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Modern science is highly interested in processes in nonlinear media. Mathematical models of these
processes are often described by boundary-value problems for nonlinear elliptic equations. And
the construction of two-sided approximations to the desired function is a perspective direction of
solving such problems. The purpose of this work is to consider the existence and uniqueness of a
regular positive solution to the Liouville-Gelfand problem and justify the possibility of constructing
two-sided approximations to a solution. The two-sided approximations monotonically approximate
the desired solution from above and below, and therefore have such an important advantage over
other approximate methods that they provide an opportunity to obtain a convenient a posteriori
estimate of the error of the calculations. The study of the Liouville-Gelfand problem is carried out
by methods of the operator equations theory in partially ordered spaces. The mathematical model
of the problem under consideration is the Dirichlet problem for a nonlinear elliptic equation with
a positive parameter. The established properties of the corresponding nonlinear operator equation
have given us an opportunity to obtain a condition for an input parameter, which guarantees the
existence and uniqueness of the regular positive solution, as well as the possibility of constructing
two-sided approximations, regardless of the domain geometry in which the problem is considered.
The corresponding Liouville-Gelfand problem of the operator equation contains the Green’s func-
tion for the Laplace operator of the first boundary value problem, and therefore the condition
that the input parameter satisfies also contains it. Since the Green’s function is known for a small
number of relatively simple domains, Green’s quasifunction method is used to solve the problem
in domains of complex geometry. We note that the Green’s quasifunction can be constructed prac-
tically for a domain of any geometry. The proposed approach allows us: a) to obtain a formula,
which the parameter in the problem statement must satisfy, regardless of the domain geometry;
b) for the first time, construct two-sided approximations to a solution to the Liouville-Gelfand
problem; ¢) for the first time to obtain an a priori estimate of the solution depending on the select-
ed value of the parameter in the problem statement. The proposed method has advantages over
other approximate methods in relative simplicity of the algorithm implementation. The proposed
method can be used for solving applied problems with mathematical models that are described
by boundary value problems for nonlinear elliptic equations. In cases when the Green’s function is
unknown or has a complex form, the application of the Green’s quasifunction method is proposed.
Key words: Green’s function, Green’s quasifunction, two-sided approximations, invariant cone
segment, monotone operator.
