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Abstract. A system of nonlinear partial differential equations is considered that models
perturbations in a layer of an ideal electrically conducting rotating fluid bounded by spatially and
temporally varying surfaces with allowance for inertial forces and diffusions of magnetic field. The
system is reduced to a scalar equation. The solvability of initial boundary value problems arising
in the theory of waves in conducting rotating fluids can be established by analyzing this equation.
Solutions to the scalar equation are constructed that describe small-amplitude wave propagation in
an infinite horizontal layer and a long narrow channel.
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1 Introduction

The system of nonlinear partial differential equations describing the dynamics of a rotating
layer of an ideal conducting incompressible fluid is difficult to investigate because of its vector
character. Therefore, it is natural to try to reduce it to equivalent scalar equations for auxiliary
functions.

We consider the nonlinear system of partial differential equations that model perturbations
in a layer of an ideal conducting rotating fluid bounded by spatially and temporally varying
surfaces with allowance for inertial forces and diffusions of magnetic field. The purpose of this
study is to reduce this system to a scalar equation and to construct analytical solutions to the
corresponding boundary value problems.

The accounting of diffusive members is necessary when studying dynamics of waves of more
local character, i.e., when the horizontal scale of change of hydromagnetic sizes much less than
a radius of a considered layer, and also at very great time scales. It would be desirable to see
influence of diffusion of a magnetic field on its generation. Whether there will be able to be a
magnetic field as much as long time and whether it will exist at shutdown of an inoculating field.

The motion of a conducting fluid in a magnetic field causes electric currents. These currents
change the magnetic field. At the same time, the forces acting on the currents in the magnetic field
can change the character of the fluid motion. Hence, hydrodynamic motion and electromagnetic
phenomena are interrelated. This relation is described by the joint system of field equations and
the equations of motion of a fluid. According to the works by the well-known Swedish physicist
and astrophysicist G. Alfven, the interrelation between electromagnetic and hydrodynamic
phenomena strengthens as the linear scale of a phenomenon increases. For large-scale phenomena,
this interrelation can be rather strong. For example, this is true of star interiors and the Earth’s
liquid core [1] .

Large-scale motions of an electrically conducting fluid have been intensively studied. In
particular, we note [2]–[6], which investigate a model constructed in the approximation of fast
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rotation. Within the framework of this theory, the inertial force is ignored in the equation of
motion. As a result, the inertial, Alfven, and Rossby waves are filtered out. Furthermore, in
the limit of fast rotation, the velocity v is not determined uniquely but rather up to a term
representing the geostrophic velocity. The reason for this is that the geostrophic velocity does not
satisfy the magnetostrophic equation. To overcome these difficulties, viscous forces are invoked
and the viscosity is neglected when possible.

In [7], [8], large-scale motions of a conducting fluid in a layer between the planes 𝑧 = 0 and
𝑧 = 𝑑 were studied in the magnetostrophic approximation taking into account viscous forces.

In this study, we assume that the boundaries of the layer are not stationary but vary in space
and time. Furthermore, the inertial forces are taken into account in the equation of motion.

2 Dynamics of a thin rotating layer of an ideal electrically conducting
incompressible fluid

Consider a thin layer of an ideal conducting incompressible fluid rotating at an angular velocity
𝜔𝜔. The layer is bounded from below by a moving bottom specified by 𝑧 = ℎ𝐵(𝑥; 𝑦; 𝑡), where
ℎ𝐵(𝑥; 𝑦; 𝑡) is an unknown function and 𝑧 = 0 is the reference level. The layer is bounded from
above by a known surface 𝑍(𝑥; 𝑦). The axis of fluid rotation coincides with the 𝑧-axis.

