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Adaptive generation of computational grids can improve the efficiency of mathematical model-
ing by increasing the accuracy of numerical approximations. The paper describes a method for
constructing unstructured grids with adaptation based on differential methods. The application
of these methods ensures a smooth distribution of the geometric characteristics of the grid, i.e.
the appearance of adjacent cells that differ greatly in size and shape becomes unlikely. To achieve
proper adaptation in unstructured grids we use the novel approach based on methodology of adap-
tive structured grid construction. This approach uses the method of grid construction based on
solving inverted Beltrami equation to create mapping of some sample grid domain to the physical
area. This mapping is used to construct point set on which the unstructured grid is constructed
using Delaunay triangulation method. Thus, the result is unstructured grid with proper adapta-
tion. Adding fault and fractures or other structure elements may be supported by implementing
constrained Delaunay triangulation.
Key words: computational grid construction algorithm, unstructured mesh, adaptive mesh, dif-
ferential elliptic equations, reversed Beltrami equation

Дифференциалды әдiстердi қолданып бейiмделген құрылымдық емес торларды құру
Тұрар О.Н., Әл-Фараби атындағы Қазақ Ұлттық Университетi,

Алматы қ., Қазақстан, E-mail: turar_olzhas@mail.ru
АхмедөЗаки Д.Ж., Халықаралық Бизнес Университетi

Алматы қ., Қазақстан, E-mail: Darhan.Ahmed-Zaki@kaznu.kz

Есептеуiш бейiмделген торларды жасау сандық аппроксимация дәлдiгiн арттыру арқылы
математикалық модельдеудiң тиiмдiлiгiн арттырады. Мақалада дифференциалды әдiстерге
негiзделген бейiмделген құрылымдық емес торларды құру әдiсi сипатталған. Осы әдiстердi
қолдану тор ұяшықтарының геометриялық сипаттамаларының тегiстелуiн қамтамасыз етедi,
яғни бұл жағдайда көршi ұяшықтардың көлемдерi мен пiшiндерi тым ұқсамау мүмкiндiгi өте
төмен.Құрылым сақтамайтын торларда дұрыс бейiмделудi қамтамасыз ету үшiн адаптивтi
құрылымдық торларды құру әдiстемесiне негiзделген жаңа тәсiл қолданылады. Бұл
тәсiлде керiленген Белтрами теңдеуiн шешуге негiзделген торларды құру әдiсi белгiлi бiр
анықтамалық аймақты физикалық түрде картаға бейнелеудi табу үшiн пайдаланылады.
Осы салыстыруды пайдалана отырып, Делоне триангуляция әдiсiн пайдаланып құрылым
сақтамайтын тор құру үшiн пайдаланылатын нүктелер жиынтығы жасалады. Осылайша,
нәтиже дұрыс бейiмделуi бар құрылым сақтамайтын тор болып табылады. Жарықтар
және сынықтар немесе басқа да құрылымдық элементтердi қосу шектеулерi бар Делоне
триангуляциясының көмегiмен жүзеге асырылады.
Түйiн сөздер: Есептеу торын құру алгоритмi, құрылымдық емес тор, бейiмделген тор,
дифференциалдық эллиптикалық теңдеулер, керiленген Белтрами теңдеуi.

Разработка адаптивных неструктурированных сеток с помощью
дифференциальных методов

Турар О.Н., Казахский национальный университет имени Аль-Фараби
Алматы, Казахстан, E-mail: turar_olzhas@mail.ru

Ахмед-Заки Д.Ж., Университет Международного Бизнеса
Алматы, Казахстан, E-mail: Darhan.Ahmed-Zaki@kaznu.kz

ISSN 1563–0285 KazNU Bulletin. Mathematics, Mechanics, Computer Science Series, N.2(98), 2018



Design of adaptive unstructured grids using differential methods. . . 89

Генерация вычислительных адаптивных сеток может повысить эффективность
моделирования за счет повышения точности численной аппроксимации. В статье
описывается метод построения неструктурированных сеток с адаптацией на основе
дифференциальных методов. Применение этих методов обеспечивает плавное распределение
геометрических характеристик ячеек сетки, то есть возможность появления соседних ячеек,
которые сильно отличаются по размеру и форме, является крайне низкой. Для обеспечения
надлежащей адаптации в неструктурированных сетках используется новый подход,
основанный на методологии построения адаптивных структурированных сеток. В этом
подходе используется метод построения сеток на основе решения обращенного уравнения
Бельтрами для создания отображения некоторой эталонной области в физическую. С
помощью этого отображения строится набор точек, который будет использован для
построения неструктурированной сетки методом триангуляции Делоне. Таким образом,
результатом является неструктурированная сетка с хорошей адаптацией. Добавление
разломов и трещин или других структурных ограниченивающих элементов поддерживается
путем реализации триангуляции Делоне с ограничениями.
Ключевые слова: алгоритм построения расчетных сеток, неструктурированная сетка,
адаптивная сетка, дифференциальные эллиптические уравнения, обращенное уравнение
Бельтрами.

