑘

)︀𝑇
,

and vectors 𝐸𝑣,𝐹 𝑣,𝐺𝑣 are associated with viscous stress

𝐸𝑣 = (0, 𝜏𝑥𝑥, 𝜏𝑥𝑦, 𝜏𝑥𝑧, 𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + 𝑤𝜏𝑥𝑧 − 𝑞𝑥, 𝐽𝑘𝑥)𝑇 ,

𝐹 𝑣 = (0, 𝜏𝑥𝑦, 𝜏𝑦𝑦, 𝜏𝑦𝑧, 𝑢𝜏𝑥𝑦 + 𝑣𝜏𝑦𝑦 + 𝑤𝜏𝑦𝑧 − 𝑞𝑦, 𝐽𝑘𝑦)
𝑇 ,

𝐺𝑣 = (0, 𝜏𝑥𝑧, 𝜏𝑦𝑧, 𝜏𝑧𝑧, 𝑢𝜏𝑥𝑧 + 𝑣𝜏𝑦𝑧 + 𝑤𝜏𝑧𝑧 − 𝑞𝑧, 𝐽𝑘𝑧)
𝑇 .

The components of the viscous stress tensor are

𝜏𝑥𝑥 =
2𝜇

3𝑅𝑒
(2𝑢𝑥 − 𝑣𝑦 − 𝑤𝑧) , 𝜏𝑦𝑦 =

2𝜇

3𝑅𝑒
(2𝑣𝑦 − 𝑢𝑥 − 𝑤𝑧) ,

𝜏𝑧𝑧 =
2𝜇

3𝑅𝑒
(2𝑤𝑧 − 𝑢𝑥 − 𝑣𝑦) , 𝜏𝑥𝑦 = 𝜏𝑦𝑥 =

𝜇

𝑅𝑒
(𝑢𝑦 + 𝑣𝑥) ,

𝜏𝑥𝑧 = 𝜏𝑧𝑥 =
𝜇

𝑅𝑒
(𝑢𝑧 + 𝑤𝑥) , 𝜏𝑦𝑧 = 𝜏𝑧𝑦 =

𝜇

𝑅𝑒
(𝑣𝑧 + 𝑤𝑦) .
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The heat flux is defined by

𝑞𝑥 =
𝜇

𝑃𝑟𝑅𝑒

𝜕𝑇

𝜕𝑥
+

1

𝛾∞𝑀2
∞

𝑁∑︁
𝑘=1

ℎ𝑘𝐽𝑥𝑘 ,

𝑞𝑦 =
𝜇

𝑃𝑟𝑅𝑒

𝜕𝑇

𝜕𝑦
+

1

𝛾∞𝑀2
∞

𝑁∑︁
𝑘=1

ℎ𝑘𝐽𝑦𝑘 ,

𝑞𝑧 =
𝜇

𝑃𝑟𝑅𝑒

𝜕𝑇

𝜕𝑧
+

1

𝛾∞𝑀2
∞

𝑁∑︁
𝑘=1

ℎ𝑘𝐽𝑧𝑘 ,

and the diffusion flux is determined by

𝐽𝑘𝑥 = − 𝜇

𝑆𝑐𝑅𝑒

𝜕𝑌𝑘
𝜕𝑥

, 𝐽𝑘𝑦 = − 𝜇

𝑆𝑐𝑅𝑒

𝜕𝑌𝑘
𝜕𝑦

, 𝐽𝑘𝑧 = − 𝜇

𝑆𝑐𝑅𝑒

𝜕𝑌𝑘
𝜕𝑧

.