2.1 Governing equations of a horizontal structure of an electrically conducting
rotation fluid

The governing magnetohydrodynamic equations for the problem under consideration are written
in projections onto the coordinate axes [1], [9]–[12]:

divv = 0, (1)
𝜕v

𝜕𝑡
+ (v · ∇)v = −∇𝑝

𝜌
− 2𝜔𝜔 × v − 𝑔z +

1

𝜇𝜌
rotb×B, (2)

𝜕B

𝜕𝑡
= rot (v ×B) +

1

𝜎𝜇
𝛥b, (3)

divb = 0, (4)

where 𝑣𝑥, 𝑣𝑦 and 𝑣𝑧 are the velocity components of the fluid; 𝑝 is the pressure; g is the acceleration
of gravity; 𝜌 is the density; 𝑏𝑥, 𝑏𝑦 and 𝑏𝑧 are the magnetic induction components; 𝜇 is the magnetic
permeability; 𝜎 is the electrically conduction of the medium; and 𝜔𝜔 is the angular velocity of the
Earth.

Consider the following characteristic scales of the variables in (1)–(4): 𝐷 for vertical motion
(where 𝐷 is the average depth of the fluid layer ℎ𝐵(𝑥; 𝑦; 𝑡)−𝑍(𝑥; 𝑦)), 𝐿 for horizontal motion, 𝑈
for the horizontal velocity component, b for the horizontal field components, 𝐻 for the vertical
field component, 𝑇 for time, and P for the pressure field.
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The basic equations of magnetohydrodynamics (1)–(4) of the problem in projections on the
coordinate axes are of the form

𝜕𝑣𝑥
𝜕𝑡

+ 𝑣𝑥
𝜕𝑣𝑥
𝜕𝑥

+ 𝑣𝑦
𝜕𝑣𝑥
𝜕𝑦

+ 𝑣𝑧
𝜕𝑣𝑥
𝜕𝑧

= −1

𝜌

𝜕

𝜕𝑥

(︂
𝑝+

𝑏2

2𝜇

)︂
+

+2𝜔𝑣𝑦 +
1

𝜇𝜌

(︂
𝑏𝑥
𝜕𝑏𝑥
𝜕𝑥

+ 𝑏𝑦
𝜕𝑏𝑥
𝜕𝑦

+ 𝑏𝑧
𝜕𝑏𝑥
𝜕𝑧

)︂
, (5)

𝜕𝑣𝑦
𝜕𝑡

+ 𝑣𝑥
𝜕𝑣𝑦
𝜕𝑥

+ 𝑣𝑦
𝜕𝑣𝑦
𝜕𝑦

+ 𝑣𝑧
𝜕𝑣𝑦
𝜕𝑧

= −1

𝜌

𝜕

𝜕𝑦

(︂
𝑝+

𝑏2

2𝜇

)︂
−

−2𝜔𝑣𝑥 +
1

𝜇𝜌

(︂
𝑏𝑥
𝜕𝑏𝑦
𝜕𝑥

+ 𝑏𝑦
𝜕𝑏𝑦
𝜕𝑦

+ 𝑏𝑧
𝜕𝑏𝑦
𝜕𝑧

)︂
, (6)

𝜕𝑣𝑧
𝜕𝑡

+ 𝑣𝑥
𝜕𝑣𝑧
𝜕𝑥

+ 𝑣𝑦
𝜕𝑣𝑧
𝜕𝑦

+ 𝑣𝑧
𝜕𝑣𝑧
𝜕𝑧

= −1

𝜌

𝜕

𝜕𝑧

(︂
𝑝+

𝑏2

2𝜇

)︂
− 𝑔 +

+
1

𝜇𝜌

(︂
𝑏𝑥
𝜕𝑏𝑧
𝜕𝑥

+ 𝑏𝑦
𝜕𝑏𝑧
𝜕𝑦

+ 𝑏𝑧
𝜕𝑏𝑧
𝜕𝑧

)︂
, (7)

𝜕𝑏𝑥
𝜕𝑡

+ 𝑣𝑥
𝜕𝑏𝑥
𝜕𝑥

+ 𝑣𝑦
𝜕𝑏𝑥
𝜕𝑦

+ 𝑣𝑧
𝜕𝑏𝑥
𝜕𝑧

− 𝑏𝑥
𝜕𝑣𝑥
𝜕𝑥

− 𝑏𝑦
𝜕𝑣𝑥
𝜕𝑦

− 𝑏𝑧
𝜕𝑣𝑥
𝜕𝑧

= 𝜆𝛥𝑏𝑥, (8)

