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Constructing a basis from systems of eigenfunctions of one not strengthened
regular boundary value problem

In the present work we investigate a nonlocal boundary value spectral problem for an ordinary
differential equation in an interval. Such problems arise in solving the nonlocal boundary value for
partial equations by the Fourier method of variable separation. For example, they arise in solving
nonstationary problems of diffusion with boundary conditions of Samarskii Tonkin type. Or they
arise in solving problems with stationary diffusion with opposite flows on a part of the interval.
The boundary conditions of this problem are regular but not strengthened regular. The principal
difference of this problem is: the system of eigenfunctions is comlplete but not forming a basis.
Therefore the direct applying of the Fourier method is impossible. Based on these eigenfunctions
there is constructed a special system of functions that already forms the basis. However the
obtained system is not already the system of the eigenfunctions of the problem. In the paper
we demonstrate how this new system of functions can be used for solving a nonlocal boundary
value equation on the example of the Laplace equation.

Key words: nonlocal boundary conditions; regular but not strengthened regular conditions; basis;
eigenfunctions; biorthogonal system.

I. Tunnabex, A.A. Tenraesa
IlocTpoenne 6a3uca U3 cUCTEMBI COOCTBEHHBIX (DYHKITHI O/THOI HEYCUJIEHHO PeryJisapHoOii
KpaeBoil 3ajlaun

B nacrositeit pabore Mbl HCCAEAYEM HEJIOKATBHYIO TPAHUYHYIO CIEKTPATIBHYIO 3339y g 00BIK
HOBeHHOTO (D hepeHInantbHOr0 ypaBHeH:sT Ha OTpe3Ke. 3aaqu momo0HOr0 BUIA BO3HUKAIOT IPU
PEIeHrr METOIOM Pa3IesIeHus nepeMeHHbXx Oyphe HeJIOKAMBHON KPaeBoil 3a1aun 1J1sT ypaBHEeHWi
B YaCTHBIX MTPOU3BOIHBIX. Hampumep, mpu pernennn HeCTAIMOHAPHBIX 33134 Audy3un ¢ KpaeBbl
mu yeaoBusivu Tuia, Camapcekoro Morkuna. Winn nipu pemenun 3a1a9 cranuoHapuoi muddysuu ¢
MTPOTHBOIMOJIOKHBIMY [TOTOKAMHA HA YACTU TPAHUIBI. [ DAHUYHBIE YCJIOBHUS TOM 331a49N ABJISTIOTCS
PEryISIPHBIME, HO HE YCHJIEHHO PEryIapHBIMU. [IpUHIMIHATIBHBIM OTJIMYHUEM YTOH 33891 SBIIIETC
TO, 9TO CUCTEMa COOCTBEHHBIX (DYHKITHI SIBJISETCS MOJHON M MUHUMAJILHOMN, HO HE 0OpasyeT Oa3u
ca. Iloaromy mpsmoe npumenenne MeToqa Pypbe OKA3BIBAETCS HEBO3MOXKHBIM. (JCHOBBIBASICH HA
9TUX COOCTBEHHBIX (DYHKIMAX B pAOOTE OCTPOEHA CIEIMAIbHAs CUCTeMa, (DYHKINH, KOTOPHIE yIKe
obpazyer H6azuc. OHAKO MOSIyIEHHAS CHCTEMA yIKe He SABIATCA CUCTEMON COOCTBEHHBIX (DYHKITHH
3agaqn. B pabore neMOHCTpUPYeTCs, KaK 3TOTa HOBAA CUCTEMA, (DYHKIIHHM MOXKET OBbITbH MCIIOJIB30
BaHA [IJIsT PEITeHns] HeJIOKAJIBHON KPaeBoil 3a1aun HA MpUMepe ypaBHeHus Jlamiaca.
KurtoueBsbie ciroBa: HEJIOKAIBHBIE TDAHVYHBIE YCJIOBHUS; PETY/ISIPHBIE, HO HE YCHJIEHHO PETryIsSpHbBIE
KpaeBble ycyioBus; 6a3uc; cCOOCTBEHHBbIE (DYHKIINN; DMOPTOTOHAJIBHAS CUCTEMA.

