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Analytical method of definition of internal forces taking into account the
distributed dynamical loads in links of robotic systems and mechanisms with
statically indeterminate structures

In this paper the technique of analytical determination of internal forces in links of planar
mechanisms and manipulators with statically indeterminate structures taking into account the
distributed dynamical loads, a dead weight and the operating external loads is designed. The
dynamic equilibrium equations for the discrete model of the element under the action of cross and
axial inertial trapezoidal loads are derived. Also, the dynamic equilibrium equations for elements
and joints that expressed in terms of the unknown parameters of the internal forces of elements
under the action of the distributed trapezoidal loads are obtained. The compliance matrix of an
element is received from the expressions of energy for rods, so as the replacement of construction
by a set of discrete elements is based on the equality of the energies of the real structures and
its discrete model. The programs in the MAPLE18 system are made on the given algorithm and
animations of the motion of mechanisms with construction on links the intensity of cross and axial
distributed inertial loads, the bending moments, cross and axial forces, depending on kinematic
characteristics of links are obtained.

Key words: Mechanisms, Manipulators, Distributed inertial forces, Internal forces, Dynamic
equilibrium, Linkage compliance, Kinematic parameters, Statically indeterminate mechanisms,
CAD, Animation.

Keinkeibaesa C., ¥Yrenos M.Y., Yrenosa K.
KypbUIbIMBI CTATUKAJIBIK, AHBIKTAJIMAFAH MEXaHU3MIEP MEH POOOTTHI-TEXHUKAJIBIK
XKyiesiepaiH OybIHAAPBIHAAFBI TAPKAJFAH AUHAMUKAJBIK >KYKTeMeJep/i ecKepin imiki
KYIITEP/Ii aHBIKTAY/IbIH, AaHAJIUTUKAJIBIK, 9/1ici

KypbLIbIMBI CTATHKAJIBIK, AHBIKTAJIMFAH YKA3bIK, CTEPXKEH I MEeXaHU3MIEp MEH MaHUITYISTOPJIAp-
JIBIH, OV BIHIaPBIHIAFEI iTKI KYIITEep/i TApKAJFTaH JUHAMUAKAJBIK KYKTEeMeIep/i, CAIMAKThl XKOHe
CBIPTKBI KYIIITEP/I €CKEPIll aHBIKTAY/IbIH, aHAJTUTUKAJIBIK 9/1ici o3ipsieH 1. KapKbIHIbLIBIKTAPHI TPa-
merusi TYPiHJIe TapaJifaH KeJIIeHeH KoHe OOMJIBbIK WHepIMs KYIITEepiHIH 9CepiHje TypraH, Coii-
KeCIHITIe, KUMAChl TYPAKThI YKOHE CBHI3BIKTHI ©3T€PETiH 3JEeMEHTTED/IH JTUCKPETTI MOJEIbIEPIHIH
JTUHAMUKAJIBIK, TeIe-TeHIIK TeHaeyIepi aabriabl. CoHbIMEH Oipre, 3JIeMEeHTTepre TPAEIUSILIK, Ta-
paJiraH YKYKTeMeJlep 9Cep eTKEHJErl 1IMKi KYIITeP/IiH i3/1eliHeTiH mapaMeTpJiepi apKblIbl ©PHEK-
TeJreH, MAapHUPJI KoHe KATaH TYHIHIEP/IiH Teme-TeH K TeHaeyaepi amabiuabl. KypbhlabIMbl cTa-
TUKAJIBIK, AHBIKTAJIMAFAH MEXaHU3M/JIEP/IiH, OybIHIaPbIHIAFE iTKi KYIITEp/li aHbIKTaFaH 1A, OybIH-
JIAPJIBIH, YKAHINBLIFBINTHIK, MATPUTIACHIHBIH KAKeTTLIIr Tyaapl. KOHCTPYKIMAHBI TUCKPETTI 3J1e-
MEHTTEP/IiH, >JKUBIHTHIFBIMEH ayBICTHIPY HAKTBI KOHCTPYKITUSAHBIH 2KOHE OHBIH JIMCKPETTI MOJIETiHIH,
SHEPTIUsJIADBIHBIH, TEH/IITHE HEeTi3J/IeTeHIIKTEeH, JIeMEeHTTED/IiH KAHIIBLIFBIIITHIK, MATPUIAIAPbI
CTEepPXKEHIEP/IiH, SHEPTUSACHIH aHBIKTAY YIMH KA3bIITaH OPHEKTEPICH TaOBLIIbI.
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Kenaripinren aaropur™m 6oitbiama MAPLELS :kyitecinge mporpaMmaiap KypPbLIbII, MEXaHU3MIeP-
JiH Oy BIHIapbIHA KONBIITAH KOIIEHEH YKoHe OOMIIBIK, TapasIrad HHEPIHS KYIITEPiHiH, Wiy MOMEHT-
TepiHiH, OOMIBIK YKoHE KOJIIEHEH KYIITEP/IiH KAPKLIHIBLILIKTAPHl KOPCETIITeH KO3FTAIbIC aHuMa-
MUSIaphl AJTBIHIDI.