𝜕𝑏𝑦
𝜕𝑡

+ 𝑣𝑥
𝜕𝑏𝑦
𝜕𝑥

+ 𝑣𝑦
𝜕𝑏𝑦
𝜕𝑦

+ 𝑣𝑧
𝜕𝑏𝑦
𝜕𝑧

− 𝑏𝑥
𝜕𝑣𝑦
𝜕𝑥

− 𝑏𝑦
𝜕𝑣𝑦
𝜕𝑦

− 𝑏𝑧
𝜕𝑣𝑦
𝜕𝑧

= 𝜆𝛥𝑏𝑦, (9)

𝜕𝑏𝑧
𝜕𝑡

+ 𝑣𝑥
𝜕𝑏𝑧
𝜕𝑥

+ 𝑣𝑦
𝜕𝑏𝑧
𝜕𝑦

+ 𝑣𝑧
𝜕𝑏𝑧
𝜕𝑧

− 𝑏𝑥
𝜕𝑣𝑧
𝜕𝑥

− 𝑏𝑦
𝜕𝑣𝑧
𝜕𝑦

− 𝑏𝑧
𝜕𝑣𝑧
𝜕𝑧

= 𝜆𝛥𝑏𝑧, (10)

𝜕𝑣𝑥
𝜕𝑥

+
𝜕𝑣𝑦
𝜕𝑦

+
𝜕𝑣𝑧
𝜕𝑧

= 0, (11)

𝜕𝑏𝑥
𝜕𝑥

+
𝜕𝑏𝑦
𝜕𝑦

+
𝜕𝑏𝑧
𝜕𝑧

= 0, 𝑏2 = 𝑏2𝑥 + 𝑏2𝑦 + 𝑏2𝑧. (12)

We pass from the system (5)–(12) to the corresponding system in dimensionless variables.
Previously we introduce the characteristic scales of the variables system. Let 𝐷 — characteristic
vertical scale equal characteristic value of the average depth of the liquid layer −𝑍(𝑋, 𝑦) +
ℎ𝐵(𝑥, 𝑦, 𝑡) and 𝐿 — the characteristic scale of the horizontal movement. We assume that

𝛿 =
𝐷

𝐿
≪ 1.

We introduce further in consideration of the characteristic scale: 𝑈 is scale of horizontal speed;
𝑊 is scale of vertical speed; 𝐵 is value 𝑏𝑥, 𝑏𝑦; 𝐻 is value of 𝑏𝑧; 𝑇 is value of time 𝑡; 𝑃 is value of
the fields of pressure.

In the equation (11) first and second terms of the order 𝑂
(︂
𝑈

𝐿

)︂
, so the order third term

𝑂

(︂
𝑊

𝐷

)︂
no more than 𝑂

(︂
𝑈

𝐿

)︂
. Therefore, using the equation (11), we obtain

𝑊 ≤ 𝑂(𝛿𝑈).

Similarly, using the equation (12), we obtain

𝐻 ≤ 𝑂(𝛿𝐵).
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Given the extent of the connection, we have system (5)–(10) to dimensionless variables. The
a result we obtain a system

𝑈

𝑇

𝜕𝑣𝑥
𝜕𝑡

+
𝑈2

𝐿

(︂
𝑣𝑥
𝜕𝑣𝑥
𝜕𝑥

+ 𝑣𝑦
𝜕𝑣𝑥
𝜕𝑦

+ 𝑣𝑧
𝜕𝑣𝑥
𝜕𝑧

)︂
= − 1

𝜌𝐿

(︂
𝑃 +

(1 + 𝛿2)𝐵2

2𝜇

)︂
·

· 𝜕
𝜕𝑥

(︂
𝑝+

𝑏2

2𝜇

)︂
+ 2𝜔𝑈𝑣𝑦 +

𝐵2

𝐿𝜇𝜌

(︂
𝑏𝑥
𝜕𝑏𝑥
𝜕𝑥

+ 𝑏𝑦
𝜕𝑏𝑥
𝜕𝑦

+ 𝑏𝑧
𝜕𝑏𝑥
𝜕𝑧

)︂
, (13)