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B coBpemennoit Hayke wHaOromaeTcs OOJBINON WHTEpEC K IIPOIECCaM, IMPOUCXOISINAM B
HEJIMHEHHBIX cpefax. MaTeMaTHIeCKUMU MOJIENsIMA TaKUX IIPOIECCOB 3a9acCTyIO SIBJISTFOTCS
KpaeBble 33J1a49u JIJIs HeJIMHEHHBIX SJTUIITHIeCKUX ypaBHeruii. [lepcrek TMBHBIMI HAITPABJICHUSIME
JUIsl DeIlleHdsl TaKWX 3aJad eCTh I[OCTPOEHHE JBYCTOPOHHHUX NPUOJIMIKEHUNH K HCKOMOI
dbyuxnuu. Ilenbro gaHHON pabOTHI sABJISIETCS PACCMOTPEHHME BOIIPOCOB CYIIECTBOBAHUS U
€JIMHCTBEHHOCTU PEryJIIPHOIO IIOJIOXKUTEJILHOIO perterns y 3agadn JImysuis-lenbdania,
a TakyKe ODOCHOBaHME BO3MOXKHOCTH IIOCTPOEHUS JIBYCTOPOHHUX WPHUOJMKEHUN K PEIIeHUO.
JBycTopoHHIE TPHUOJINKEHIS MOHOTOHHO CBEPXY M CHH3Y AIIPOKCHMUPYIOT MCKOMOE DeIleHue,
U TI09TOMY OBJIAJIAIOT TEM BayKHBIM MMPEUMYIIECTBOM 0 CPABHEHUIO C JPYTHUME MPUOJINKEHHBIMI
METOJIAMH, ITO OHH JIAIOT BO3MOYKHOCTD [TOJIYIUTD YI00HYIO AITOCTEPUOPHYIO OIEHKY ITOIPEITHOCTH
Beruncienuit. Ucciemopanune 3amaun JImysuwiuis-Tesbdania TpPOBOAUTCS METOJAME TEOPUN
OIIepaTOPHBIX YPABHEHUU B IOJIYYIOPSIOYEHHBIX IIPOCTPAHCTBAX. MareMaTndecKoil MOIEIbIo
paccMaTpuBaeMoil 3aadd  ABJASeTCd 3afada Jupuxiie Uit HEJWHEHHOTO SJUTUITHYEeCKOrO
VPaBHEHUS C IIOJOXKATEJIHHBIM [apaMETPOM. YCTAHOBJIEHHBIE CBOMCTBA COOTBETCTBYIOIIETO
HEJIMHEHOTO OMEPATOPHOI'O YPaBHEHUs JIAJIN BO3MOXKHOCTH IOJIYYUTH YCJIOBUE JJIsi BXOSIIETO
B IIOCTAHOBKY 3aJladll IIapaMeTpa, KOTOPOe TIapaHTUPyeT CYIIECTBOBaHWE M €IMHCTBEHHOCTH
PErYJISPHOTO TIOJIOXKATEILHOIO PEIeHUsI, 8 TaKXKe BO3MOXKHOCTb IOCTPOEHUS JIBYCTOPOHHUX
NpUOIVKEHUN HE3aBUCHMO OT TeOMEeTpHU OO0JIACTH, B KOTOPOW pacCMaTPUBAETCS 3aJatda.
CooreercrBytommee 3amaqun Jlnysumis-Tenbdanma onepaTopHoe ypaBHEHUE COJEPKUT (DYHKIUIO
I'puna oneparopa Jlamraca mepsoit KpaeBoil 3aadd, a IOITOMYy U YCJIOBHE, KOTOPOMY
V/IOBJIETBOPSIET IIapaMerp, TakxKe ee coaep:kuT. Tak Kak @GyHKIWsa |'puHa u3BeCTHA s
HEOOJIBIIIOr0 YHUCJIA JIOCTATOYHO IPOCTBIX OOJIACTEH, /s PEIeHns 33/1a9u B 00JIACTAX CJIOXKHOI
reOMeTpHUN B paboTe MPUMEHSETCsT MeToJl KBaszudyHKnuil ['pura. 3aMeTnM, 9T0 KBa3udyHKIIAO
I'pura MOXKHO MOCTPOUTH NPAKTUYECKH [Jisi OOJAcTH JI000i reomerpun. VCmosib30BaHHBIN B
pabore IOJXOJ MO3BOJIMIL &) MOJYYUTh (DOPMYILy, KOTODPOIl JIOJI?KEH YJIOBJIETBOPSTH BXOJSIIITHI
B IIOCTAHOBKY 3aJ[a4M IapaMeTp, He3aBHCHMO OT TeoMeTpuu obJjactu; 6) BIEpBbIE st
sagaun Jlnysuis-lenbdania IOCTpOUTh ABYCTOPOHHUE MPUOJINKEHUS K PEIIEHUIO; B) BIEPBbIE
[IOJIy9UTh AIPUOPHYIO OIEHKY PEIeHHs B 3aBUCHMOCTH OT BBIODAHHOIO 3HAYEHWS HapaMeTpa,
KOTOPBIfl BXOIUT B MOCTAHOBKY 3amadn. 1IpemjIoXKeHHBIl METO PEIeHnsT UMEET MPENMYIIEeCTBA
B CPaBHEHUU C JPYIUMHU UPHUOJIMKEHHBIMA METOJAMH OTHOCHTEIBLHOW IMPOCTOTON pean3aIiun
asmoputma. IlpesgraraeMprit MeTOJT MOXKeT OBITH WCIIOJIB30BAH IPU PEIIEHUU TPUKJIATHBIX
3aJ1a4, MaTeMaTUYeCKUMU MOJIEIsIMA KOTOPBIX SIBJISFOTCS KpaeBble 3aJiadul JiIsl HeJUHEHHBIX
SJUINIITUYECKUX ypaBHeHuil. B curyanusix, korjaa ¢yHknus | prHa Hen3BeCTHA MJIK UMEET CJIOXKHBII