1 Introduction

Adaptation methods for computational grid generation improve the efficiency of physical
simulations. They increase accuracy of numerical approximations, because most industrial
computational processes have big changes of physical values in some parts of domain. It
leads to high gradients and values of solution in those locations which, in turn, leads to lack
of accuracy.

Generally grids constructed to numerical solving of partial differential equations are
grouped into two essential groups: structured and unstructured grids [1]. Each of those groups
has its own construction methodology and fields of use which is almost does not intersect.
However, some theoretical principles that may be implemented to overall numerical grids let
us consider comparing and combining those methods. One of those is adaptation of the grids.

Adaptive grids allow researchers to avoid creating fine grids for the whole domain. Such
grids critically increase computational run time. In many cases locations with smooth solution
does not need such surplus accuracy, since it does not take effect considering bad accuracy
of places with high gradients of solution.

Computational grids can be constructed in such a way that the places of such big solution
values and gradients are covered with small cells. It reduces the error of numerical solution
generated in the locations of steep gradients and high values. The grid on the smooth solution
locations is coarsened to optimize the computation time. Computational grids are grouped
into fundamentally different types of grids called structured and unstructured grids. Both of
them have own grid construction methodology.

Unstructured grids are widely used in finite element and finite volume methods. They are
necessary in certain situations and have a several benefits comparing to structured grids in
case of complicated shapes of domain. Mostly such grids are constructed by geometric and
graph methods. The adaptation in those methods are done by adding additional points in
the certain locations of the grid.

Common structured grids usually used in finite difference methods are constructed using
simple algebraic methods. But the construction gets complicated in situations of adaptation
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to physical area boundaries and control functions. In such case the structured grid represents
curvilinear coordinate system and found by solving non-linear differential equations.

The paper describes grid construction method that has positive characteristics of both
approaches by combining them in one method. Combination implemented by constructing
unstructured grid based on set of points uniformly scattered over the curvilinear structured
grid. In such method the result grid is unstructured grid and, therefore, have all its positive
sides. It also keeps the smooth adaptation based on differential methods.

2 Literature review

Most of unstructured grid generation algorithms [2] have 3 groups separated by general
approach to construction. First group is advancing front algorithms [3, 4]. In such algorithms
they grid is constructed by attaching new cells to the existing grid starting from boundaries
of the domain. Next approach is iterative construction of Delaunay triangulation by adding
new points to the existing triangulation [5, 6]. After adding the new point whole triangulation
is to be reconstructed to satisfy principle of Delaunay. Algorithms based on tree containers
such as quadtree algorithms [7, 8]. In such algorithms the forms of the result grid cells may
be far from perfect. However this approach allows very convenient adaptation of grid in terms
of cell fining.

These approaches may be improved to support constrained grids such as constrained
delaunay triangulation [9, 10]. Constrained grids are the grids that keep some initial given
structure elements such as pre initialized curves or edges, surfaces and volumes. This is the
way we are going to add faults and fractures in the mesh.

In the case of unstructured grids several approaches exist at the moment [11, 12, 13, 14,
15]. But all of them based on the algebraic methods. In common case it is hard for algebraic
methods to guarantee such good characteristics of grid as smoothness and proper cell forms.
Best numerical grids keep the similarity of forms and sizes of adjacent cells all over the
domain. Methods based on differential equations can be very handful in for this purpose.

Such differential methods are very widely used in structured grid construction. Methods
are based on numerical differential geometry and those lead to very natural adaptation of
structured grids [16, 17, 18]. There are very much of such approaches of constructing struc-
tured adaptive grids [19, 20, 21, 22].

Namely, the approach we are going to use is solving the inverted Beltrami equation [19,
17]. This approach guarantee the property of smoothness for cell form and size changes since it
is based on variational methods. The equation is taken by minimization of energy functional
which is based on theory of constructing isometric coordinate system on the surface [16].
Thus, the approach is the best in terms of the physicality of the result grids.

3 Materials and methods

3.1 Unstructured grid construction

To construct unstructured grids, we used Delaunay triangulation and Voronoy diagram [6]
since they create comparatively good grids for computations on the given set of points using
control volume methods. Delaunay triangulation is the triangulation of the set of points in
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which all the triangles and points satisfy principle of Delaunay (figure 1A). This principle
states that the triangles are not to contain other points from set inside of their circumcircles.
The goal is to create such grids in common cases with initial structural limitations such as
pre-defined edges that cannot be reconstructed.