𝑈

𝑇

𝜕𝑣𝑦
𝜕𝑡

+
𝑈2

𝐿

(︂
𝑣𝑥
𝜕𝑣𝑦
𝜕𝑥

+ 𝑣𝑦
𝜕𝑣𝑦
𝜕𝑦

+ 𝑣𝑧
𝜕𝑣𝑦
𝜕𝑧

)︂
= − 1

𝜌𝐿

(︂
𝑃 +

(1 + 𝛿2)𝐵2

2𝜇

)︂
·

· 𝜕
𝜕𝑦

(︂
𝑝+

𝑏2

2𝜇

)︂
− 2𝜔𝑈𝑣𝑥 +

𝐵2

𝐿𝜇𝜌

(︂
𝑏𝑥
𝜕𝑏𝑦
𝜕𝑥

+ 𝑏𝑦
𝜕𝑏𝑦
𝜕𝑦

+ 𝑏𝑧
𝜕𝑏𝑦
𝜕𝑧

)︂
, (14)

𝛿𝑈

𝑇

𝜕𝑣𝑧
𝜕𝑡

+
𝛿𝑈2

𝐿

(︂
𝑣𝑥
𝜕𝑣𝑧
𝜕𝑥

+ 𝑣𝑦
𝜕𝑣𝑧
𝜕𝑦

+ 𝑣𝑧
𝜕𝑣𝑧
𝜕𝑧

)︂
= − 1

𝜌𝐷

(︂
𝑃 +

(1 + 𝛿2)𝐵2

2𝜇

)︂
·

· 𝜕
𝜕𝑧

(︂
𝑝+

𝑏2

2𝜇

)︂
− 𝑔 +

𝛿𝐵2

𝐿𝜇𝜌

(︂
𝑏𝑥
𝜕𝑏𝑧
𝜕𝑥

+ 𝑏𝑦
𝜕𝑏𝑧
𝜕𝑦

+ 𝑏𝑧
𝜕𝑏𝑧
𝜕𝑧

)︂
, (15)

𝐵

𝑇

𝜕𝑏𝑥
𝜕𝑡

+
𝑈𝐵

𝐿

(︂
𝑣𝑥
𝜕𝑏𝑥
𝜕𝑥

+ 𝑣𝑦
𝜕𝑏𝑥
𝜕𝑦

+ 𝑣𝑧
𝜕𝑏𝑥
𝜕𝑧

− 𝑏𝑥
𝜕𝑣𝑥
𝜕𝑥

− 𝑏𝑦
𝜕𝑣𝑥
𝜕𝑦

−

−𝑏𝑧
𝜕𝑣𝑥
𝜕𝑧

)︂
=
𝜆𝐵

𝐿2
𝛥𝑏𝑥,

𝐵

𝑇

𝜕𝑏𝑦
𝜕𝑡

+
𝑈𝐵

𝐿

(︂
𝑣𝑥
𝜕𝑏𝑦
𝜕𝑥

+ 𝑣𝑦
𝜕𝑏𝑦
𝜕𝑦

+ 𝑣𝑧
𝜕𝑏𝑦
𝜕𝑧

− 𝑏𝑥
𝜕𝑣𝑦
𝜕𝑥

− 𝑏𝑦
𝜕𝑣𝑦
𝜕𝑦

−

−𝑏𝑧
𝜕𝑣𝑦
𝜕𝑧

)︂
=
𝜆𝐵

𝐿2
𝛥𝑏𝑦,

𝛿𝐵

𝑇

𝜕𝑏𝑧
𝜕𝑡

+
𝛿𝑈𝐵

𝐿

(︂
𝑣𝑥
𝜕𝑏𝑧
𝜕𝑥

+ 𝑣𝑦
𝜕𝑏𝑧
𝜕𝑦

+ 𝑣𝑧
𝜕𝑏𝑧
𝜕𝑧

− 𝑏𝑥
𝜕𝑣𝑧
𝜕𝑥

− 𝑏𝑦
𝜕𝑣𝑧
𝜕𝑦

−

−𝑏𝑧
𝜕𝑣𝑧
𝜕𝑧

)︂
=
𝜆𝛿𝐵

𝐿2
𝛥𝑏𝑧. (16)

