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Initial length scale estimate for the Schrodginer operator with a random fast
oscillating potential in a multi-dimensional layer
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We consider the Dirichlet Laplacian in a multi-dimensional layer located between two parallel
hyperplanes of codimension one. Such operator is perturbed by a fast oscillating random potential.
Namely, the layer is partitioned into periodicity cells by a given periodic lattice and in each cell
we consider a fast oscillating potential depending on a random variable multiplied by a global
small parameters. All random variables associated with the periodicity cells are assumed to be
independent and identically distributed. The fast oscillating potential introduced in the way
standard for the homogenization theory. Namely, it depends on slow and fast variables, is compactly
supported w.r.t. the slow variables and is periodic w.r.t. the fast ones. The main obtained result
is the initial length scale estimate for the considered operator. Such estimate is the induction base
for proving the spectral localization at the bottom of the spectrum by the multiscale analysis.
Key words: random Hamiltonian, fast oscillating potential, initial length scale estimate, small
parameter, multi-dimensional layer.
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Paccmarpusaercsa Jlamnacuan ¢ ycsoBuem lupuxite B MHOTOMEPHOM CJIO€, 3aK/IIOYEHHOM MEXKLy
JBYMS [TapaJlIeJIbHBIMY FUIEPIIJIOCKOCTIMU KOPa3MepPHOCTH OnuH. Takoil omepaTop BO3MYIIIAETCS
OBICTPO OCHUJIIAPYIOIIMME CJIYUANHBIM [TOTEHITUAJIOM. A MMEHHO, CJIO JIeJINTCsT Ha Tepuoande-
CKIUe STYefKI HEKOTOPOIl MepHOINIeCcKOil PElIeTKoOl U B KaXKI0i ddeifke pacCMaTpuBaeTcst OLICTPO
OCIIMJITMPYIONIAY TTOTEHIINAJ, 3aBUCAIINN OT CJIydaifHON MepeMeHHOM, YMHOXKEHHON Ha TI00aIb-
HBIM MaJIBIA TapaMeTp. Bee ciyvaiiabie mepeMenHble, COOTBETCTBYIONINE sTIeHKaM TePUOINTHOCTH,
IIPE/IIIOIAral0TCd HE3aBUCUMBIMU M OJMHAKOBO PAaCIIPe/ieSIeHHBIMU. BhICTPO ociuyummpyonuit mo-
TEeHIMAJ BBOJMTCS OOBITHBIM JIJIsl TEOPUU yCPEIHEHNN 00pa30M. A IMEHHO, OH 3aBUCUT OT OBICTPBIX
W MeJJIEHHBIX [TePEMEHHBIX, (DUHUTEH 10 MEJJIEHHBIM IIePEMEHHBIM U MEePUOIUYEH IO OBICTPBIM
repeMeHHbIM. [JIaBHBII Oy Y€HHBII PE3yIbTAT — OIEHKa HAYAHHBIX MACIITA0OB JJI PACCMATPH-
BAEMOT0 OIrepaTopa. Takas OleHKa siBJIsgeTcs 0230 MHIYKINH 15 JJOKA3ATEeIbCTBA CIIEKTPAJIHHON

JIOKAJIN3AIINN Ha HIPKHEM KPAalO CIIEKTPA C IIOMOIIHI0 MHOTOMACHITAOHOTO aHAJIN3A.
KuroueBbie cjioBa: CiAydailHbIii TaMUJILTOHUAH, OBICTPO OCIHUIJINPYIONIUI IMOTEHITHA, OIECHKA