Tvyiiia ce3aep: MexaHU3MJIED, MAHUILYJISITOPJIAD, TAPKAJIFaH HHEPIUs KYIITepi, iIKi KyIITep, JIu-
HAMUKAJIBIK, Tele-TeH K, OybIH YKAHIIBLIFBINTHIFb, KHHEMATHKAJIBIK, [TapAMETPJIEP, CTATUKAJIBIK,
aHBIKAJIMaFaH MeXaHU3MJIED, IIPOrpaMMaJIay, aHUMAaIs Kypy.

2Kunkubaesa C., Yrenos M.V., Yrenosa K.
AHaJIuTU4YeCcKuil MeTo/, onpeaesieHus] BHYTPEHHUX YCUJIUMA C YyYETOM PaCIpeaeIeHHbIX
JUHAMUYECKUX HATPY30K B 3BEHbAX POOOTOTEXHUYECKHUX CUCTEM M MEXAaHU3IMOB CO CTATUYECKU
HeoIIpeeJJUMbIMI CTPYKTYpPpaMu

Paspaborana merognka aHAJIUTUIECKOTO OMPEIET€HUS BHYTPEHHUX YCUIUN B 3BEHbAX ILIOCKUX
CTEPKHEBbIX MEXaHU3MOB U MAHUIIYJIATOPOB CO CTATUYECKU HEOIIPpeJeIUMbIMU CTPYKTYPaMU C y4e-
TOM PACIIPEJIESIEHHBIX JIUHAMIYECKIX HArPY30K, COOCTBEHHOI'O BECA M OT JEHCTBYIONINX BHEITHIX
Harpy3o0K. BbIBe/leHbI JTUHAMHUYECKUE YPABHEHUS PABHOBECHUS I JTUCKPETHOW MOJIEIN SJIEMEH-
Ta IO JIeHCTBUEM TOIEPEYHBIX U IIPOJOJIbHBIX MHEPIIMOHHBIX HAI'DY30K TPAIIEIEN IaIbHOTO BUIA.
Takyke BBISBJIEHBI YPAaBHEHUsI PABHOBECHUS IMIAPHUPHBIX W 2KECTKUX Y3JI0B, BbIPpaKEHHBIE HUepe3
HUCKOMBIe ITapaMeTpPbl BHYTPEHHUX YCUJINI 3JIEMEHTOB I10]i BJIMAHHUEM pPacIpeJieJIeHHBbIX Harpy30K
TpalenenJaJbHoro Bujia. MaTpuipl momaTnBOCTH JIEMEHTA MTOIYYeHbl U3 SHEPreTHYeCKUX BBI-
paxKeHUil JJisl cTepXKHEl, TaK KaK 3aMeHa KOHCTPYKIIUHM COBOKYITHOCTBIO JUCKPETHBIX 3JIEMEHTOB
OCHOBBIBAETCSI HA PABEHCTBE YHEPTUU PEAJTHLHON KOHCTPYKIINN U ee JTUCKpeTHO! Mosesu. [1o mpuse-
JIEHHOMY aJITOPUTMY COCTaBJieHbI mporpaMMbl B cucteme MAPLEL8 u nonydens: anuMaruy J1Bu-
JKEHUd MEXaHU3MOB C IIOCTPOEHHEM Ha 3BEHbdAX MHTEHCHUBHOCTU IIOIEPEYHBIX U IIPOJOJIBHBIX pac-
[peJIeJIEHHBIX MHEPIIMOHHBIX HAIPY30K, M3rU0AIONNX MOMEHTOB, IOIEPEYHBIX U IIPO/IOJIBHBIX CHJI,
3aBUCAIINE OT KHHEMATUIECKUX XapPAKTEPUCTUK 3BEHBEB.