To implement support of limitations we chose iterative method that allows adding new
points to existing Delaunay triangulation. On figure 1 cases of adding new points inside the
triangular cells and on the existing edge are demonstrated. Simple fragmentation of those
cells may lead to appearance of cells that does not satisfy the principle of Delaunay. For
such triangle and point we have to make flip operation, i.e. change diagonal in quadrilateral
convex figure constructed on those 4 points (figure 1, E).

Figure 1 - Delaunay triangulation: A) Delaunay principle; B) Delaunay construction: adding new
point in triangular cell; C) Delaunay construction: adding new point to existing edge; D) flip

operation; E) demonstration of constructed triangulation on the random 100 points
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Diagram of Voronoy is constructed using Delaunay triangulation by constructing central
perpendicular segments for every triangle of Delaunay triangulation. Those segments connect
mass centers of corresponding triangles. Such grid has many positive sides for computation
using finite volume methods.

3.2 Adaptive structured grid construction

Structured grid adaptations are based mostly on solving differential elliptic equations. Con-
sequently, they tend to smooth scattering of nodes of the grid. They find the mapping of
some sample domain with common cartesian grid to the given physical area (figure 2, A).
One of the most advanced in terms of adaptation is the method based on solving reversed
Beltrami equation. The following equation is the reversed Beltrami equation that can be used
to construct structured grids adaptive to gradients or values of scalar fields or to directions
of vector field [19, 17].

∂

∂sj
(
√
gsgjls ) =

√
gsgims

∂2sl

∂ξi∂ξm
(1)

In the formula (1), repeating indexation means summation over those indexes on the one
side of equality. S represents new grid coordinate system and ξi is initial grid’s curvilinear
coordinate system. Here gjsl are contravariant tensor components and gs is its determinant
of the mapping shown in figure 2, A. Equation (1) is non-linear in such form and cannot
be solved using standard elliptic equation solving methods, so to solve it we have to add
time derivative. Thus, we convert it into parabolic equation and solve it by iterations. In
each iteration we get new curvilinear grid which is little closer to the result adaptation than
the previous one. Boundary conditions in those methods are taken by solution of the same
problem on the lesser dimension. For 3D domain it is surface grid construction which in turn
uses curve 1D grids as boundary conditions. The result grid constructed by described method
shown in figure 2.

3.3 Proposed adaptive unstructured grid method

The unstructured grid construction method described above can construct it on any point
set. So, the problem is initialization of the proper point set.

Our way to choose the point set is to use curvilinear adaptation provided by differential
methods. The set is uniformly scattered on the sample domain, which is represented on
the left side of figure 2, A. So, after mapping it represents uniformly scattered set with
adaptation to the values of some scalar control function. Further this adapted set of points
is used to construct the unstructured grid. Figures 3 and 4 demonstrates the results of the
implementation of proposed algorithm. The points in figure 3 are chosen simply as the nodes
of structured grid after adaptation. Since the sample cells are squares adaptive grid lines are
still close to orthogonal. Therefore, in triangulation represented in figure 3, B, we can see
that triangles are close to right triangles.

Figure 4 demonstrates unstructured grid constructed on the adaptive set of points. This
set defined by mapping of regular triangulation on the sample field.
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Figure 2 - Structured grid construction: A) mapping demonstration; B-C) using reversed Beltrami
equation, control function is presented by colors

Figure 3 - Example of unstructured grid constructed using points set defined by nodes of adaptive
structured grid: left – Voronoy diagram and right – Delaunay triangulation
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Figure 4 - Example of unstructured grid constructed using adaptive close regular points set

4 Results and discussion

In real industrial applications of physical simulation, the domain of physical process may
have very complicated forms. They may have inner limitation structures, such as faults or
fractures or very sophisticated boundary topology. In such cases it is very hard to use struc-
tured grids even with adaptation. Adaptive structured grids demand choosing sample domain
for mapping close enough to physical one. Since in opposite case it is possible to generate
prolongated cells of grid. This process is not automatized at all and it is the first serious
drawback of the adaptive structured grids.

Complicated boundaries force researchers to make extremely fine grids near those bound-
aries in structured grids. Because the topology of the boundary has to became smoother in
inner part of the domain. It leads redundant amount of fine parts and overall loss of optimiza-
tion. In case when the domain has structural elements that put limitations for computational
grid construction such as, for example, faults and fractures of porous media or some objects
inside of continuous media, etc., unstructured grids also have benefits comparing structured
grids. Those structural lines or surfaces can intersect in random order and make complicated
non-structured topology. In such cases it is impossible for grid lines to trace the limitation
lines. But in many cases, it is necessary to trace those lines as accurate as possible in numer-
ical methods since the behaviour of the model along them are very critical to correctness of
the solution.