The pressure and the total energy are

𝑝 =
𝜌𝑇

𝛾∞𝑀2
∞

𝑁∑︁
𝑘=1

𝑌𝑘
𝑊𝑘

, 𝐸𝑡 =
𝜌

𝛾∞𝑀2
∞

𝑁∑︁
𝑘=1

𝑌𝑘ℎ𝑘 − 𝑝+
1

2
𝜌(𝑢2 + 𝑣2 + 𝑤2) ,

The specific enthalpy and the specific heat at constant pressure of the 𝑘th species are

ℎ𝑘 = ℎ0𝑘 +

∫︁ 𝑇

𝑇0

𝑐𝑝𝑘𝑑𝑇 , 𝑐𝑝𝑘 = 𝐶𝑝𝑘

(︃
𝑁∑︁
𝑘=1

𝑌𝑘
𝑊𝑘

)︃
,

where the molar specific heat is written in the polinomial form as

𝐶𝑝𝑘 =
5∑︁
𝑖=1

�̄�𝑘𝑖𝑇
𝑖−1 ,

the coefficients �̄�𝑘𝑖 are taken from the thermodynamic tables JANAF [9].
The viscosity coefficient is defined as a sum of the laminar and turbulent viscosity coefficients:

𝜇 = 𝜇𝑙 + 𝜇𝑡, where 𝜇𝑙 is determined by Wilke formula, and 𝜇𝑡 is determined by 𝑘 − 𝜔 turbulent
model [10].

In the system (1) 𝑢, 𝑣, 𝑤, 𝜌, 𝑇 represent the components of the velocity vector, the density
and the temperature, respectively. 𝑌𝑘 and 𝑊𝑘 are the mass fraction and the molecular weight
of the kth species, where 𝑌1 stands for the mass fraction of 𝐻2, 𝑌2 for the mass fraction of 𝑂2,
𝑌3 for the mass fraction of 𝑁2. 𝛾 is the adiabatic parameter, 𝑀 is the Mach number. Index 0
indicates jet parameters and index ∞ indicates parameters of the main flow.

The system (1) is written in a nondimensional form. Constitutive parameters are parameters
of the main flow at the inlet (𝑢∞, 𝜌∞, 𝑇∞). The injector diameter 𝑑 is chosen as the characteristic
length.

1.2 Boundary Conditions

On the flow field entrance, the parameters of the free stream are given

𝑝 = 𝑝∞, 𝑇 = 𝑇∞, 𝑢 = 𝑀∞

√︂
𝛾∞𝑅0𝑇∞
𝑊∞

, 𝑣 = 𝑤 = 0, 𝑌𝑘 = 𝑌𝑘∞, 𝑊𝑘 = 𝑊𝑘∞,

𝑥 = 0, 0 ≤ 𝑦 ≤ 𝐻𝑦, 0 ≤ 𝑧 ≤ 𝐻𝑧.
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Also boundary layer is given near the wall, the longitudinal velocity component is approximated
by the 1/7th power law.

On the injector, the parameters of the jet are given

𝑝 = 𝑛𝑝∞, 𝑇 = 𝑇0, 𝑢 = 𝑣 = 0, 𝑤 = 𝑀0

√︂
𝛾0𝑅0𝑇0
𝑊0

, 𝑌𝑘 = 𝑌𝑘0, 𝑊𝑘 = 𝑊𝑘0,

𝑧 = 0, |𝑥2 + 𝑦2| ≤ 𝑅,

where 𝑛 = 𝑝0/𝑝∞ is the pressure ratio.
The non-reflecting boundary conditions are adopted on the flow field exit [11]. The adiabatic

no-slip boundary condition on the wall and the symmetry boundary condition on the symmetry
faces are specified. Here 𝐻𝑥, 𝐻𝑦 and 𝐻𝑧 are the length, width and height of the computational
domain, respectively. 𝑅 is the injector radius.

2 Method of Solution

The problem is solved by the implicit method. The methodology is similar to that on a uniform
grid and can be found in [8,12]. Numerical solution is performed in two steps. At the first step
the thermodynamic parameters and at the second step the mass fractions are resolved. The
conservation equations are discretized using a first-order forward difference operator for the
time derivative. The upwind differences of the first order of accuracy have been used for the
approximation of the first derivatives, and the central differences of the first order of accuracy
have been used for the second derivatives. For the approximation of the convective terms, the
ENO scheme of the third order is applied, which will be described below. The obtaining system
of equations is solved by the factorization using the matrix sweep method for the vector of the
thermodynamic parameters and the tridiagonal inversion for the vector of the mass fractions.