Hereinafter dimensionless variables denote the same symbols.
From equations (13) and (14), it follows that scale dynamic pressure 𝑃 and the magnetic

pressure
𝐵2

𝜇
is equal to the highest value set of parameters

𝜌𝑈𝐿

𝑇
, 𝜌𝑈2, 2𝜔𝜌𝑈𝐿, otherwise the

acceleration of the flow of traffic will be zero.
Let us turn to a simplified version of the studied system of differential equations.
Leaving equation (15) principal terms, we obtain

𝜕

𝜕𝑧

(︂
𝑝+

𝑏2

2𝜇

)︂
= −𝜌𝑔,

or, after integration in 𝑧

𝑝+
𝑏2

2𝜇
= −𝜌𝑔𝑧 + 𝐶(𝑥, 𝑦, 𝑡).

Here and in what follows, we retain the same notation for dimensionless variables as for
dimensional ones.

All the terms in (13) and (14) are used unchanged in the subsequent study.
The ratio of convective member in equations of induction (16)–(16) to diffusion member

expressed through the characteristic velocity of liquid 𝑈 and the characteristic length 𝐿 is a
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dimensionless parameter
𝐿𝑈

𝜆
, which is called the magnetic number of Reynolds. It characterizes

the relationship between a plasma flow and a magnetic field. Under laboratory conditions usually
𝑅𝑚 ≪ 1, and this relationship is weak, whereas in astrophysics usually 𝑅𝑚 ≫ 1, and this
relationship is strong [1]. Equation of induction determines the behavior of the magnetic field
given the velocity, and this behavior depends significantly on the value of Reynolds magnetic
number 𝑅𝑚. In the general case, the magnetic power lines are partially transferred by the plasma
flow, and partially diffuse through it.

We will consider this general case. Thus we let 𝑅𝑚 = 1, and assume that the diffusion
members have the same order us the convection members.

Accounting for diffusion members is required when studying the dynamics of waves of more
local nature, i.e. when 𝐿 is much less than the radius of the layer, and at very large time scale 𝑇 .
It would like to examine the influence of diffusion of a magnetic field on its generation. Can such
a field exist for an arbitrarily long time, and will it exist after switching the inoculating field off.

Define the total depth function𝐻 = ℎ𝐵˘𝑍. Assume that the thickness of the fluid layer at rest
is 𝐻0(𝑥, 𝑦). The function 𝐻(𝑥, 𝑦, 𝑡) is represented in the form 𝐻(𝑥, 𝑦, 𝑡) = 𝐻0(𝑥, 𝑦) + 𝜂(𝑥, 𝑦, 𝑡),
where (𝑥, 𝑦, 𝑡) is a small perturbation such that 𝜂 ≪ 𝐻0. To describe the propagation of small
perturbations, we use the standard linearization method applied in continuum mechanics to
systems of differential equations describing the behavior of a medium. A solution to system is
sought in the form

v = v0 + v′(𝑥, 𝑦, 𝑡), b = b0 + b′(𝑥, 𝑦, 𝑡), (17)

assuming that the small perturbations of the horizontal velocity v′ and horizontal magnetic field
b′ propagate against a certain steady-state uniform background described by the constants v0

and b0. Consider the case v0 = 0. We obtain the new system of equations

𝜕𝑣𝑥
𝜕𝑡

− 𝛼𝑣𝑦 = 𝑔
𝜕𝜂

𝜕𝑥
+

1

𝜇𝜌

(︂
𝑏0𝑥

𝜕𝑏𝑥
𝜕𝑥

+ 𝑏0𝑦
𝜕𝑏𝑥
𝜕𝑦

)︂
, (18)

