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Soliton immersion for nonlinear Schrodinger equation with gravity

One of the developed directions of mathematics is studying of nonlinear differential equations in
partial derivatives. Investigation in this area is topical, since the results get the theoretical and
practical applications. There are some different approaches for solving of the equations. Methods
of the theory of solitons allow to construct the solutions of the nonlinear differential equations in
partial derivatives. One of the methods for solving of the equations is the inverse scattering method.
The aim of the work is to construct a surface corresponding to a regular onesolitonic solution of
the nonlinear Schrodinger equation with gravity in (1+1)-dimension. In this work the nonlinear
Schrodinger equation with gravity in (1+1)-dimensions, as well as solitonic immersion in Fokas-
Gelfand sense are considered. According to the approach the nonlinear differential equations in
(1+1)-dimension are given in the form of zero curvature condition and are compatibility condition
of the linear system equations, i.e. Lax representation. In this case there is a surface with immersion
function. The surface defined by the immersion function is identified to the surface in three-
dimensional space. Surface with coefficients of the first fundamental form corresponding to the
regular onesolitonic solution of the nonlinear Schrodinger equation is found by soliton immersion.
Key words: nonlinear equation, immersion, surface, solitonic solution, fundamental form, zero
curvature condition.

Kynycosa 2K.X.
CosinToHHasi UMMepcus HeJmHelHoro ypaBueHusi Illpenunrepa ¢ npursakeHuem

OpHUM U3 pa3BUBAIOINIUXCS HAIIPABJIEHUI MATEMATHKH SBJISETCS UCC/IeI0BaHNe HeJIMHEHBIX Tud-
depeHnnaIbHbIX YPABHEHUN B YACTHBIX MPOU3BOAHBIX. VccieoBaHne B JAHHOM HAIIPABJICHUN aK-
TYyaJbHO, TAK KAK PE3yJIbTAThl HAXO/ST TEOPETHIECKHE U IpakTuiecKne npuMenenus. CyIecTBy-
10T PA3JIMIHBIE [IOJIXO/IbI JIJIsI PEIIeHNUs JAHHBIX YpaBHEHUU. MeTo bl TeOpUn COJIMTOHOB TTIO3BOJIsI-
0T TIOCTPOUTD PEIeHNs HeJIMHEHHBIX (D PepEeHIINAIbHBIX YPABHEHUI B YACTHBIX ITPOU3BOIHBIX.
OpHUM U3 METOMIOB [IJIsi PA3pEIeHns BhIEYKA3aHHbIX YPABHEHU SBJISETCsT METO, OOPATHON 3a-
nmaan paccesaus. llenb manHO# paboThl MOCTPOEHME OBEPXHOCTH COOTBETCTBYIOIIEH DEryJIspHO-
MY OJIHOCOJINTOHHOMY pelleHuIo HesuHeitnoro ypasuenus [llpexunrepa ¢ npurszkenuem B (1+41)-
pa3mepnocTu. B manHoit pabote paccMoTpeHo HeuHeitnoe ypapuenne [IIpeannrepa ¢ MpUTSKEHN-
eM B (1+1)-pasMepHocTH, a TaK»Ke COMMTOHHAsI UMMepcus B cmbicie Pokaca-Tensdana. CormacHo
JaaHoMy noaxomy B (1+1)-mepaoM ciryuae HesuHeiiHble auddepeHnuaibable yPABHEHU B 9aCT-
HBIX [IPOU3BOHBIX JAIOTCS B BUJIE YCJIOBUI HYJIEBOM KPUBU3HBI U SBJISIOTCS YCJIOBUEM COBMECTHO-
CTH CHCTEMbI JIMHEHHBIX ypaBHEHUil, T.e. mpejcraBiaennn Jlakca. B stom ciaydae cymectByer mo-
BEPXHOCTH C MMMepPCUOHHOI dyHKImeit. [ToBepXHOCTD onpejiesieHHAsT TOCPEICTBOM UMMEPCHOHHOIM
byHKIN HIeHTHGUIIPYETCS ¢ MOBEPXHOCTHIO B TPEXMEPHOM HpocTpaHcTBe. C MOMOIIBIO COJTH-
TOHHOIM MMMEPCHUU JIJIsi PEryJIsiDHOTO OJIHOCOJIMTOHHOI'O PeIlleHus! HeJinHeidHoro ypasHenus IIpe-
JIMHrepa HaiiJleHa MOBEPXHOCTh C COOTBETCTBYIOMUMY KO3(MPUIIMEHTAMYU TIEPBOil KBaIPATUIHON
dOopMBL.