HAYAJBHBIX MACIITab0OB, MAJIbIH ITapaMeTp, MHOTOMEPHBIH CJTOi

1 Introduction

Random Hamiltonians are elliptic operators depending on countably many random variables.
Such operators attract a lot of interest since they are often used for describing waves in
disordered media and they possess many interesting mathematical properties. One of such
properties is the spectral Anderson localization. It is known that the spectrum of many
Random Hamiltonians is almost surely a fixed deterministic set. And spectral localization
says that some part of this spectrum is pure point. Such property was found for many
particular examples, see, for instance, (Martinelli, 1984 : 197-217), (Frohlich, 1983 : 151-184),
(Baker, 2008 : 397-415), (Borisov, 2011 : 58-77), (Borisov, 2013 : 2877-2909), (Bourgain,
2009 : 969-978), (Erdos, 2012a : 900-923), (Erdds, 2012b : 507-542), (Ghribi, 2007 : 123-
138), (Ghribi, 2010 : 127-149), (Hislop, 2002 : 12-47), (Kleespies, 2000 : 1345-1365), (Klopp,
1993 : 810-841), (Klopp, 1995a : 265-316), (Klopp, 1995b : 553-569) , (Klopp, 2002 : 711-737),
(Klopp, 2012 : 587-621), (Klopp, 2009 : 1133-1143), (Klopp, 2003 : 795-811), (Kostrykin, 2006
: 267-392), (Lenz, 2008 : 121-161), (Lenz, 2009 : 219-254), (Lenz, 2004 : 733-752), (Leonhardt,
2015), (Stolz, 2000 : 173-183), (Ueki, 1994 : 10) , (Ueki, 2000 : 473-498), (Ueki, 2008 : 565-
608), (Veseli¢, 2002 : 199-214), and the references therein. One of main ways for proving the
spectral localization is the multiscale analysis, (Martinelli, 1984 : 197-217), (Frohlich, 1983 :
151-184). It is based on a certain induction whose basis is the initial length scale estimate.
In papers (Borisov, 2016 : 2341-2377), (Borisov, 2017), a general approach was developed
for proving initial length scale estimate for operators with small random perturbations.
The main advantage of the obtained result is that the perturbations were described by
abstract symmetric operators covering many particular examples considered before. The
core of the approach was an original technique based on a non-symmetric version of the
Birman-Schwinger principle, which gave an opportunity to prove an important deterministic
estimate. Such technique allowed the authors to consider perturbations non-monotone w.r.t.
the random variables and this was an important step in studying random Hamiltonians.
The present paper can be considered as an example of random perturbation, to which
general results of work (Borisov, 2017) can be applied. A non-trivial feature of this example
is that it is described by a compactly supported fast oscillating potential. Such perturbation
is singular and does not fit the assumptions made for the perturbation in (Borisov, 2017).
However, here we employ a special transformation of the operator proposed in (Borisov,
2015 : 33-54) so that this transformation preserves the spectrum and reduces the considered
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operator to one fitting the assumptions of (Borisov, 2017). Finally, this allows us to prove
the initial length scale estimate for the considered model.

2 Problem and main results

Let 2/ = (21,...,%,), = (2, 7,41) be Cartesian coordinates in R" and R"™!, respectively,
n>1II:={zx:0<x,41 <d} be a multidimensional layer of width d > 0, I" be a periodic
lattice in R™ with a basis ey, . . . , e, and a periodicity cell [’ := {:E sl =) ajej, a; € (0, 1)}
j=1
Denote O := ' x (0, d).
By Wy = Wy(x,€), € = (&1,...,&,), we denote a real-valued function defined on R?"*2.

We assume that this function is 1-periodic w.r.t. each variable &;, 7 = 1,...,n+ 1, has a zero
mean
/ Wo(z,€)dé =0 for each x € R" (1)
(071)n+1

and is a compactly supported as a function of x:
supp Wo(-,§) C M €O foreach ¢ € R*, (2)

where M is some fixed set independent of €. The function Wy, is supposed to have the following
smoothness:

Jlel+1BITy,

525067 € C(R™?), a,peZi™, |af<3, [BI<L (3)

By ¢ we denote a small positive parameter and we introduce one more function:

W(z,e) =W (:c, g) , >0,
W(z,0) :=0, =0,

(4)

where b < 1 is a given fixed number.

Let ¢ = ((k)rer be a sequence of independent identically distributed random variables
with the values in segment [0, 1]; the associated distribution measure is denoted by p. We
assume that this measure is defined on [0,1]. By P := @), .- # we denote the product of the
measures on space ) := Xer|0, 1]. The elements of the latter space are sequences ((x)ger-
By E(-) we denote the expectation value of a random variable w.r.t. the probability P.

In this paper we consider the following perturbed random operator:

HE(Q) = —A+ > W(a =k, 2pi1,26) (5)

kel

in Ly(II) subject to the Dirichlet boundary condition. The domain of the operators H°(()
is the space WZ(IL, O11), where W2(Q,S) is the Sobolev space of the functions in W(Q)
vanishing on a surface S C @, @ is a domain. This operator is self-adjoint.
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The main aim of this paper is to prove the initial length scale estimate for #°({). In order
to formulate this estimate, we need to introduce additional notations. First we introduce an
auxiliary operator

HE = —A+W(x,6), o€ [do, 0, (6)

in Ly([J) subject to the Dirichlet boundary condition on 0CINOII and to the periodic boundary
condition on the lateral boundaries v of [, and Jy is a fixed number. The domain of Hf
consists of the functions in W22 (0,00 N o) satisfying periodic boundary conditions on +.
Operator HY, is self-adjoint.