I'. Hingobex, A.A. Tenraesa

Bip KaTtaH emec peryJjgp MIETTIK ecenTiH MeHINKTI (PpyHKIuAIap »KyieciHeH 6a3uc Kypy

By xxymbicTa Kecinmimeri xkoit quddepeHnanapK TeHIey YImiH 6eiiT0Kal MeKapaIblK CIEKTPAJ
Obl ecebi 3eprrenineani. Mynmait ecenrep aepbec TybIHABLIE AU HEPEHIINATIBIK TEHASYIeD VITiH
6eittokan meTTiK ecenrepai OypbeHiH aliHBIMAIBIHBI azKbIPATY 9AiCiMeH IIenry Ke3inmge maiiaa 60
sazpl. Mbrcanbr, Camapcekuit Monkun rekrec mertik maprieH 6epiiaren quddysusinbiy Geficramm
oHap ecenTepin mermy ke3inge. Hemece mexkapanbiH OeiriHIe KapaMa Kapchl aFbIHMEH Oepinren
b y3USHBIH, CTAIMOHAD €CeITePiH MIely Ke3iHae.
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Bya ecenrin mekapabik MapThl peryisap, Oipak KaTaH eMec perysadp 60bin Tabbliaabl. By ecen
TiH AMPBIKIIA EPEKIIEIIIr, OHBIH MEHITKTI GYyHKIUIIAp Kyiieci 6asnc Kypamaiinbl. COHIBIKTAH
Dyphe oIiciH Tikeae#l Koagany MyMkin emec. OCbl MEHITIKTI (DYHKITUSIAPILI HETI3re aJ1a, OTHIPHIIL,
Gazuc KypaiTeiH apHaibl QyHKIMAAAP XKyiieci Kypbutran. Bipak ajblHFaH XKyiie OepiireH ecemnTiH
MEeHIMKTI pyHKIUAmIap Kyiteci 6ommaiiapl. 2KyMbICTa OCHI ABIHFAH KaHA (DYHKIUATAD KYHeCiHiH
KOJITAHBLITYbIHA MbICAJ peringe Jlamrac Tenaeyi ymiin Oefiokas merTik ecentTi menriayi kepceria
TeH.

Tyiiia ce3aep: OeilIOKAN MEKAPATBIK, IAPT, PETYIsAp, Oipak KATaH eMec Peryjsp IIeTTiK ImapT,
MEHIMKTI PyHKIUAIAD, OMOPTOrOHAN XKYIie.

Introduction

Investigations on spectral theory of ordinary differential operators begun from classical
papers of J. Liouville and Sh. Sturm. Fundamental works in the spectral theory of differential
operators were the papers by Birkhoff of 1908, where he introduced regular boundary conditions
for the first time. The theory was significantly developed by Tamarkin and Stone. These works
led to a new wide scientific direction having an enormous literature. We refer to [1, 2| for the
extensive bibliography and the obtained results.

Despite the apparent simplicity, the spectral theory of ordinary differential operators is
far from complete. This applies even to the case of a second-order operator

Lu=u"(z) + q(x)u

on the finite interval x € (a,b) which is called Sturm-Liouville operator. Brief survey of results
in the spectral theory of the Sturm-Liouville operator is given in the recent paper by Makin
[3].

It is known that boundary conditions can be divided into three classes |4]:

- strengthened regular conditions;

- regular but not strengthened regular conditions;

- irregular conditions.

If the boundary conditions are strengthened regular then the system of root functions
forms a Riesz basis in Ly(a, b). This statement was proved in [5, 6] and [7, Chapter XIX].

In the other cases the basis property of the systems of root functions is not guaranteed.
The final definition of classes of the boundary conditions for an operator of second order
when the system of eigen- and associated functions forms the basis, was given in [8].

In the present work we consider one model spectral problem for an operator of multiple
differentiation. Boundary conditions of the problem are regular but not strengthened regular.
The system of eigenfunctions of the problem is complete, minimal, almost normed, but does
not form a basis in Ls. On the basis of these eigenfunctions we construct a special system
having basis property in L.