KuroueBsbie ciioBa: HeTMHETHOE ypaBHEHIE, MMMEPCHs, IOBEPXHOCTD, COJIMTOHHOE Pelenne, My H-
JlaMeHTaJIbHast hopMa, yCJIOBHE HYJIEBON KPUBU3HBI.
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2Kymnicosa 2K.X.
Taprbiabickl 6ap cbi3bIKTHI eMec IlIpeannrep TeHAeyiHiIH COTMTOHABIK MMMEPCHUSIChI

ChBI3BIKTBI eMec j1epbec TyBIHIBLIBL TuddepeHnnaaIbK, TeHIeyIepll 3epTTey - MaTeMaTHKAHBIH
JaMBIT KeJIeXKaTKaH Tapayaapblabih 0ipi. Harukeaepain TeoprusIbIK, XKoHe TPAKTUKAJIBIK, KOJIIa-
HBICHI OOJIFAHIBIKTAH, OyJT OaFrbITTAarbl 3epTTEyaep 03eKTi. By Temmeynepai mmenty yImin opTypJi
ojiicrep 6ap. ChI3BIKTBI eMec JepOec TYBIHJIBLIBI TEHJIEYJIEPIiH, [MENMiH COJUTOHIAD TEOPHUSIChI
9iicTepin KoIanbin Tabyra 6osaasl. Kepi ceftiny o71ici - allThIIFaH TEHJIEYIIEP/Il MENTyTe apHAJIFAH
omicrepain 6ipi. 2KymbicTbig, MmakcaTsl - (1+41)-emmemueri cpi3bikTsl emec Ipenunrep Tereyinin
PeryJsipJiblK, 6ip COMTOHIBIK, IeltiMine colikec Ger Kypy. Byur skymbicra (1+1)-esmmenmeri cbr3bi-
kTl emec Ilpemuarep teraeyi xone Poxac-T'enbdama MarbIHACHIHIATB COTUTOHIBIK TMMEPCHST
KapacTelpplrad. (1-41)-esrmeme CBI3BIKTHI eMec j1epbec TYBIHIABLIBL b depeHInaIbK TeHIe-
yJIep HOJIIK KHCBIKTBIK MIAPThI apKbLIbl Oepijeil »KoHe ChI3BIKTHI TeHJeyJep/iH, Jlakc xKyrra-
PBIHBIH MAPTHI OOJIBII TabBLIA L. Byl XKarmaiia MMMEPCHUSIIBIK, (DYHKIUSICHI 6ap OeT TabbLIaIbI.
Nvmepcusiiblk, hyHKIASICH aPKBLIBI AHBIKTAJIFAH O€T VI OJIIeM Il KeHICTIKTeri OeTIeH CollkecTeH-
Jipinmes.

TyiiiH ce3/iep: CLIBLIKTHI eMeC TEeHJEY, UMMEPCHUs, OeT, COMUTOHBIK, IIeITiM, OyHIaAMEeHTAIIbIK
dopma, HOJIK KUCHIKTHIK, IIIapTHI.

1 Introduction

Some nonlinear differential equations in partial derivatives are integrable and have physical
interesting exact solutions, moreover these integrable equations are solved by the inverse
scattering problem [1]-[6]. Investigations of the integrable equations in (1+1)-, (2+1)-
dimensions are topical with mathematical physics point of view [2]-[5]. The integrable
equations allow different kind of solutions as onesolitonic solution, domain wall, vortex etc.
Moreover solutions of the integrable equations have geometric characteristics. To investigate
the geometric characteristics of the solutions the theory of differential geometry of curves
and surfaces are applied.
One of the well-known models is Heisenberg ferromagnetic model

St =8 X Sgq,

where X is vector product, S = (S, S5, 53),S = S + 55 + 52 = 1.