Let A; be the smallest eigenvalue of HY, W; = Ws(z) be the associated eigenfunction
normalized in Ly (). On the lateral surface of the cell [0 we define the function

1.0V,
Ps = 111—557 (7)

where v is the outward normal.
Given o € I', N € N, the symbols II, y and I', x denote a piece of II and a piece of I:

I, N = {x: — a—i—Zaiei, a; € (0,N), 0 < xpy1 < d},
i=1

Fon = {x'EF: x/:oz—i—Zaiei, ai—O,l,...,N—l}.

i=1

By H:, v(¢) we denote a kind of “restriction” of the operator H*(¢) on Il, y. Namely,

an(Q) =AY W~k zi,5G) (8)

kel N

is the operator in Ly(Il, y) subject to the Dirichlet condition on OI1, y NOII and to the Robin
condition

0
(5 — pa) u=0 on 7., (9)

where 7, v is the lateral boundary of II, . The domain of the operator Hg, ~(€) consists
of the functions in W2(IL, v, &1,y N OII) satisfying condition (9). The operator Hi, n(C) is
self-adjoint.

Let A y be the smallest eigenvalue of the operator H, ().

Our first result provides a lower bound for the gap between Af y(¢) and A..

Theorem 1 There exist constants Ny € N and co > 0, n > 0 such that for aoll « € T,
N > Ny, € < cgN~* the inequality

2—2b

3 € —
NN = Az — >0 (1-G7") (10)
T] kEFa,N

holds true for all C.
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The next result is the Combes-Thomas estimate.

Theorem 2 Let a, 51, B2 € I', my, my € N be such that By = llg, ,,, C Illyn, By =
g, m, € o n. There exists Ny € N such that for N > Ny the estimate

— Ol - is
o, (5 () = 2) | < ShemCordin

holds true, where C7, Cy are positive constants independent of €, o, N, By, By, m1, ma, A
and 6 := dist (A, 0(Hg, v(C))) > 0, o(-) is the spectrum of an operator, x. is the characteristic
function of a set, || - || is the norm of an unbounded operator in Lo(Il, y).

Two above theorems are in fact deterministic results since they are valid for each (. The
next two theorems provide probabilistic results. The first of them reads as follows.

Theorem 3 Let v € IN, v > 17. Then for N > Ny, where Ny was defined in Theorem 1, the
interval

_2
21-b Co
JN = = g 8

AT (E(G7 ) TINTE NI

is non-empty and for N > N3, where N3 is a some constant depending on v, N1, Na, 1, co,
1-b
E((y? ), and for e € Jn the estimate

1

P(&€Q: AL y(€) — AT < N73) < N(173) g™
holds true, where constant ¢, depends on measure j only.

And the second probabilistic result is the initial length scale estimate.

Theorem 4 Leta € I', v > 17, 1, B2 € Iy n, m1, mg > 0 be such that By = 1lg, , € g N,
By =113, m, € llo n. There exists a constant co > 0 independent of €, o, N, 1, B2, my, mo
such that for N > N3, € € Jy

1 _ ¢, 45t (B1,Bo)
P (YA€ At ol (,0() = 0 sl € 2V R
>1-— N"(l_%)efclN%’
where the same notations were used as in Theorem 5.

Let us discuss briefly the main results. Theorem 1 says that the minimum of the eigenvalue
sn(C) wrt. ¢ is attained when all (; takes their maximal values ¢, = 1. Moreover, it
provides an effective lower bound for the distance from A y(¢) to its minimum. The second
theorem gives a standard Combes-Thomas estimate, which states in fact the exponential
decay of the Green function for the operator Hg . These two theorems are main tools in
proving further deterministic results. The first of them, Theorem 3 states that the probability
of close location of Af, v (¢) is exponentially small as N grows. And this allows us to prove then
the initial length scale estimate in Theorem 4. As it was mentioned in the Introduction, such
estimate is the induction base for proving Anderson localization by the multiscale analysis.
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3 Proof of the main result