Statement of the problem

Consider the spectral problem

—u"(x) = Au(x), 0 <z <,

u(0) =0, «(0) + /(7)) + au(mr) =0,

where o > 0 is a fixed parameter.
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This problem arises while solving a nonlocal boundary value problem for the Laplace
equation by the method of separation of variables. Let D = {(r,0): 0<r<1,0<60 <7}
be a half-disc. Our goal is to find a function u(r,¢) € C°(D) N C?(D) satisfying in D the
equation

AU =0 (2)

with the boundary conditions

U(1,0) = f(8), 0<0<m, (3)
u(r,0) =0, relo0,1], (4)
U oU

%(T, 0) + %(r, ) +aU(r,m) =0, re(0,1). (5)

The difference of this problem is the impossibility of direct applying of the Fourier
method (separation of variables). Because the corresponding spectral problem for the ordinary
differential equation has the system of eigenfunctions not forming a basis. For a = 0 the
problem (2) - (5) was considered in [9].

One method of constructing the basis, based on the system of eigenfunctions of the
problem

—9"(x) = M(z), 0 <z <
9(0) =0, ¥'(0) =9 () + ad(m)

was suggested in [11].

The boundary conditions of this problem are regular but not strengthened regular conditions.
And the system of its eigenfunctions does not form the basis. But a special system of functions
built with help of these eigenfunctions will form the basis. And this fact is applied for the
solution of a nonlocal initial-boundary problem for the heat equation.

The goal of the present work is to construct the basis from the system of the eigenfunctions
of the problem (1).

Preliminaries

Let us present briefly the main definitions and facts which will be used in what follows.
Let B be a Banach space with the norm || - |5, and let B* be its dual with the norm || - || g+.

A system of elements {¢}, is said to be closed in B if the linear span of this system is
everywhere dense in B; that is, any element of the space B can be approximated by a linear
combination of elements of this system with any accuracy in the norm of the space B.

A system of elements {¢y},—, is said to be minimal in B if none of its elements belongs
to the closure of the linear span of the other elements of this system.

It is well known that a system {¢y },-, is minimal if and only if there exists a biorthogonal
system dual to it, that is, a system of linear functionals {1 };-, from B* such that

(¢ry05) = Onj
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for all £,5 € N. Moreover, if the initial system is simultaneously closed and minimal in B,
then the system biorthogonally dual to it is uniquely defined.

We say that a system {@y},-, is uniformly minimal in B, if there exists v > 0 such that
for all £ € N,

dist{or, Br} > 7|l¢kl 5,

where By, is the closure of the linear span of all elements y; with serial numbers [ # k.

It is also well known that a closed and minimal system {¢},, is uniformly minimal in
B if and only if:

sup [lol| 5 [¢kl 5+ < oo.
keN

A system {gy},-, forms a basis of the space B if, for any element f € B, there exists a
unique expansion of it in the elements of the system, that is, the series Y, fypx convergent
to f in the norm of the space B.

Any basis is a closed and minimal system in B, and, therefore, we can uniquely find its
biorthogonal dual system {1y}, ,, and hence the expansion of any element of f with respect
to the basis {¢x},-, coincides with its biorthogonal expansion, that is, fi = (f,¢%) for all
k e N.

On eigenvalues and eigenfunctions of the problem

In a whole the constructing eigenvalues and eigenfunctions of the problem (1) is a simple
task. Therefore we omit some details of the calculations and present the main facts which we
will use further.

We look for eigenvalues of the problem. Note that A = 0 is not an eigenvalue, since
problem (1) for this value of A has only the trivial solution.

Let A # 0. The eigenfunction should have the form u(x) = sin (\/Xx> By taking into
account the nonlocal boundary condition, we obtain two equations

V) (V) e
cos —5 | =0 co 5 ——ﬁ.

Solutions of the first equation form a series of eigenvalues and eigenfunctions of the
problem (1) of the form

AV = 2k +1)% w(z) =sin((2k+1)z), k=0,1,2,...
The second equations can be represented as
« VA
t —__— =22
By [k denote roots of this equation. It is easy to show that they satisfy the inequalities

2k +1 < 28, < 2k+2, £k =0,1,2,..., and two-side estimates are carried out for §, =
Br — k — 1/2 where k is large enough

«

1
R (T —
7r(2k+1)( 2k+1)<5k “

oD
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Consequently there exists a second series of eigenvalues and eigenfunctions of the form
AP = (28,07 we(z) =sin (2Bz), k=0,1,2,..