BUJI, IPEJJIOZKEHO IIPUMEHEeHNe MeToqa KBasudynknmii ['puHa.
KuroueBbie cioBa: dyuknus ['punra, kBasudyHKims ['puHa, IBYyCTOPOHHUE TPUOJIMKEHUS,

WHBApPUAHTHBIA KOHYCHBIII OTPE30K, MOHOTOHHBII OlepaTop.

1 Introduction

Modern science is highly interested in processes that take place in nonlinear environments.
Mathematical models of these processes typically are represented by nonlinear boundary
value problems of mathematical physics of the following form

—Au = f(x,u) VreQcRY,

u>0, uly,=0.

It is important to identify among the analytical methods ones that provide specific ways of
constructing the sought solution. These methods include iterative ones which are simpler than
the others and can be implemented on a computer. Among the iterative methods we highlight
a class of two-sided processes that approximate the sought solutions monotonically from above
and below. They have such an important advantage in comparison with other approximate
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80 Kolosova S. V. et al.

methods that they place the sought solution in a "plug"at each step of the iterative process
which makes it possible to obtain a posteriori error estimate of the calculations.

The aim of this paper is to prove the existence and uniqueness of the regular positive
solution of the Liouville-Gelfand problem and the possibility of constructing two-sided ap-
proximations to it.

In this work we consider the boundary-value problem for the nonlinear elliptic equation
in the bounded domain Q c RV

—Au=Xe"* Ve, u>0, (1)
Ulgo =0 (A>0).

The equation of (1) is the stationary equation of the thermal-ignition theory at constant
thermal conductivity, u (z) is the temperature at the point x, the parameter A represents all
the quantities that are essential for problems of the thermal-ignition theory [1].

2 Literature review

The formulation of this problem belongs to Frank-Kamenetskii [1] and Zeldovich [2|. The
same problem arises in the study of prescribed curvature problems |3, 4].

If the domain € is the unit ball in RY, then by the classical result of Gidas, Ni and
Nirenberg [5], all positive solutions of (1) are radially symmetric, reducing (1) to the boundary
value problem

u'+ (N —1)/ru
u' (0) = u(l
For N = 1 this equation was first solved by Liouville in 1853 [6], using reduction of order
methods. In 1914, Bratu [7] found an explicit solution of (2) when N = 2. For N = 3 numerical
progress was made in 1934 by both Frank-Kamenetskii [1] in his study of combustion theory
and Chandrasekhar [8] in his study of isothermal gas stars. In 1963, Gelfand published a
comprehensive paper [9] hat included a review of (2) for N = 1,2,3. Approximately ten
years later Joseph and Lundgren [10]| determined the multiplicity of solutions for all N.
The problem (1) also attracted the attention of many other authors [11, 12, 13, 14].
However, they often considered (1) in fairly simple domains and found the exact solutions in
cases where this was possible. In this paper we investigate a nonlinear operator equation that
is equivalent to (1). The investigation is based on methods in nonlinear operator equations
theory in half-ordered spaces [15, 16, 17|. This approach allows us to obtain theoretical
results for almost any domain and justify the method two-sided approximations. Moreover,
we impose a condition on the numerical parameter of the problem A and on the introduced
parameter S which is an a priori estimate of the sought solution.

ru =0, re(0,1),
> ) = uliel. @)