The proof of Theorems 1, 2, 3, 4 is based on the general results obtained in (Borisov, 2017).
First we describe briefly these results.
Let L(t), t € [0,t0], be a family of linear operators

L(t) =tLy + 1Ly + 1P L3(1), (11)

where £; are bounded symmetric operators from W3 (O) into Ly(0). The operator L3(t) is
assumed to be bounded uniformly in ¢ and Lipschitz continuous:

| (L3(t2) — £3(t1))uHL2(D) < Clta — tlllullwzo) (12)

for all ¢1,ty € [0, 0], v € WZ(O) with a constant C' independent of 1, to, u.
Let H¢, be the operator

HY = —A+ L(0)

in Ly(O) subject to the Dirichlet condition on 0JNOII and to the periodic boundary condition
on 7. As § = 0, the operator HY, becomes just a pure Laplacian subject to the above described
boundary conditions. The domain of H& consists of the functions in Wf(l:], oNOII) satisfying
periodic boundary condition on 7.

The smallest eigenvalue Ag of HY is the smallest eigenvalue of the operator —

on
d$i+1

(0,d) subject to the Dirichlet condition. The associated eigenfunction 0, is supposed to be
normalized as

1

Wollz0,0) = Nk (13)
The first assumption made in (Borisov, 2017) was as follows.
(Al). The identity (£1Vg, ¥g)r,@) = 0 holds true.
This assumption implies that the equation
(MY — M)Wy = =L, (14)

is solvable and has a unique solution orthogonal to ¥ in Ly([J). Hereafter by the symbol W,
we denote exactly such solution.
The second assumption was

(A2). The inequality Ay := (¥, L1W0) 1,0 + (L2, ¥o) 1, < 0 holds true.
By ®; € W2(O, 80 N dII) we denote the solution to the problem

0P
(A=Ag)® = L0y in O & =0 on 9ONII, a—l =0 on ~, (15)
v
orthogonal to Wy in Lo([d). It was shown in (Borisov, 2017) that this problem is uniquely
solvable.

The next assumptions made in (Borisov, 2017) was
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(A3). The inequality 7 := —As + (Re (®; — ¥y),Re £1\Ifg) > 0 holds true.

Lo(O0)

There was one more assumption in (Borisov, 2017). It was shown that this fourth
assumption is satisfied provided the operator L(t) is real-valued in the sense that L(t)u
is a real-valued function for real-valued wu.

In our case the multiplication by the potential W (z,t) can not be represented as some
operator L(t) defined by (11). This is why we employ the approach proposed in (Borisov,
2015 : 21).

Let W1 = Wi(z, &) be the solution to the equation

Agwl(x7€> = WO(x7£>7 5 € (07 1)n+1 (16)
subject to periodic boundary conditions obeying the orthogonality condition:
/ Wi(z,&)dé =0, =€ R". (17)
(071)n+1

It was shown in (Borisov, 2015 : 21) that this problem is uniquely solvable. We introduce
extra two functions:

W.(z,¢€) := e "W, <:1:, g) , >0, W.(x,0):=0, =0, (18)
and
Qan(m,6,0) =1+ Y (eG) " Wal(a' — k, py1,6Gk). (19)
kGFa,N

By V;, v () we denote the operator of multiplication by Qa,n (2, €, (). It was shown in (Borisov,
2015 : 21) that

-1

n+1
( éN(O) an(OVan(C)=-A+ Z (5@)1—1)(2 Aj(a' — k7$n+175Ck)%+
Jj=1 J

kera,N

(20)
+ Ao(z' — k7$n+1;€Ck)>-

The operator in the right hand side of this identity is considered in Ly(Il, n) subject to the
same boundary conditions as H;, y(¢). The coefficients A;, Ay are given by the formulae

€ oW,
A. — _
() 1+ &2 W, (z,¢) Ox; (z.¢),
1 s 9*W, T T
Ay(z,e) == — T W (09 (2]21 92,06, (x, g) + (A W) (x, g)

+ 7wy (x, g) W*(x,5)>.
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The first two terms in the brackets in the right hand side of the formula for Ag should be
treated in the sense of the partial derivatives w.r.t. z and £ for function Wy (z, £) followed by
the substitution £ = £. The functions A;(z,¢), Ao(x, ) are bounded uniformly in z, ¢ and
Ck-