𝜕𝑣𝑦
𝜕𝑡

+ 𝛼𝑣𝑥 = 𝑔
𝜕𝜂

𝜕𝑦
+

1

𝜇𝜌

(︂
𝑏0𝑥

𝜕𝑏𝑦
𝜕𝑥

+ 𝑏0𝑦
𝜕𝑏𝑦
𝜕𝑦

)︂
, (19)

𝜕𝜂

𝜕𝑡
+

𝜕

𝜕𝑥
(𝐻0𝑣𝑥) +

𝜕

𝜕𝑦
(𝐻0𝑣𝑦) = 0, (20)

𝐻0

(︂
𝜕𝑏𝑥
𝜕𝑥

+
𝜕𝑏𝑦
𝜕𝑦

)︂
+ 𝑏

(𝑒)
𝑧0 (𝑥, 𝑦, 𝑡) − 𝑏𝑧0(𝑥, 𝑦, 𝑡) = 0, (21)

𝜕𝑏𝑥
𝜕𝑡

− 𝑏0𝑥
𝜕𝑣𝑥
𝜕𝑥

− 𝑏0𝑦
𝜕𝑣𝑥
𝜕𝑦

=
1

𝑅𝑚
𝛥𝑏𝑥, (22)

𝜕𝑏𝑦
𝜕𝑡

− 𝑏0𝑥
𝜕𝑣𝑦
𝜕𝑥

− 𝑏0𝑦
𝜕𝑣𝑦
𝜕𝑦

=
1

𝑅𝑚
𝛥𝑏𝑦. (23)

where 𝛼 = 2𝜔.
Substituting, we obtain the following equation for 𝜉(𝑥, 𝑦, 𝑡):

𝒟
(︀
𝒟2
𝑡 + 𝛼2

)︀2(︂(︂𝒟𝑡 −
𝛥

𝑅𝑚

)︂
𝒟𝑡 −

𝒟2

𝜇𝜌

)︂
𝛥2𝜉 =

𝑏𝑧0 − 𝑏
(𝑒)
𝑧0

(𝜇𝜌)2𝐻0
. (24)

The above reasoning implies the following result.
Theorem Any solution v(𝑥, 𝑦, 𝑡), b(𝑥, 𝑦, 𝑡), and 𝜂(𝑥, 𝑦, 𝑡) to the small perturbation problem

in a layer of an ideal incompressible homogeneous conducting rotating fluid with allowance effects
of diffusions of magnetic field satisfying the necessary smoothness conditions can be represented
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in the form

b(𝑥, 𝑦, 𝑡) = 𝜇𝜌𝒟𝑡

(︀
𝒟2
𝑡 + 𝛼2

)︀ ̃︀b, 𝜂 =
1

𝑔
𝒟𝑡

(︀
𝒟2
𝑡 + 𝛼2

)︀ ̃︀𝜂, ̃︀̃︀𝜂 = 𝒟𝑡̃︀𝜂, ̃︀̃︀b = 𝒟𝑡
̃︀b, (25)(︂

𝑣𝑥
𝑣𝑦

)︂
=

(︂
𝒟𝑡 𝛼
−𝛼 𝒟𝑡

)︂(︃̃︁̃︁𝜂x + 𝒟 ̃︀̃︀𝑏𝑥̃︁̃︁𝜂y + 𝒟 ̃︀̃︀𝑏𝑦
)︃
, (26)

(︃̃︀̃︀𝑏𝑥̃︀̃︀𝑏𝑦
)︃

= 𝒟
(︀
𝒟2
𝑡 + 𝛼2

)︀(︂𝜇𝜌𝒟𝑡ℛ−𝒟2 𝛼𝜇𝜌ℛ
−𝛼𝜇𝜌ℛ 𝜇𝜌𝒟𝑡ℛ−𝒟2

)︂(︂
𝜉𝑥
𝜉𝑦

)︂
, (27)

̃︀̃︀𝜂(𝑥, 𝑦, 𝑡) =
(︀
ℱ2 + (𝛼𝒟2)2

)︀
𝜉(𝑥, 𝑦, 𝑡), ℱ = 𝜇𝜌

(︀
𝒟2
𝑡 + 𝛼2

)︀
−𝒟2𝒟𝑡, (28)