KuroueBble cjioBa: MEXaHU3MbI, MAHUITYJISATOPBI, PACIpPE/IeIeHHbIE WHEPIIMOHHBIE CHUJIbI, BHYT-
PEHHUE yCUINd, TUHAMUYECKOe PaBHOBECHE, I10/IaTINBOCTh 3B€HbEB, KNHEeMaTUIeCKe TapaMeTphl,
CTaTUYEeCKHU HeolIpe/ieIuMble MeXaHU3Mbl, IIPOIPaAaMMUPOBaHUe, AaHUMAITUA.

Introduction

There are a variety of graphic-analytical and numerical calculation methods of rod
mechanisms and robotic systems on strength and rigidity, which don’t consider the distributed
inertia forces of complex nature [1-9]. Assur groups, that form the designed scheme of
mechanism, can be statically determinate, and also statically indeterminate in concept of
determination of internal forces. Statically indeterminate group will be those included in the
calculated scheme of the mechanism, which consists of three or more basic joints, and the
links are connected rigidly. In this paper we propose a new analytical approach of solution of
problems of dynamic calculation on strength and rigidity taking into account the distributed
dynamic loads in links of robotic systems and mechanisms with statically definable structures.
The distributed inertia forces of complex nature appear in links of rod mechanisms within the
motion process. The intensity of distribution of inertia forces along the link depends on the
mass distribution along the link and the kinematic characteristics of the mechanism changing
rapidly. Therefore, relations between the intensity of distributed inertia forces and link weight
with geometrical, physical and kinematic characteristics are determined in our work. The
distribution laws of inertia forces and dead weight, make it possible at each position of links
deduce the laws of distribution of internal forces along the axis of the link, in which loads are
found at any point of link. Their maximum values allow to optimize the design parameters
of the link, providing the strength and rigidity of links and, entirely, of robotic systems and
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mechanisms. As internal loads of each continued link are all defined by a set of internal loads in
its separate cross-sections, and by the matrixes of approximations, so the task was to calculate
the internal loads in finite number of cross-sections of elements. As a result, we refer to discrete
model of elastic calculation of links of rod mechanisms. In the work of elastic calculation of
planar rod mechanisms for each instantaneous position of the mechanisms they are brought
to link structures, which degree of freedom is equal to zero based on Dalamber’s principle. For
definition of internal loads in links of designed scheme of mechanism, the structure is divided
into elements, and both pin and rigid joints. This is the first time the elements are divided
into three types of beam. Discrete models of these beams having constant cross-sections
which are under the action of cross and axial the distributed loads of a trapezoidal view
are constructed. These constructed discrete models allow to determine the quantity of the
independent dynamic equilibrium equations, components of a vector of forces in calculated
cross-sections and to construct discrete model of all structure. The dynamic equilibrium
equations for discrete model of an element of the link with constant cross-sections under the
action of cross and axial inertial loads of a trapezoidal view are also received in this work as
well as the equilibrium equations of pin and rigid joints expressed through required parameters
of internal forces. If we integrate the equations of dynamic equilibrium of elements and joints
in a single system, we will receive the equations of dynamic equilibrium of all discrete model
of system. A sort of systems of equations is sufficient for definition of internal forces in links of
mechanisms, which structure is statically definable. The vector of forces and vector of loads in
calculated cross-sections of discrete models of mechanisms are formed from vectors of forces
and vectors of loads in calculated cross-sections of their separate elements, respectively. For
mechanisms, with the Assur groups in its structure and having statically indeterminate links,
the number of equilibrium equations is less than the number of unknowns by the number of
degree of statically indetermination of construction. Hence, for definition of internal forces
of statically indeterminate mechanisms the flexibility matrices were constructed optional for
entire discrete model of rod mechanism. On the given algorithm the programs in the MAPLE
system were made and animations of the motion of mechanisms with construction on links
the intensity of cross and axial distributed inertial loads, the bending moments, cross and
axial forces, depending on kinematic characteristics of links were obtained.