Lakshmanan established that the model, which is applied in the physical applications, at
S? = +1 is equivalence to the nonlinear Schrodinger equation with gravity in geometrical
sense. This equivalence is called by Lakshmanan equivalence. We note, that Lakshmanan
equivalence is developed as integrable, as nonintegrable differential equations in partial
derivatives and its application domain is limited by establishing of equivalence between
a spin system and some nonlinear differential equation in partial derivatives, for example
Schrodinger type. We note, that for integrable nonlinear differential equations in partial
derivatives the Lakshmanan equivalence does not assume knowledge of Lax representation for
these equations. Now some generalizations of the Heisenberg ferromagnetic model in (2+1)-
dimension are known. For example, in the work [5] a generalized Heisenberg ferromagnetic
model is considered

S, = (S x S, +uS),,
Uy = _(Sa (Sx X Sy))>
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where S is spin vector, S + S3 + 5% = 1, x is vector product, u is scalar function. According
to the work [2] we identify the spin vector S with vector r,

S=r,
Then the generalized Heisenberg ferromagnetic model takes the form
Iy = (Ty X Iy +ury),

Uy = _<r$7 (rzm X ra:y>>‘

A surface corresponding to the onesolitonic solution of the generalized Heisenberg
ferromagnetic model is found in our previous works [2]

2

S3(x7y7t) =1- 772 +§2

sech? (X1R),

2n
772+52
X1 = X1r T iX11, A1 =1+ 1&,

SH(x,y,t) = (i€ — nth(x1r)|sech(x1r),

my = mag(p) +imar(p), m;(y.t) = m;(p),
X1k = N2 +migr(p) + cir,  p=y+ i\,
X1 = &x +mas(p) + cur, ¢ = In(2n /X)),
mir(p) = Re[mi(p)l,  mar(p) = Im[ma(p)],
The result is formulated and proved as the following theorem [5]

Theorem 1 The onesolitonic solution of the generalized Heisenberg ferromagnetic model can
be represented by components of the vector r,, where

2 +
ry= 1,
! (n? + &%)chxir !
ro = arctg(sh + co,
2 P+ & g(shxir) + c2
2n
r3 =& — —————thx1g + C3,
3 7+ &2 X1R T C3

1, Ca, C3 are constants. Solution in the form r,, corresponds a surface with coefficients of the
first and second quadratic form

Amip,
E=1 G= R
(n?* + &)ch*x1r
_ 2nm1Ry _ 4773€m1Ry
(n* + &2 ch?xar’ VI 4 €2)2chtxir’
AnEmig, Angmip,

- , N= .
VI 4 &2)*ch*xir VI(n? + €2)*ch*xir
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Thus, we have used the unified spin approach for investigating of geometric characteristics
of the solution of nonlinear equation.

In this work we consider soliton immersion in Fokas-Gelfand sense [3|. In the modern
literature the notion of immersion is widely expanded and related not only to the soliton
theory. It is a transition from sophisticated origin problem to the simple problem.

2 Soliton immersion

According to the Fokas-Gelfand [3| work we present the description of the soliton immersion.
In (1+1)-dimension the nonlinear differential equations are given in the form of zero curvature
condition

Ut_‘/:n+[U7V]:O7 (1>

where [U, V] = UV — VU, the matrix U is prescribed, and matrix V' is expressed in the terms
of elements matrix U.

One of the well-known nonlinear models is nonlinear Schrodinger equation with gravity
which is important for physical applications

where § = +1, v is complex function.
Such nonlinear differential equations (1) are compatibility condition of the linear systems

¢z =Ud,pr = V. (3)

In this case there exists a surface with immersion function P(z,t) defined by formulas
% = ¢ 1 X0, % = ¢ 'Y ¢. The surface defined by P(z,t) identified to the surface in three-
dimensional space defined by coordinates x; = Pj(x,t), j =1,2,3. Frame on the surface is

given by triple [3]

or oP

—=¢"'Xg, ——=¢ Vo, N=¢'J

5 =0 Xo, So=0"Yo, N=9¢Jo
where J = (554, | X |= < X, X >. Here by definition

1
<X >=—otr(XY),

where X, Y are some matrixes. The first and second fundamental forms in the Fokas-Gelfand
sense are given as

[=<X,X>d?+2< XY >dedt+ <Y,Y > dt?, (4)

0X 0X oY
II=<——+ (X, U),J >dx* +2 < E+[X,V],J> dzdt+ < §+[Y,V],J> dt*. (5)

As it is shown in the work [3] the immersion function P can be defined as
3
P=90""or+ ¢ 'Mip=>_ Pif;,
j=1
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where M; is matrix function defined by A, z,t. Snecs f; = —%aj is corresponding algebra

basis, o; are Pauli matrixes and [f;, f;] = fi. In this case, X,Y can be written
X =9Ux + My, + [M, U], Y = Vi + My + [My, V].