Those advantages of unstructured grids fully preserved in our method since our result
grid is unstructured grid. Only the choose of the sample domain for adaptive structured grid
generation is still not automatized and have to be done manually before construction. However
now it is not such limited as in construction of fully structured grid on the physical domain.
Now the mapping must not map exactly to given boundaries. In general, it is enough to map to
some area that contains whole physical domain. Researcher still have possibility to manually
bind some boundaries or inner grid lines to boundaries or inner structural limitations of
physical area correspondingly to get grids with proper tracing of such structural elements.
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Adaptive structured grids in turn have main advantage that briefly can be stated as
physicality of adaptation. Since we got adaptation on the base of solving differential equations
that also used to describe the behaviour of physical simulations. Namely elliptic equations
are used to implement diffusion processes and, therefore, to produce smoothly adaptive grids.
This leads to smooth changes of such grid cell properties as size and elongation, i.e. how much
the cell is squeezed in one dimension.

Existing unstructured grid adaptation techniques are based on using algebraic, geometry
and graph algorithms. It is very unnatural and unconvenient to design those methods in
such a way that they can guarantee the smoothness of such properties of the grid. Most of
them does not guarantee that there are no leaps in size changes of adjacent cells. But the
smoothness of size and forms of cells shows positive impact on the accuracy of the overall
numerical method.

Unlike them differential methods based on elliptic equations guarantee such smoothness.
It is due to fundamental property of elliptic equations to even the values of solution. Also, the
method of solving reversed Beltrami equation is based on minimization of energy functional.
It constructs the adaptive coordinate system in such way that grid cells are close to equal in
case when the control metric is the metric of the surface itself.

Our method keeps that smoothness property of adaptive grid and transfer it to unstruc-
tured grids. Initial point set on sample domain is regular triangular grid nodes and its adap-
tation tries to keep those regularity. Due to that fact inner angles of cells are close to each
other in the whole triangulation. Exceptions may occur if we need to add structural limitation
lines that are not traced by structured grid lines because in such case initial point set has
not any kind of relation to the predefined structural line or surface.

One significant drawback of adaptive structured grids is the process of using it with
finite difference methods. Since the computational grid on physical domain is a mapping of
some sample grid researchers must bring the expression to the correct form. Expressions are
to be modified by substituting function to be found by its complicated mapped form and
further implementation of all the derivations. Thus, researcher obtains complicated equation
with Jacobians of the mapping and components of the metric tensor. Simple heat transfer
equation is written in the following form

(2)

∂u

∂t
= ν

(
∂

∂ξ1
(
√
gg11

∂u

∂ξ1
+
√
gg12

∂u

∂ξ2
+
√
gg13

∂u

∂ξ3
) +

∂

∂ξ2
(
√
gg21

∂u

∂ξ1
+
√
gg22

∂u

∂ξ2
+
√
gg23

∂u

∂ξ3
) +

∂

∂ξ3
(
√
gg31

∂u

∂ξ1
+
√
gg32

∂u

∂ξ2
+
√
gg33

∂u

∂ξ3
)

)
This process has to be done manually for every equation in the model and yet has not

any automatization. Solving the same equation with the finite volume method is much easier.
Taking into account the fact that we have constructed Voronoy diagram and choose initial
points as cell centers we can avoid non-orthogonal diffusion components in approximation.
This approximation has not any differences from any other unstructured grid.

However, the most important reason to use adaptive structured grids is a possibility to
use finite differences method with higher order approximation difference schemes. Proposed
approach may be handy in situations when those schemes are not necessary.
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5 Conclusion

The paper describes methods of unstructured grid construction based on differential meth-
ods. Differential equations are very good when it is necessary to create adaptive grids with
smooth change of cell sizes and forms. Up to the moment such methods were used mostly
for construction of adaptive structured grids. To transfer this property to unstructured grids
we implemented standard grid construction algorithms with ability to construct grid on any
given set of points. Further we choose the set of points that are going to be nodes of the
Delaunay triangulation and centres of Voronoy diagram by solving boundary problem for
reverse Beltrami equation. Solving the equation provides certain mapping of some sample
grid to physical domain and we use that mapping to define the point set with adaptation.

Such approach gives us a list of advantages comparing raw adaptive structured grids. It is
more effective and convenient to use in most cases except the case when it is important to use
finite difference approximation schemes of higher order. Also, such method has good influ-
ence to adaptation of unstructured grid since differential elliptic methods have fundamental
property to smoothen the solution.

6 Future work

This work is the first step of using differential methods for unstructured grid construction. At
the moment it is simple sequential execution of two algorithms using the results of structured
adaptive grid as an initialization point set to unstructured grid construction. Further work is
going to be aimed to solving of the described differential equations by FEM or FVM methods
for construction of unstructured grids.
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