Lemma 1. The system of eigenfunctions {ug1, ur2}re, of the problem (1) is complete and
minimal, almost normed but does not form even an ordinary basis in Ly(0, 7).

Proof. The completeness and minimality of the system follow from the regularity of
boundary conditions of the spectral problem (1). The limitation of norms is easily checked
by direct calculation. However the properties of the completeness and minimality are not
enough for the basis property.

Really, consider scalar multiplications of pairs of eigenfunctions (ug,ux2). By direct
calculation, we find

msin (205m) 2k +1

(wkr, ur2) = /0 sin((2k + 1) 1) sin (2f5t) dt = 2 25 2k+ 146,

Taking into account that ||ux| = /7/2, and klim |lurz|| = /7/2, we get that the angle
—00

between the normed eigenvectors tends to zero:

lim ( Ykt Uk2 > — 1. (7)
koo \ [|wil|” lunzll / 1,00

Such systems can not form the unconditional basis. We show it more detailed.
The problem

—" () =M (0), 0 <z <T;
(8)
v(0)+ov(r)=0, VV(r)+av(r)=0

is conjugated to the problem (1). The system of the eigenfunctions of this problem is biorthogonal
to the system {wg1, uga}rey
vpt (z) = 2 {sin ((2k + 1) z) — ZEH cos (2k + 1) z) }
kE=0,1,2,.... 9)
Vg2 () = Cha {sin (26kx) — % coS (Qka)} , k=0,1,2,..,

The constant Cys are taken from the biorthogonal relations (g2, vg2) = 1. Since we will
not use the explicit form of the biorthogonal system, then we do not present here the explicit
form of constant Cj.».

Due to biorthogonality of the system, the equations

(ukhvkl) = 17 (uk2avk1> :()7 k2071727““

are valid.
It follows that (ux1 — uge, vkg1) = 1. Using the Cauchy-Bunyakovsky inequality, we get the
estimate from the bottom

okt || > ([ — ura])) ™
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Since ||ugi|| = /7/2, and klim |luke|| = /7/2, then from here and from (7) it is easy to
—00

obtain

lim [ | o = oc.
k—o00

That is, the necessary condition of the basis property does not hold.

Lemma, is proved.

It is necessary to note the fact, that the system of eigenfunctions {ug1, u2},., does not
have the basis, also follows from more general facts [8].

Forming the basis

Now from elements of the system {uy, ukg}iozo we construct a new system which will be
a basis in Ly(0, 7). We introduce new functions

Qo (1) = upy (),
k=0,1,2,... (10)

port1 (2) = (urz () — wra (2)) (20k) 7,

Let us show that the constructed system is a Riesz basis in Ly (0, 7).
The biorthogonal system to (10) has the form:

Yar, (2) = vk () + Vg1 (),

¢2k‘+1 ([E) = 25kvk2 (I’) ) k= 07 17 2a

This system is constructed from the eigenfunctions of the problem (8) conjugated to (1).

Let us show that the constructed additional system has the basis property.

Lemma 2. The system of functions {¢y ()},;—, forms a Riesz basis in Ly (0, ).

Proof. Since this system is constructed from the eigenfunctions of the problem with
regular boundary conditions and with the help of non-degenerated linear combinations, then
the completeness and minimality of the system do not change.

Let us prove asymptotic quadratic closeness of the system {g (x)},—, to the system
forming the Riesz basis. As such we choose the system of eigen- and associated functions of
a problem of the Samarskii-lonkin type:

—w" (z) = w(x), 0 <z <m;

w(0) =0, w' (0) +w (m) =0.
The boundary conditions of this problem are not strengthened regular. All the eigenvalues
of this problem, except zero values, are multiple: )\,(:) = A,(f) =(2k+1)% k=0,1,2,..... The
eigenfunctions wy, and the associated functions woy1 of the problem form the Riesz basis in

Ly (0,7) and have the form:

wo () =sin ((2k+ 1) z), k=0,1,2,...; wops1 (x) =z cos((2k +1)x).

Bectuuk KazHY. Cepusa maremaTtuka, Mexanuka, nadopmaruka. Nel(84). 2015



42 G. Dildabek, A. Tengayeva,

We need to show that the series converges

[o.¢]
> e — wil]* < 0.
k=0

It is evident that @or — wor = 0. For odd numbers we have:

o (2) = sin (25,x) —28(151: (2k+1)x) sin(s(’zgx)xcos (2 +1460)1).