1 Inertia forces and the approximation matrix

Considering the plane-parallel motion of an kth link of mechanism with constant cross-
sections comparatively fixed system of coordinates OXY, the following laws of distribution of
the cross and axial inertia forces along a link, that arise from self mass of a link are defined
[10]:

@ (},) = apg + brgy,

n(z),) = agn + brnl,

(1)

YAy, Tk

Ve Ak YAk _ : _
- €k, Akn = —VpApsinty — g Wkp7bkn =

g g
g%, 0y - an angle, which determines the position of the kth link comparatively fixed system

of coordinates OXY, respectively, wy, €; - angular velocity and angular acceleration of the kth

y/
where ay, = YAy cos by, — wkz,bkq =

YAk

link, respectively, wz;’;,w,jé - components of P (pole) point acceleration of the kth link put
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on the axis of link and perpendicular to it, respectively, 7, - specific weight of material of the
kth link, Ay - square of cross-section of the kth link, g - acceleration of gravity. The obtained
expressions show that the distribution of cross and axial inertia forces along the axis of link
with constant cross-sections is characterized by trapezoidal law. For the kth link, which is
under the influence of axial trapezoidal distributed load (see fig. 1), the bending moments
along the length of element are distributed by the law of polynomial of third-degree.

Mk($§€) = Qo —+ Gl.T;g -+ a2($;€)2 + CL3<SL’§€)3, (2)
q ( t)=“~+bs¢xlx —
_:—'—_'--"_'_‘r_'_‘_'_'_'_'_
— H’_rﬂrﬂ_’ﬂ_—rﬁ_‘
Ou G
I 5 l %
N \My 1,03 w443 Mg 173 M N

Figure 1 — Axial trapezoidal distributed load acting on the element

Now, let express the bending moments in xj cross-section through the sought bending
moments My, Mo, Mys, M4 in the cross-sections demonstrated in Fig. 1, respectively. For
this purpose it is enough to express coefficients ag, a1, as, az through My, Mo, Mg, Mys. As
a result we have [10]:

11 9 9 9 45 27
Mi(y) = [1 = oo + 5 (00)* = My + [ — o5 (2h)* + g ()| M+
20, 12 213 o2 203 5
9 18 27 1 9 9
=gy i g () = G @) 1Mo o [ = 5 (@) 5 ()" Mo

Differentiating My (x}) to ) gives the equation of shear force:

11 18 27 9 45 81
Qr(ry) = [_2_lk + Z—QIE — ﬁ(xﬁf)?] K1+ [E — l_zx;c - ﬁ(x;f]ng—}-
k k k k

9 36, 81, ,, 19, 21,
R gt My +[— — = = M.

(4)

Let the element be affected by the axial trapezoidal distributed load, except the
distributed shear force. In that case, the axial force in arbitrary cross-section of an element
can be anologously expressed to previous by means of axial forces in calculated cross-sections
as follows:

3
_$k+

> SN, (5)

Ni(z,) =1 — 2
k

2 4 4 1

5 (@) "IN + [ — 75 (23)?] Nz + [ +
Thus, for the elemnt which is acted by cross and the axial trapezoidal distributed loads,

the approximation matrix connecting interal loads in arbitrary cross-section of the element

with values of internal loads in cross-sections has an appearance:
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hi(zy)  haz(zy) Ms(@y) hia(zp) 0 0 0
[Hi(x})] = [har(2}) haa(x)) hos(z)) hoa(zy) O 0 0 (6)
0 0 0 0 h35(l‘;€) th(I‘L) h37(l‘;€)