Finite Difference ENO Scheme on Non-Uniform Grid. For numerical solution of (1), the
ENO scheme of the third order is applied for the inviscid convective fluxes, where the Newton
interpolant of the third order degree was adapted for the non-uniform grid to construct the
essentially non-oscillatory piecewise polynomial. After that, the reconstruction procedure via
primitive function is applied. In accordance with the principle of the ENO scheme, the inviscid
convective fluxes are presented as

𝐸𝑚 = 𝐸𝑛+1 + (𝐸𝑥 +𝐷𝑥)𝑛 . (2)

In (2), 𝐸𝑚 is the modified flux at the node point (𝑖, 𝑗, 𝑘), which consists of the original convective
vector 𝐸 and additional terms of the high order of accuracy 𝐸𝑥, 𝐷𝑥:

𝐸±
𝑥,𝑖 = ±𝑙𝑖𝑚𝑖𝑡𝑒𝑟1

(︀
�̄�𝑥,𝑖−1/2, �̄�𝑥,𝑖+1/2

)︀
, (3)

𝐷+
𝑥,𝑖 =

⎧⎨⎩ 𝑙𝑖𝑚𝑖𝑡𝑒𝑟2(𝑑𝑖�̄�
+
𝑥,𝑖−1/2, 𝑑𝑖+1�̄�

+
𝑥,𝑖+1/2), if

⃒⃒⃒
𝛥−

(︁
𝛥−𝑈
𝑠𝑖

)︁⃒⃒⃒
≤
⃒⃒⃒
𝛥+

(︁
𝛥−𝑈
𝑠𝑖

)︁⃒⃒⃒
𝑙𝑖𝑚𝑖𝑡𝑒𝑟2(𝑑𝑖+1�̂�

+
𝑥,𝑖+1/2𝑑𝑖+2�̂�

+
𝑥,𝑖+3/2), if

⃒⃒⃒
𝛥−

(︁
𝛥−𝑈
𝑠𝑖

)︁⃒⃒⃒
>
⃒⃒⃒
𝛥+

(︁
𝛥−𝑈
𝑠𝑖

)︁⃒⃒⃒

𝐷−
𝑥,𝑖 =

⎧⎨⎩ 𝑙𝑖𝑚𝑖𝑡𝑒𝑟2(𝑑𝑖�̂�
−
𝑥,𝑖−3/2, 𝑑𝑖+1�̂�

−
𝑥,𝑖−1/2), if

⃒⃒⃒
𝛥−

(︁
𝛥+𝑈
𝑠𝑖+1

)︁⃒⃒⃒
≤
⃒⃒⃒
𝛥+

(︁
𝛥+𝑈
𝑠𝑖+1

)︁⃒⃒⃒
𝑙𝑖𝑚𝑖𝑡𝑒𝑟2(𝑑𝑖+1�̄�

−
𝑥,𝑖−1/2𝑑𝑖+2�̄�

−
𝑥,𝑖+1/2), if

⃒⃒⃒
𝛥−

(︁
𝛥+𝑈
𝑠𝑖+1

)︁⃒⃒⃒
>
⃒⃒⃒
𝛥+

(︁
𝛥+𝑈
𝑠𝑖+1

)︁⃒⃒⃒
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where

�̄�𝑥,𝑖−1/2 = ℎ̄𝑖

(︂
𝐼 − 𝛥𝑡

ℎ̄𝑖

⃒⃒
𝐴𝑖−1/2

⃒⃒)︂ 𝛥−𝐸𝑖

𝑠𝑖
,

�̄�𝑥,𝑖+1/2 = ℎ̄𝑖

(︂