Thus it is not difficult to get the estimate |paoxi1 () — wogs1 ()| < Cdg. From here and from
the asymptotics (6) for d; we have the asymptotic inequality |por1 — wors1| < C1/k where
C} does not depend on k.

The obtained inequality provides the quadratic closeness of the system {¢y (z)},-, and
the Riesz basis {wy, (x)},—,. Lemma is proved.

Further on, by standard methods it is not difficult to justify that if the function f(z) €
C?[0, ] and satisfies the boundary conditions of the problem (1), then its Fourier series by
the system {¢y, (z)},-, converges uniformly.

We can calculate that

—l (2) = A par (),

(11)
o _ )\(2) >‘22>_>‘1(cl)
Pt () = Ay o (2) + 2, P2k ().

Using these formulas, it is possible to apply the method of separation of variables for solving
problems of the type (2) - (5).

Use for solving of the nonlocal boundary equation

We can write any solution of problem (2) - (5) in the form of a biorthogonal series

u(r,0) => R (r)ep(0), (12)
where
By (r) = (u(r,"),¥n () = /Oﬂu(r, 0) 1y, () d6.

Functions (12) satisfy the boundary conditions (4) and (5).
Substituting (12) into equation (2) and the boundary conditions (3), taking into account
(11), for finding unknown functions Ry (r) we obtain following problems:

P2RY 1 (1) + TRy (1) — MY Ropi (1) = 0,

(13)
2 pI / (1) AP A
r? Ry (r) + 1Ry, (r) — A" Row(r) = = 2 Ropa (1),
with the boundary conditions Ry(1) = fi, where f; are the Fourier coefficients of the

expansion of the function f(6) into the biorthogonal series by {¢y (6)},,-
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The regular solution of (13) exists, is unique and can be written in the explicit form:

IR®)
Rok1(r) = forar Ak )

(14)
/1 (1) /4 (2) /(1)
Roi(r) = forr V™ +f2k+1ﬁ <7“ MW — VA ) :
Substituting (14) into (12), we obtain a formal solution of the problem:
u(r,0) = > 12 faxr®*sin ((2k + 1) 0) +
(15)

+ 200 forsrgg [P sin (26,0) — r#+ sin (2K + 1) 0)].

Theorem If f(0) € C?[0,x], f(0) = 0, f'(0) = —f'(w) + af(w), then there erists a
unique classical solution u(r,0) € C°(D) N C*(D) of the problem (2)-(5).

Proof. The uniqueness of the classical solution of the problem follows from the maximum
principle and the Zaremba-Giraud principle for the Laplace equation. The formal solution of
the problem is shown in the form of (15). In order to make sure that these functions are really
the desired solutions we need to verify the applicability of the superposition principle. For it
we need to show the convergence of the series, the possibility of termwise differentiation, and
to prove the continuity of these functions on the boundary of the half-disk.

The possibility of differentiating the series (15) any number of times at r < 1 is an
obvious consequence of the convergence of power series and two-sided estimates (6) for dy.
Let us justify the uniform convergence of the series (12) at » < 1. For this we use the sign of
the uniform convergence of Weierstrass.

By direct calculation it is easy to see that the series (15) is majorized by the series
Ci(|fol + |fil + |f2] + ...). This series converges due to the requirements of the theorem
imposed on f(#). Since all the terms of the series (15) are continuous functions, then the
function u(r, ) is continuous in the boundary domain D.

The proof of the theorem is complete.

Conclusion

Thus, in the present work we investigated a nonlocal boundary spectral problem (1) for an
ordinary differential equation in an interval (0, 7). The boundary conditions of this problem
are regular but not strengthened regular. The difference of this problem is: the system of
eigenfunctions {wug1, ura},, of the problem (1) is complete and minimal, almost normed but
does not form even an ordinary basis in Ly (0, 7).

Based on these eigenfunctions {uy1,urs},., there we constructed a special system of
functions {py, (z)},-, that already forms a Riesz basis in L, (0, 7).

This fact is used for solving of the nonlocal boundary equation (2) - (5).
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