3 Material and methods

The problem (1) is a particular case of a more general problem

—Au=f(\z,u) VreQcCR,
u>0, uly,=0.
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We assume that f (A, z,u) > 0in Q, A > 0. It is known [15, 16, 17] that (3) is equivalent
to the operator equation in the class of continuous functions in €2

w(z) = /G (2,5) f (A, 5,0 (s)) ds, (@)

where G (z, s) is a Green’s function of the operator A of the Dirichlet problem in the domain
O x=(r1,...,xn), s = (81,-..,SN)-
Let A (A, u) be an operator with the domain D (A) = K

AN\ u) = /G(x,s) f (A s,u(s))ds,
Q

where K is a cone of nonnegative functions in the space C' (Q)

We will investigate questions related to the positive solutions of (1) and hence the equiv-
alent operator equation (4) using methods in nonlinear operator equations theory in half-
ordered spaces. Let us give some definitions and main conclusions of this theory [15, 16, 17].

Definition 1 Let E be a real Banach space. A convex closed set K C E is called a cone if
au € K (a>0) and —u ¢ K follows from u € K, u # 0.

Using the cone K in E we introduce a half-order as follows:
u<wv, ifv—uekK, wuveE.

Definition 2 The cone K is called normal if there exists an N (K) such that |jul| <
N (K) ||v|| for 0 <u < wv.

It is known [15] that the cone of non-negative functions is normal in the space C (€2).
Definition 3 An operator A is positive if AK C K.

Definition 4 An operator A is monotone on the set T C E if Au < Av follows from u < v
(u,veT).

Definition 5 A positive operator in K is called concave if there exists a fized non-zero ele-
ment ug € K such that for any non-zero u € K

By (u)ug < Au < By (u) ug
where By > 0, By > 0, and also Vt € (0, 1)
A (tu) > tAu. (5)

Definition 6 A concave operator A is called ug-concave if (5) is replaced by a stronger
condition: ¥t € (0,1) there exists an n (u,t) > 0 such that

A(tu) > (1+7) t(Au).
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Definition 7 A collection of elements (v, wo) = {u : vy < u < wp} is called the conical in-
terval.

Definition 8 A conical interval (v, wy) is called invariant for a monotone operator A if A
transforms (v, wo) into itself, that is Avy > vg, Awy < wy.

The following theorems hold.

Theorem 1 [15, Theorem 4.1]. It suffices for the existence, for the monotone operator A,
of at least one fized point that there exists an invariant conical interval and that the cone K
1s normal and the operator A is completely continuous.

Theorem 2 [15, Theorem 4.4]. Let A be a monotone operator on the invariant conical in-
terval (v, wo) and has the unique fized point u* in (vy,wo). Let K be a normal cone and the
operator A be completely continuous. Then successive approximations

Up = Avp_q, wp, = Aw,_1, n=1,2 ..., (6)

converge in the norm of the space C (Q) to the exact solution u* of (3), whatever the initial
approzimation 4 € (v, wo) 8.

Remark 1 From the uniqueness of the fixed point it follows that the limits of (6) coincide.
If A(X\ u) = MAu, the following theorem holds.

Theorem 3 [15, Theorem 6.3]. If the operator A is ug-concave and monotone, then the
equation u = AAu does not have two distinct non-zero solutions in the cone K for any value
of the parameter .

Let us investigate the properties of the operator that corresponds to (1)

AN u) = )\/G(:U,s) e"®ds, D(A) =K. (7)

Q

It is obvious that the operator A is monotone, since u; < us is followed by Au; < Aus.
In addition, the operator A is completely continuous in the cone K [16, 17].
Let us build the invariant conical interval (vy,wy) C K. We put u = vy = 0 in (7) and
build the element v; = A [ G (z,5) e*®)ds = X\ [ G (z,s) ds > vy = 0. Having v;, we build the
Q Q

element vy (z) = A [ G (x,s) e"®ds > v;. Continuing this process, we obtain the relations
9)
0=vy <wv; <wg <+ <wy. If we put u=wy = =const >0 in (7) we obtain the element
w; = A [ G(x,s) e ds = X\e? [ G (x,s)ds. The parameters A and 3 are chosen in such a
Q 9)
way that w; < wy = B which leads to the condition A\e® [ G (z,s)ds < 8 Vz € Q. It now
Q

follows that

1

ds < —pe”.