𝐼 − 𝛥𝑡

ℎ̄𝑖

⃒⃒
𝐴𝑖+1/2

⃒⃒)︂ 𝛥+𝐸𝑖

𝑠𝑖+1
,

�̄�±
𝑥,𝑖−1/2 = ℎ̄𝑖𝛼𝑖

(︂
𝐼 − 𝛥𝑡

𝛼𝑖

⃒⃒
𝐴𝑖−1/2

⃒⃒)︂(︂
𝐼 − 𝛥𝑡

ℎ̄𝑖

⃒⃒
𝐴𝑖−1/2

⃒⃒)︂
𝛥∓

𝛥−𝐸𝑖

𝑠𝑖
,

�̄�±
𝑥,𝑖+1/2 = ℎ̄𝑖𝛼𝑖

(︂
𝐼 − 𝛥𝑡

𝛼𝑖

⃒⃒
𝐴𝑖+1/2

⃒⃒)︂(︂
𝐼 − 𝛥𝑡

ℎ̄𝑖

⃒⃒
𝐴𝑖+1/2

⃒⃒)︂
𝛥∓

𝛥+𝐸𝑖

𝑠𝑖+1
,

�̂�±
𝑥,𝑖−1/2 = ℎ̄𝑖ℎ̄𝑖∓1

(︂
𝛥𝑡

ℎ̄𝑖∓1

⃒⃒
𝐴𝑖−1/2

⃒⃒
− 𝐼

)︂(︂
𝛥𝑡

ℎ̄𝑖

⃒⃒
𝐴𝑖−1/2

⃒⃒
+ 𝐼

)︂
𝛥∓

𝛥−𝐸𝑖

𝑠𝑖
,

�̂�±
𝑥,𝑖+1/2 = ℎ̄𝑖ℎ̄𝑖∓1

(︂
𝛥𝑡

ℎ̄𝑖∓1

⃒⃒
𝐴𝑖+1/2

⃒⃒
− 𝐼

)︂(︂
𝛥𝑡

ℎ̄𝑖

⃒⃒
𝐴𝑖+1/2

⃒⃒
+ 𝐼

)︂
𝛥∓

𝛥+𝐸𝑖

𝑠𝑖+1

Here, 𝛥±𝑈 𝑖 = ± (𝑈 𝑖±1 −𝑈 𝑖), 𝐴± = 𝑅𝛬±𝑅−1 = 𝑅
(︁
𝛬±|𝛬|

2

)︁
𝑅−1. 𝐴 = 𝜕𝐸/𝜕𝑈 is the Jacobi

matrix. 𝐼 is the identity matrix. 𝑅 and 𝑅−1 are the left and right eigenvectors, 𝛬 is the matrix
of eigenvalues. 𝛼𝑖 = 𝑠𝑖 for 𝐴+ and 𝛼𝑖 = 𝑠𝑖+1 for 𝐴−, 𝑠𝑖 = ℎ̄𝑖 + ℎ̄𝑖−1, 𝑑𝑖 = 1/(ℎ̄𝑖 + ℎ̄𝑖−1 + ℎ̄𝑖−2),
ℎ̄𝑖 = (ℎ𝑖 + ℎ𝑖−1)/2, ℎ𝑖 = 𝑥𝑖+1 − 𝑥𝑖.

In (3), the limiter functions limiter1(a,b) and limiter2(a,b) are associated with terms of the
second and third order of the accuracy, respectively. As limiters, functions 𝑚(𝑎, 𝑏), 𝑚𝑖𝑛𝑚𝑜𝑑(𝑎, 𝑏)
or 𝑠𝑢𝑝𝑒𝑟𝑏𝑒𝑒(𝑎, 𝑏) are chosen, where

𝑙𝑖𝑚𝑖𝑡𝑒𝑟1(𝑎, 𝑏) = 𝑚𝑖𝑛𝑚𝑜𝑑(𝑎, 𝑏) =

{︂
𝑠 ·𝑚𝑖𝑛(|𝑎| , |𝑏|), if 𝑠𝑖𝑔𝑛(𝑎) = 𝑠𝑖𝑔𝑛(𝑏) = 𝑠
0, else

𝑙𝑖𝑚𝑖𝑡𝑒𝑟1(𝑎, 𝑏) = 𝑠𝑢𝑝𝑒𝑟𝑏𝑒𝑒(𝑎, 𝑏) =

{︂
𝑚𝑖𝑛𝑚𝑜𝑑(2𝑎, 𝑏), if |𝑎| ≤ |𝑏|
𝑚𝑖𝑛𝑚𝑜𝑑(𝑎, 2𝑏), if |𝑎| > |𝑏| (4)

𝑙𝑖𝑚𝑖𝑡𝑒𝑟2(𝑎, 𝑏) = �̇�(𝑎, 𝑏) =

{︂
1/2 𝑎, if |𝑎| ≤ |𝑏|
1/2 𝑏, if |𝑎| > |𝑏|

The expressions for the fluxes 𝐹𝑚 and 𝐺𝑚 are written similarly to 𝐸𝑚.