Elements of the first line of this matrix can be seen from the equation (3), elements of
the second line can be seen from the equation (4), and elements of the third line can be
seen from the equation (5), respectively. The given expression of approximation matrix of
loads defines dependence between a vector of forces Si(x}) in arbitrary section of an element
and a vector of forces Sy in the appointed cross-sections. For an element of rod system the
approximation matrix is accurately obtained as it is solved on the basis of known laws of
distribution of sought forces. Note, the equations of the bending moment, the cross and axial
forces (3,4,5) respectively, which are expressed by the same values in calculated cross-sections,
show that for definition of internal loads of each element of the mechanism it is enough to know
values of these loads in final number of cross-sections of each of these elements. Number of
sections in which it is necessary to know values of internal loads, are defined by polynomial
degrees of external actions. Thus, internal loads of each continual link are unambiguously
determined by a set of internal loads in its separate cross-sections and by the approximation
matrixes, therefore, the task is reduced to calculation of internal forces in final number of
cross-sections of elements. Hence, we come to a discrete model of elastic calculation of links
of rod mechanisms.

2 Discrete models of elastic calculation of elements and mechanisms in general

For elastic calculation of rod mechanisms based on Dalamber’s principle, all inertial,
external forces, gravity of links are loaded and the unknown driving moments (forces) are
applied, providing the predetermined laws of motion. If the pin that connects drive link with
the frame will be replaced by rigid fixing, then the structures with zero degree of freedom
are received. For definition of internal loads in links (in elements) of calculated scheme of
mechanism, the structure is divided into elements and joints. The link or its part can act as
the elements, whereas the joints are the pins connecting links and cross-sections in the middle
part, where concentrated external stress is occurred. For definition of internal loads in links
(in elements) of designed scheme of mechanism, the structure is divided into elements and
joints. As an element can be the link or half link, as the joints — the pin that joins adjacent
links and sections loaded by intensive external forces. The process of structure sectioning
is made up from giving function and signs for elements’ calculated sections. While dividing
the elements of calculated scheme of structure into calculated cross-sections and joints, it is
necessary to set what internal relations between elements are remained or removed. If we
reject any internal relations or their combinations in the element, so the element breaks up
to two elements which can turn, move or be removed relatively each other. With the purpose
to prevent it, internal forces-loads have to be applied at the joint rejecting places. Thereafter,
these loads are regarded as primary unknowns. Let’s decompose an element of planar rod
mechanisms on three types of beams, for the convenience of composing of resolving equations
to determine the internal loads in the appointed cross-sections of elements of the mechanism
[10]. The first type is a beam, which both ends are fixed rigidly. Such beams can be the links
of complex link, which are connected rigidly among them.
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/ [

Figure 2 — Beam’s both ends are fixed rigidly (first type of a beam)

For determination of coefficients of expressions of the bending moment, it is necessary
to know values of the bending moments in four cross-sections, and for determination of
coefficients of expressions of axial force, it is necessary to know values in three sections of an
element. Therefore, we will choose four sections with unknown bending moments and three
sections with unknown axial forces in this beam. Then, by means of conditional schemes with
the corresponding unknown, we will construct discrete model of the considered beam as in
figure 3.

M, M,, M, M,

k1

%K JN T A
—$}ﬁﬁ1 %f{yﬁ
M, - M,

Figure 3 — Discrete model of the first type beam under the action of the distributed trapezoidal load

Then the vector of forces in calculated cross-sections of the beam’s discrete model is
expressed by the following vector:

{Sk} = {Mk17Mk27Mk37Mk47Nk17Nk27Nk?)}T' (7)

There is dependence between degree of freedom of discrete model m, number of the
attached external loads n and degree of redundancy of calculated scheme £ [10]:

m=mn—k. (8)

The matter is that total number of loads of calculated cross-sections is counted easily,
and degree of redundancy of calculated scheme is obtained by formula k=3K-III, where K -
number of the closed contours, I - number of simple (single) joints, k- degree of redundancy
of calculated scheme of mechanism. Degree of freedom of discrete model m determines the
quantity of necessary independent equations of statics.

For instance, the fourth class mechanism that is shown in fig. 4 can be considered as
geometric stable system (see fig. 5), if the rotational kinematic pair of drive link and frame
is replaced by rigid fixing.

To define the internal loads in links (in elements) of designed scheme of mechanism, we
divide the structure into elements and joints (see fig. 6).