Let the matrixes X, Y, J have the forms

X:(&H 012>7 Y:(bll 1712)’ J:(Cn 012). (6)
a1 Q22 ba1  bao C21 C22

In this case elements of the matrix J are expressed through elements of the matrix X and Y
in correspondence to the following formulas

P a12b21 — b12a2 - a21(b11 - bzz) + b21(a22 - @11)
1 = ) 21 = )
| [X, YT | [X, YT
1y — b12(a11 - G22) + G12(b22 - bn) oy — azbiz — baraiz (7)
b | [ X, YT L | [X, YT

Then the first fundamental form (4) of the surface I = Edx? + 2Fdzdt + Gdt?, where

1 1
E = —§(CL?1 + 2a12a9; + agg), F= —§(a11b11 + a12b91 + ag1b12 + a9b2), (8)

1
G = _§(b%1 + 2b15bo; + b3y). )

As example of the soliton equation leading to the immersion we consider nonlinear
Schrodinger equation (2). In this case the matrixes U,V take the forms [4]

iz? - (0 q 0 G
v—703+Z|Q| 0'3—2)\( q 0 + —q» O . (10)
The lemma is valid.
L e m m a. The second fundamental form in Fokas-Gelfand sense corresponding to the
reqular onesolitonic solution q of the nonlinear Schrodinger equation has the form

II = Ldx? + 2Mdxdt + Ndt?, (11)
where
L= —i{auxcn + A12:Co1 + A21:C12 + A22,Co0 — Ni(a21C12 — A12C21)+
+iQ(G12011 + a92C12 — a11C12 — Cl12022) + Z'(j((121022 + a11Co1 — Qo2Co1 — G21011)}, (12@)

1 )
M = —§{a11t011 + @12¢Co1 + A214C12 + A294Co2 + Z()\2 + 2’Q’2)(a21012 — Q12C91)+

+(qz + Aig)(aric1a + arac2a — a12¢11 — A22¢12)+

+(Ge — M) (@111 + G122 — G21¢11 — G92C21) }, (120)
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1 )
N = _§{blltcll + b12tCo1 + baricia + bagicon + Z()\2 + 2\¢]|2)(b21012 — b1aCa1)+

+(qe + Niq) (br1c12 + biacas — biaciy — bagcia)+
+(Gz — Niq) (by1ca1 + barcag — baycin — bagcar) }, (12¢)

P r o o f. We substitute the matrixes (6), (10) to (5). After some algebra we get (11),
(12a)-(12c). The lemma is proved.

3 Theorem about surface to regular onesolitonic solution

We consider a particular case at 7o =1, M; = 0. In the case we get

1 — 7l 0o -
x=t=o (2 0 ) vy M) u=| BENGE)
22\ 0 —1 q A W

and P = ¢~ '¢,. In order to calculate the explicit expressions for immersion function P we
consider the regular onesolitonic solution of the nonlinear Schrodinger equation which has
the form [4]

3
NI
<

exp(—2ifx — 4i(£2 — n?)t — i6)
ch2n(x + 46t — xo)] ’
where ¢ = %ln”’;—gﬂ, 0 = argmos — argmoi, & = Re\, n = Im\.
Theorem. Regular onesolitonic solution of the mnonlinear Schrodinger equation

corresponds to the surface in Fokas-Gelfand sense with the coefficients of the first fundamental
form

Q(x>t> =2n (14)

64n%(£ + n?)