3 Results

The numerical computations of the problem are made on the staggered spatial grid with the
number of cells 241 × 201 × 201, and the time step is 𝛥𝑡 = 0.01. The computational domain is
𝐻𝑥 = 20, 𝐻𝑦 = 15 and 𝐻𝑧 = 10 calibers. The injector is located in the center of the bottom.
The initial parameters of the main flow and the jet are: 𝑃𝑟 = 0.9, 𝑀0 = 1, 𝑀∞ = 4, 𝑇0 = 800𝐾,
𝑇∞ = 1000𝐾, 𝑅𝑒 = 104, the pressure ratio 𝑛 = 11.72.

Since the study focuses on the application of the scheme to the non-uniform grid, the
comparison of the computation on the uniform grid with the use of the coordinate system
transformation and on the non-uniform grid was preliminarily done in [13]. It was obtained
that the behaviour of the flowfield on the non-uniform grid agrees with that on the uniform grid.
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As the limiter functions are used in the ENO scheme and there are many different forms of
the limiters in the literature [6], for the numerical solution of the (1) the following two kind of
the limiters from (4) are selected to investigate its influence on the physics:

𝑙𝑖𝑚𝑖𝑡𝑒𝑟1(𝑎, 𝑏) = 𝑚𝑖𝑛𝑚𝑜𝑑(𝑎, 𝑏), 𝑙𝑖𝑚𝑖𝑡𝑒𝑟2(𝑎, 𝑏) = �̇�(𝑎, 𝑏); (5)
𝑙𝑖𝑚𝑖𝑡𝑒𝑟1(𝑎, 𝑏) = 1.1𝑠𝑢𝑝𝑒𝑟𝑏𝑒𝑒(𝑎, 𝑏), 𝑙𝑖𝑚𝑖𝑡𝑒𝑟2(𝑎, 𝑏) = �̇�(𝑎, 𝑏). (6)

The choice of these functions is determined by the test performed on the uniform grid by the
authors in [14], where the transfer of the hydrogen cube problem was solved to choose the optimal
limiter. It was shown there that the use of (1) considerably spreads the original solution while
the slight change of the second order limiter (6) gives the significant reduce of the dissipative
effects.

The numerical calculations of (1) with the different limiter functions (1), (6) on the non-
uniform grid confirm the known dynamics of the transverse sonic jet injection into the supersonic
cross-flow, including the shock wave and vortical structures [1,2]. On Fig. 2, the isobars (Fig. 2a,b)
and the local Mach number isolines in the supersonic region (𝑀 > 2) (Fig. 2c,d) are represented
in the symmetry section xz as this plane best demonstrates the distinction between the solutions.
The results for the limiters (1) are shown on the left and the results for the limiters (6) are shown
on the right. The choice of the limiters has almost no effect on the distribution of the isobars,
but more noticeable effect of that on the Mach number distribution can be seen in the supersonic
region (𝑀 > 2).

a b

c d

Fig. 2. Distribution of the pressure (a,b) and the local Mach number in the supersonic region (𝑀 > 2) (c, d) in
the symmetry section xz for the limiters (1) (a, c) and for the limiters (6) (b, d), 𝑛 = 11.72

Despite the slight difference in the dynamic parameters for the limiters (1) and (6), the isolines
of the mass fraction clearly show this discrepancy. The distribution of the hydrogen mass fraction
in the symmetry section xz is shown on Fig. 3. Here, the results obtained with the limiters (1)
are shown on the left (Fig. 3a), and the results for the limiters (6) are represented on the right
(Fig. 3b). It is visible that using limiters (1) considerably increases the upper mixing layer in
comparison with the other limiter functions (6). Thus, the maximum value of the height for the
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0.3% hydrogen concentration is 𝑧𝑚𝑎𝑥 = 4.94 for the (1) and 𝑧𝑚𝑎𝑥 = 4.902 for the (6). However,
it should be noted that the use of the limiters (6) results in the slight spread of the solution in
the region behind the jet.