For determination whether the system statically indeterminate we use the formula [9]:

k=3K — (9)
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. . )
R oy g

77777 X

A”

Figure 6 — Decomposing of structure into elements and joints

where K- the number of closed contours; III- the number of simple (single) pins; & the
degree of redundancy of designed scheme of mechanism. If the rods of basic links 2 and 5
are rigidly interconnected, the number of single pins will be equal to III=6 and k=6, and
this system will be six times statically indeterminate. Now, we construct discrete model
for calculation on elasticity of the fourth class mechanism (see fig. 4). Let all the rods of
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mechanism have stable cross-sections, as well as the rods of basic links 2 and 5 are rigidly
interconnected, as shown in figure 7.

Figure 7 — The discrete model of the fourth class mechanism with stable cross-sections of links and

statically indeterminate structure

Thus, we construct the vectors of forces in calculated cross-sections of links for investigated
mechanism. So we have:

{81} = {My1, My2, M3, N1, Ny2, N13}T; { S5} = {My1, My2, My3, Mo4, Nyl, No2, No3} 7
{S5} = {M31, M32, M33, Ms4, N31, N32, N33} 7: {S,} = {My1, M2, M3, My4, N,1, Ny2, Ny3} 7,
{85} = { M52, M53, N51, N52, N53} T2 {Sg} = { M2, Mg3, Ng1, Ng2, Ng3}*;

{87} = {M71, M2, M73, M4, N71, N;2, N3} T {Ss} = {Mgl, Mg2, Mg3, Mg4, Ng1, Ng2, Ng3}7;
{So} = {My1, My2, My3, My4, Ng1, Ng2, Ny3} 7.

The vector of forces in calculated cross-sections for discrete model of investigated the
fourth class mechanism has the form:

(S} = {My1, My2, M3, N1, N12, Ny3, M1, My2, M3, Mod, Na1, Na2, N»3,

M1, Ms2, M33, Myd, Nal, N32, N3, My1, My2, My3, Myd, Ny1, N,2, N3,

M52, Ms3, Ns1, N52, Ns3, M2, Mg3, Ns1, N2, N3, My 1, M2, M73, M74, No1, No2, N3,
Mg, Ms2, Mg3, Mgd, N1, Ns2, Ng3, Mol, My2, Mo3, Mod, No1, Ng2, Ng3} 7.

3 Dynamic equilibrium equations of discrete models of elements and joints

Let’s remove the equations of dynamic equilibrium of an element. From the attached
concentrated external loads (Qg1, My1) and from the cross trapezoidal distributed loads on
the axis of element, in arbitrary cross-section of z} element, which is expressed through the
sought moments in calculated cross-sections, is solved by the equation (3). If the equations
(2) and (3) will be differentiated three times on z}, then they will be equated and substituted
to value b, respectively, then the primary equation of dynamic equilibrium of element will
be:
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27 81 81 27 A
_l_g]Mkl + l_3Mk2 - l_3Mk3 + l_3Mk4 S L
k k k k

E. (10)

Relation between the values of the unknown quantities of bending moments in the
calculated cross-sections and geometric, physical and kinematic characteristics of kth element
of mechanism is found. Thus, the second equation is expressed through relation of the sum
of moments of all the acting forces on k - element to center of gravity of k4 cross-section,
(relatively to fig. 1):

l3
lelk + akqfracl,%Z + bk’qgk + Mkl — Mk4 == 0, (11)

where Qr = —%Mkl + %MkQ - %ng + iMM, this equations is easy to get, if the value
o} = 0 is substituted into the equation (4).

Substituting the values Q1 and agg, by, into equation (1), and summing the coefficients
of same name unknowns, and also substituting the known quantities into the right end of the
equation, the second equilibrium equation can be written as:

2

9 9 Ay g B Ay 3
—§Mk1 + 9Mk2 — —ng = ('YkAk COS Qk + L szﬁ) k -+ B kﬁk—k

- L (12)

From the axial trapezoidal distributed loads acting on the element, as well as from the
force Ny of kI cross-section, in the ) cross-section of element the axial force is occurred,
which can be solved by equation:

: / (z3,)*
Nk(“%) = Nkl — Qpndy, — bknT (13)
On the other hand, the axial force in the zj cross-section of the element, expressed by
means of axial forces in the calculated cross-section, has the form (5). Differentiating twice
on zj, the equation (10 and 5), respectively, equating them and substituting the value by,
the third equation of equilibrium can be expressed as:

4 8 4 A
l—2Nk1 - Z—QNM + l—2Nk3 = e
k k k

w;. (14)

Projecting all forces acting on the kth element on the 2 axis and substituting the values
Qjn, bpn, the third equation of equilibrium is found. Thus

A, A
Vi Ak k>lk_7k szlk (15)

—Ni1 + Nig = (e Ag sin 0y, + Wit

Obtained system of equation, which consists of equations (9), (11), (13) and (21) are
assembled in a matrix form as:
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[A]{Sk} = {Fi}, (16)
where
N
§ 4 § 4
—-= 9 —= 0 0 0 O
[Ay] 2 2
0o 0 0 0 % —-% %
k k k
0 0 0 0 -1 0 1,
{Si} = {Mj1, My, My, Mya, Ni1, N2, Nis} (17)
I I Gyt
{Fe} = {brg _aqu — bkqg, —bn, —pnly — bknE} : (18)

Let the two elements j and k of mechanism form a rotational kinematic pair, i.e. permit
rotational motion relative to each other. Also let the elements have constant cross-sections
along its length. We cut out a kinematic pair from mechanism with elements’ surrounding
cross-sections, constituting this pair. Then, in the cross-sections of the elements adjacent to
the joint (to the kinematic pair) there are internal loads, as shown in figure 8. There are two
equilibrium conditions for these joints:

~ }--_.,

Figure 8 — The pin joint of mechanism with constant cross-sections of elements
The equilibrium equation for considered joint can be described as:

Ny, cos O + Q1 sin by, + Njzcos; + Qj4sint; = 0;
Ny, sin 0, — Qr1 cos Oy + Njzsin; — Qs cos; = 0.
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Further, the values will be expressed by means of sought moments in the calculated cross-
sections of discrete model of the element, for this purpose we use the equation (4), substituting
here the values zj = 0 and z; = I, respectively, hence:

11 9 9 1

= —— My + ~ My — — My + —Mps;
Q1 o, k1+lk k2 2, k3+lk k4 "
Q4= 1M + ) M 9M + 11M 1)
A P TP Pt TP

Now, substituting the values Q)1 and @);4 in the equation (17), the following equilibrium
equations for the joint have an appearance:

( 11sin@ 9sin # 9sind sin 0
My + " Mo —  Mys + " My + cos 0, Ny —
QZk lk Qlk; lk
inf; 9sin0; 9sin b, 11sind,;
_sin M+ sin iy — sin I My + &MM + cos;Nj3 = 0
L 2l; L 2l;
11cos@ 9cos b 9cos b cos 6 .
—k k1t kMkQ + —kMkS — kMk4 + sin 0, Ny +
0 9 0, 9 0, 11 0,
cos JMj1 — &Mﬂ + &Mjg — &M]A + sin6;N;3 = 0.
L l; 2l; L 2l;

The cross-sections of links can also be rigid joints, the concentrated external loads are
attached here. For example, the concentrated force P}, Pyy, and the concentrated moment
Mj, are occurred in the G cross-section of kth link (see fig. 9). Then the k-link is divided
into two elements, for kth and ith. If the cross-sections of elements are constant along the
length of the link, then by means of cutting the G-joint out of mechanism, the scheme of
G-joint with adjacent internal loads in cross-sections is displayed below. For this joint it is
possible to write three equilibrium equations that are expressed through sought parameters
of elements.

Figure 9 — Rigid joints of a link with a constant cross-sections of elements, where the external

concentrated forces are applied

4 The matrix of compliance of the element with constant cross-sections under
the distributed cross and axial trapezoidal loads
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The approximation matrices allow defining the physical characteristics of the element,
i.g. the matrix of compliance of discrete element [Dy] [9]. The physical characteristics of the
element can be obtained from the expressions of energy for rods, so as the replacement of
construction by a set of discrete elements based on the equality of the energies of the real
structures and its discrete model. The matrix of compliance of the element is defined by
equation [9]:

(D) = [ () (i 20

Ik

where [D}] is a matrix of compliance of link cross-section. For the rods working on bending
and stretching-shrunking the equation (20) is used:

1
o 0 0
_ p
[Dkx;c] - 0 GrAg 10
00 mx
; _ . . _ . . _L B . .
where o bending compliance of the cross-section; Gy displacement compliance

of the cross-section; ﬁ - stretching-shrunking compliance of the cross-section, [Hy(x})]
is defined by equation (6). Therefore, the overall view of matix of compliance taking into
account the bending, stretching-shrunking and the actions of the distributed cross and axial

trapezoidal loads has an appearance:

8l 331y, I 190, 0 0 0
105E 15 5605, I 140E, I,  1680ExIx
33l 2715 _ 2715 _ 3l 0 O 0
560511 T0EIx 560511 110Ex I,
A ok 270y 331, 0 0 0
140E, Iy 560E,I,  TOELIL 560511
Dy] = 190, T 33l 8L, 0 0 0
kl = | 1680EIx 140E; Iy B560ExIx 105Ex I,
O 0 0 O 21y I g
15E,Ix  15Eply 30EL1x
0 0 0 0 2 B — g
5E,Ix  15Eilx 30ELTx
O 0 0 O _ fk I 21y
L 30Enl, 16Epl,  15E4ly" |

5 Resolving equations of determination of internal forces

By combining the equilibrium equations of elements and joints into a single system, the
equilibrium equations of the discrete model of entire mechanism is obtained. They can be
written in general form:

[A{S} = {F}. (21)

Such systems of equations are sufficient to determine the internal forces in the links of
the mechanism, which frame includes a statically definable group of Assur. The matrix of
equilibrium equations for the discrete model of mechanisms consists of matrices of equilibrium
equations of their individual elements, as well as the equilibrium equations of their joints.
The matrix of dynamic equilibrium equations of discrete models of mechanisms is as follows:
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[A4] 0--- 0
0 [As] 0
[A] =
0 0 [A,]

Uravn.ravnovesiyauzlov.

For discrete models of mechanisms the vector of force and the vector of loads in calculated
cross-sections are formed by vector of forces and loads in calculated cross-sections of their
separate elements. These vectors have the following vector form, respectively:

{F} = {R} AR AR {ST = {Sih ASeh - AS (22)

For determination of internal forces of statically indeterminate mechanisms (in the way of
determination of internal forces), it is necessary to build a compliance matrix for the entire
discrete model of the rod mechanism. The matrix of compliance [D] for the entire discrete
model of the rod mechanism consists of the matrixes of individual elements [Dy] [10]. It is
expressed in block-diagonal form:

D] 0--- 0
0 [Da 0

where n is a number of the elements of discrete model of mechanism. A formula below is
used to determine the components of the vector of loads {S}[10]:

{8} = [K][A) ([AN[K][A]") " H{F} (23)

[K] = [D]™! is taken into consideration.

Figure 10 — The diagram of axial distributed inertial forces, originated from link weight of investigated

mechanism

Now, for determination of internal loads in links, we give an example of four-bar second
class statically indeterminate mechanism with single drive link as shown in figure 4. The
computer programs for determination and construction of the inertia forces and internal
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Figure 11 — The diagram of cross distributed inertial forces, originated from link weight of investigated

mechanism

Figure 13 — The diagram of axial forces, originated from distributed inertial forces acting on links of

mechanism with statically indeterminate structure

Figure 14 — The diagram of cross forces, originated from distributed inertial forces acting on links of

mechanism with statically indeterminate structure

loads on the links by means of using the MAPLE1S8 system are made. Therefore, the results
of obtained inertia forces and internal loads for some positions of the mechanism are shown
in figures 10-13.

Conclusion

The technique of analytical determination of internal forces in links of planar mechanisms
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and manipulators with statically indeterminate structures taking into account the distributed
dynamical loads, a dead weight and the operating external loads is designed. The programs
in the MAPLE1S8 system are made on the given algorithm and animations of the motion
of mechanisms with construction on links the intensity of the distributed cross and axial
inertial loads, the bending moments, the cross and axial forces, depending on kinematic
characteristics of links are obtained. The developed technique can be applied in the study of
stress-strain state of the projected and existing mobile and fixed beam systems with statically
definable structures (planar link mechanisms, manipulators, frames, etc.).
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