E = _ 15
(= N e?2n(a + 460 — )] oo
198126 (£2 2
(A = N)4ch?[2n(x 4 4€t — x0)]
256 2(¢2 2\2
o — _ (&2 +1n°) : (15¢)
(A = A)teh?[2n(x + 48t — 20)]
where Ay = const.
P r o o f. Solution of the linear system we find in the form
w _ Qbei )‘;.Ser%U?,t)' (16)
Taking into account (16) and applying (10) we get
)\0’3 /\0'3 )\0'3 >\O'3 )\0’3
=(—= — = — = |— . 1
Yo = (G2 4 Uy = 052 = 20 =52 4 Ug = [ 0] + U (17)
We take
@Z):I—)\_Xlk,wherefl:(aé 2),[2((1) (1)), Al — const. (18)
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We substitute (18) to (17)

o =lo— 5 — 3lo0 A 22'()\)\— o 7s Al
On the other hand from (18) follows
A
b= 55
From (19) and (20) we get
Y ilx)q =Uo — )\U_Oil\%{ - %[03,1‘1] - ﬁ[a&/ﬂ-

Thus ) Y .

A, =UgA+ 2—;[03,/1], Up = 2—[03,14]
We note, that )

[03,121] 20314—403:2( _05 8 )

Then we substitute (23) to (7) and get

L0 b
Yo=1 ( —¢ 0 ) '
Substituting (23) to (22) we get

ap b\ _L( be bd N A0 b
ép dy ) i\ —éa —éb i\ —=¢ 0 )’

From (10) and (24) we get

(0 g\ 1/ 0 b iq=1b b=—q
Z(q 0>_E<—c O):>{iq:—%c:> c=q.

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

Therefore, we have found the matrix A in the explicit form with components (25). Using (14)

we get
a = i2nth[2n(x + 4t — xo)] + 1.

From (25) follows @ = —%= — X} = @ = —1 [ gqdx. Using (14) we get

1~ 1
CNZI = —bé = dx = —(—q_)q,
1 1
Then .
=2 )
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Consequently, from (25), (26) follow

- b, - Q=
b ! (—q)

—N=d=2= -\ (30)

From (25), (26) follow
d, = —~cb, (31)
Moreover from (23), (31) follow
d= 1/qqdm (32)
Taking into account (22), we get (28) in the form
d= —a. (33)

Therefore,
a = —i2nth[2n(z + 4&t — x0)] + c1. (34)

Thus, the matrix A for regular onesolitonic solution (14) of the nonlinear Schrodinger equation
takes the form

. exp{i(26x+4(£2—n?)t+6)}
oty SN )
20 s i) —i2nth[2n(x +4¢t — x0)] + 1
We take ¢ = I — oo )\ o where \; is constant, then from (13) we get
A A
P=¢gy=(I —. 36
6o = 1+ 5 (36)
On the other hand we get
& i LP ip—1p
- N i o 2*3 T2t 1l T 9f2
r ijff 2213”” (—1P1+lP2 55 ) 7
= = 2 2 2
From (36), (37) by (31) we get P; = o 21/\“ . With help of (33) we find P; in the explicit form
for regular onesolitonic solution of the nonhnear Schrodinger equation
4n
Py = Wth[%(a: + 4€t — x0)] + c1. (38)
From (36), (37) we get P, = ﬁ Thus
i(¢+b) (& —b) 2id
=0 = o 2
(A= Ap)? (A= Xp)? (A= A1)
From (36), (14) using the well-known formulas
sh( = — ch( = — cos¢ = — sin¢ = 5 (39)
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where ¢ = 2n(x — x¢ + 4€t) we obtain the values for the components P;, P, of the matrix P
_Ansin(28x +4(8% — )t +0)
(A = \)2ch[2n(z + 4&t — x0)]’
 Ancos(26x 4+ 4(&2 — nP)t +9)
(A = A)2ch[2n(x + 48t — xo)]
Then we calculate coefficients of the first fundamental form by formula
E =P} + P}, +F;,. (41)

We calculate the derivatives Py, Ps,, Ps,. The square of the first derivatives is substituted to
(41), then

Py (40a)

(400)

P

647%(&% + 1)

b= N + A& —zo)]

By the similar way we find
F = PP+ Po, Py + Py, Py, G=P},+P;+P;
we obtain the values
1287*¢ (€2 + %)
(N — N2 2n(z + A€t — 7o)
25606 +1*)°
(= N2 + 46l — 20)]

F =

(42a)

G:

(42b)

Theorem is proved.

4 Conclusion

Thus, we investigate soliton immersion in (141)-dimension. As example, we have considered
(1+41)-dimensional nonlinear Schrodinger equation with gravity. The first fundamental
form with corresponding coefficients (15) for integrable surface corresponding to regular
onesolitonic solution of the nonlinear Schrodinger equation with gravity is found.
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