𝒟 = 𝑏0𝑥
𝜕

𝜕𝑥
+ 𝑏0𝑦

𝜕

𝜕𝑦
, ℛ =

(︂
𝒟𝑡 −

𝛥

𝑅𝑚

)︂
, (29)

where 𝜉(𝑥, 𝑦, 𝑡) is a solution to (24).
The converse is also valid: any solution to (24) generates a solution to system (18)–(22),

which governs small perturbations in a thin layer of ideal incompressible homogeneous conducting
rotating fluid, if the functions v, b, and з defined by formulas (25)–(28) satisfy the smoothness
conditions in the domain under consideration.

Consider free linear oscillations of a conducting rotating fluid layer; that is, investigate small-
amplitude wave propagation in an infinite horizontal layer and a long narrow channel.

Assume that 𝐻0 = const and 𝑏𝑧0 − 𝑏
(𝑒)
𝑧0 = Re 𝐵𝑒𝑖(𝑘𝑥+ 𝑙𝑦 − 𝜎𝑡). Then, (24) has the solution

𝜁 = Re 𝐴𝑒𝑖(𝑘𝑥+ 𝑙𝑦 − 𝜎𝑡),

if the dispersion relation

(︀
𝜎2 − 𝛼2

)︀2(︂
𝜎2− (𝑏0𝑥𝑘+𝑏0𝑦𝑙)

2

𝜇𝜌
+𝑖

(𝑘2 + 𝑙2)

𝑅𝑚
𝜎

)︂(︀
𝑘2 + 𝑙2

)︀
(𝑏0𝑥𝑘 + 𝑏0𝑦𝑙) =

𝐵

𝐴𝑖(𝜇𝜌)2𝐻0
(30)

is fulfilled. In particular, for 𝑏𝑧0 = 𝑏
(𝑒)
𝑧0 , (30) implies

(︀
𝜎2 − 𝛼2

)︀2(︂
𝜎2 − (𝑏0𝑥𝑘 + 𝑏0𝑦𝑙)

2

𝜇𝜌
+ 𝑖

(𝑘2 + 𝑙2)

𝑅𝑚
𝜎

)︂
= 0,

wherefrom

𝜎 = ±𝛼, 𝜎 = ±

√︃
(𝑏0𝑥𝑘 + 𝑏0𝑦𝑙)2

𝜇𝜌
− (𝑘2 + 𝑙2)2

4𝑅2
𝑚

− 𝑖
(𝑘2 + 𝑙2)

2𝑅𝑚
.

We have two strong different branches for frequencies 𝜎. The first type of oscillations is inertial
waves. Inertia and Coriolis forces play main role here. Inertial waves have real frequencies and
they are stable. The second type of oscillations is magnetic waves with complex frequencies.
These magnetic waves are not stable, because they have negative imaginary part of frequencies
𝜎.

In case b0 = 0, we obtain

𝜎 = ±𝑖

√︃
(𝑘2 + 𝑙2)2

4𝑅2
𝑚

− 𝑖
(𝑘2 + 𝑙2)

2𝑅𝑚
= ±𝑖(𝑘

2 + 𝑙2)

2𝑅𝑚
− 𝑖

(𝑘2 + 𝑙2)

2𝑅𝑚
= −𝑖(𝑘

2 + 𝑙2)

𝑅𝑚
,

𝜁 = ℜ𝑒𝐴 exp 𝑖(𝑘𝑥+ 𝑙𝑦 + 𝑖 (𝑘
2+𝑙2)
𝑅𝑚

𝑡) = 𝐴 exp− (𝑘2+𝑙2)
𝑅𝑚

𝑡 cos(𝑘𝑥+ 𝑙𝑦).



Computational Technologies, Vol 20, 2015 The Bulletin of KazNU, № 3(86), 2015 57

The diffusion of magnetic field causes damping of the field. We have the stationary process for
infinite value of Reynolds magnetic number. It means that the induced magnetic field can exist
for an arbitrarily long time.

We obtain the well-known dispersion relation for Alfvens wave with 𝑅𝑚 → ∞.
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