The right hand side of identity (20) can be represented as (11) satisfying at the same time
Assumptions (A1), (A2), (A3). Namely, the operators L; are supposed to be depending on ¢,
L;(t) = L;(t), and are introduced as

(21)

L+ W, (2 )\ S
T (ALW) (x ’ >>+tP(t11),
t1 %
() (e )

w Tn 1 an (92W1 X
\D’] / 1 —i—t20 bVI;r (x,¢) (22 0z ;0&; ( ) (A1) (m,?> > az,

and for t = 0, operators L; are determined by the formulae
El(O) ZZO, 53(0) = 0,
1
L(0) := — 5/ dr Y3 (Tn41) / (VWi (z, )| dé. (22)

g (0,1)m+t

It is easy to make sure that under such choice of operator £(t), the perturbation in right hand
side of (20) becomes (11), if as a new small parameter we choose €17, and as new random
variables we take ( ;’b.

The above obtained operator £(t) is not symmetric, since the operator £; are not. This
cause no big troubles since the symmetricity of these operators was employed in (Borisov,
2015 : 21) just in certain steps, which can be verified independently. The next point is that
the operators L1, £, depend on t. In this case the technique of (Borisov, 2017) works as well,
just Assumptions (A1), (A2), (A3) are to be satisfied uniformly in .

In (Borisov, 2017), the symmetricity of L£(t) was employed to ensure the realness
of eigenvalues Ag and A y(¢). This is obviously true in our case. The next point,
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where the symmetricity was used, is the bracketing at several steps. In our case the
bracketing can be done for the original operators H; and HZ, y(¢) since they are self-
adjoint and then transformation (20) should be applied. Then all the proofs from (Borisov,
2017) can be reproduced literally. This is why in our case we need just to check
Assumptions (A1), (A2),(A3) uniformly in ¢.

It was shown in (Borisov, 2015 : 21) that Assumption (A1) holds true for the operator £4
defined by (21). As it was proved in (Borisov, 2015 : 21, Eq. (5.15)), we have the inequality

(L2(t) o, Wo) oy = _/dfc‘lfg(l’nﬂ) / Vei(x, )2 de +O(t7), ¢ — +0. (23)
| (0,1)n+1

It was also proved that

(L£1(6)W0) (. 1) = t P(tT7)Wo(Tns1)

v o2 )
) (37 P () e aan) (o) ).
14 oW, (2, t75) \ = 02506\ 1= o

Given such right hand in equation (14), one can construct the asymptotic expansion for its
solution ¥; by the multiscale method (Bakhvalov, 1984). This expansion holds true at least

in Ly(O)-norm and it implies that ¥y = O(t%—b). Hence,

(‘1/17 £1\I/0)L2(|:|) = O(tﬁ), t— 0. (24)

This identity and (23) yield

/ AT, 11) / VWi (a,€) 2 de

= (0, 1)+t

| —

(Eg(t)\:[fo, \IJO) Loy@) — (\1}1) L4 (t)\I/O) Lo(O) S -

that proves Assumption (A2).
As in the case of equation (14), one can construct the asymptotics for the solution to

problem (15) by the multiscale method. It gives that ®; = O(t%—b) in Lo(O)-norm. This
identity and (24) lead us to the formula

—As + (Re (91 — \111)7Re£1\110)L2(D) :/dx\lfg(a:nﬂ) / VWi (z, €)% dé + O(tﬁ)

0 (0,1)n+1
1
>§/dxlllg(mn+1) / |V§W1($,§)|2d§
O (0,1)n+1

for sufficiently small ¢. This, Assumption (A3) is satisfied.

Since the functions Wy, Wi are real-valued, for each real-valued function v € W3(0O)
the functions £, (t)u, Lo(t)u are real-valued. This ensures the fourth assumption in (Borisov,
2017).

Thus, we can apply the general results in (Borisov, 2017) to our model and it leads us to
Theorems 1, 2, 3, 4.
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4 Conclusion

One of main aims of the present paper is to show that the general results obtained previously
in [1] can be also applied to certain singular perturbations. The main tool is to employ a
non-unitary transformation of the operator, in fact, a certain mutliplication operator. This
operator is to be introduced in such a way to remove the singular perturbation from the
operator and replace it by a regular one. This approach was succesfully realized in [2] and we
show that it works perfectly for our case as well. And as our main results show, the considered
perturbation by a fast oscillating potential is negative in the sense that it shifts the spectrum
down.
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