a b

Fig. 3. Distribution of the hydrogen mass fraction in the symmetry section xz for the limiters (1) (a) and for the
limiters (6) (b), 𝑛 = 11.72

Figure 4 shows the distribution of the hydrogen mass fraction in the different sections yz for
the limiters (1) (on the left, Fig. 4a) and for the limiters (6) (on the right, Fig. 4b). According
to the comparison of Figs. 3 and 4, the jet expansion in the xz section is considerably less than
that in the yz sections. Obviously, it occurs because of the great drift of the injected substance
by the main flow.

Figure 4 at the 𝑥 = 8.92 shows that the hydrogen penetration in the region in front of the
jet spreads insignificantly near the wall, i.e. in the subsonic region. The noticeable lateral jet
expansion in the injector center (Fig. 4, 𝑥 = 10) is explained by the presence of the lateral
vortices which lead to the mainflow velocity reduce. Behind the jet, the accumulation of the
injected substance occurs (Fig. 4, 𝑥 = 14.87), then it decreases downstream. In the transverse
sections, the significant solution spreading is also can be seen for (1) in comparison with the
results for (6).

The effect of the dynamic pressure ratio 𝑞 = (𝜌𝑉 )0/(𝜌𝑉 )∞ on the jet penetration is shown on
the Fig. 5. Numerical experiments were done with parameters of the experiment [15]: 4 < 𝑞 < 16
that corresponds to 7 < 𝑛 < 24, 𝑅𝑒 = 9.47 · 104 for 𝑛 = 7.81 and 𝑛 = 11.72, 𝑅𝑒 = 6.31 · 104

for 𝑛 = 15.61 and 𝑛 = 23.356. The upper curves mark the hydrogen penetration (𝑌1 = 0.0003),
and the lower curves are for the maximum values of the mass fraction of 𝐻2. Figure 5 shows the
noticeable spread of the solution obtained with the limiters (1).

4 Summary

In the present paper the third order finite-difference shock-capturing essentially non-oscillatory
(ENO) scheme for a non-uniform grid has been developed. Main advantage of the algorithm
is that the modification of it from uniform to non-uniform mesh can be done by simple way.
The steps of the ENO scheme correspond to the method on the uniform grid written in [12].
The methodology developed here is applied to the numerical simulation of the three-dimensional
turbulent steady flowfield generated by the transverse hydrogen injection into the supersonic air
cross-flow by solving the RANS equations closed by the 𝑘 − 𝜔 turbulent model. The different
slope limiters were revised and adapted on the non-uniform meshes. The analysis of the different
variations of the limiter functions has been done for the non-uniform ENO scheme. The effect of
the limiters on the mixing layer was studied numerically. It was obtained that the unsuccessful
choice of some limiters can result in the overgrowth of the mixing layer. The results of the
numerical computations show good agreement with the experimental data.
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𝑥 = 8.92

𝑥 = 10

𝑥 = 14.87

a b

Fig. 4. Distribution of the hydrogen mass fraction in the different sections yz for the limiters (1) (a) and for the
limiters (6) (b), 𝑛 = 11.72

Fig. 5. Effect of the dynamic pressure ratio 𝑞 on the jet penetration at 𝑥 = 17: curve 1 - 𝑌1 = 0.0003 for the
limiters (1); curve 2 - 𝑌1 = 0.0003 for the limiters (6); curve 3 - maximum value of 𝑌1 for the limiters (1)
(𝑌1 = 0.541 for 𝑛 = 7.81, 𝑌1 = 0.693 for 𝑛 = 11.72, 𝑌1 = 0.817 for 𝑛 = 15.61, 𝑌1 = 0.93 for 𝑛 = 23.356 ); curve
4 - maximum value of 𝑌1 for the limiters (6) (𝑌1 = 0.297 for 𝑛 = 7.81, 𝑌1 = 0.382 for 𝑛 = 11.72, 𝑌1 = 0.476 for
𝑛 = 15.61, 𝑌1 = 0.61 for 𝑛 = 23.356 ); ○ , � - experiment [15]
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