rileaé{/G(x,s) s < )\Be (8)
Q
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Building the elements w; is similar to the process for v;. We obtain the inequalities
O=v<v< <0, <+ <wp <o <wp <wp = G,

therefore the conical interval (vg, wg) = (0, 5) is invariant for the operator A (A, u).
In order to prove the concavity of the operator A we use Definition 5. We compose

A\ tu) — tA (N u) = A / G (2, 5) (") — 1e1)) i,
Q

It suffices for this difference to be nonnegative that e’ > te* Vt € (0,1), u > 0, whence

tu>Int+u,oru(t—1) >1Int, orsincet € (0,1), u < {2t Let ¢ denote the function ¢ (t) =

lIl_t 1 g 1 et — = ] == ] hl_t —
27, 0 <t < 1. Since ¢ (+0) tlirilow(t) +00, ¢ (1 —0) tLl{rlocp(t) tk{rflo = = 1,

it follows that the sought solution u* (A, x) of (1) satisfies the condition 0 < u* (A, z) < 1,
which coincides with the results of Frank-Kamenetskii [1]. Let ug be ug (z) = [ G (z,s)ds.
Q

Then since u € (v, wp) it follows that the inequalities (5) are satisfied.
In order to prove the up-concavity of the operator A, where ug () = [ G (z,s)ds, we

Q
compose the difference
AN tu) — (T+n)tA(Nu) = )\/G (x,s) (etu(s) —(1+mn) te“(s)) ds.
Q
It suffices for this difference to be nonnegative that e — (1 + n) te* > 0Vt € (0,1), u > 0,
whence it follows that 0 < 7 (u,t) < etute;jeu, which proves the ug-concavity of the operator

A. Thus, we have just proved the following theorem.

Theorem 4 The problem (1) has the unique nonnegative reqular solution u* € C (Q) in the
cone segment (vy, wy), vo = 0, wg = [ which can be constructed with two-sided approximations
according to the scheme

v (2) =X [ G (z,5) e Ods, n=1,2,...,
Q

wy, (x) =\ [ G (z,5)e"—ds, n=1,2,..., 9)
9)

which converge uniformly to the sought solution if X and B satisfy (8).

Remark 2 [t follows from Theorem 3 that (1) does not have two distinct nonnegative regular
solutions for any value of the parameter X in the cone K.

Now we prove the following theorem which has a direct relation to (1) using the technique
of proving a similar theorem in [18].

Theorem 5 Let operator A (A, u) be monotone and concave for each A > 0 and monotoni-
cally increasing for each uw € K with respect to A and satisfy the condition

A\ 1) < %A()\,u), te (0,1]. (10)

Let uy and uy be positive solutions of the equation u = A (X u) which correspond to two
distinct values N1 and Ay, Ay < Ay. Then uy < us.
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Proof. Suppose that it follows from A\; < Ay that u; > us. Let 7y be the maximum constant
such that Touy < ug and tuy > uy if t > 79, t € (0, 1]. Obviously, 79 € (0, 1]. According to the
statement of the theorem we have uy = A (Ag,ug) > [since ug > Tour| > A (Aa, Tou1) > *.
It follows from the operator A concavity in the variable u that the inequality (5) can be
rewritten as: A (\y, Tou1) > 10A (A9, up) since 15 € (0,1), and therefore we have

A A A
* 2 ToA ()\g,ul) = ToA —2)\1,U1 Z [(10)] 2 7'0—214 ()\1,’&1) = 7'0—2U1.
A1 A A1

Thus, we have obtained that u, > Toi—ful. Further, it follows from the maximality of the

constant 7y that i—"l’ < 1 or Ay < A\; which contradicts the assumption A; < Ay. This completes
the proof of the theorem.

Now we show that all conditions of Theorem 5 are satisfied with respect to (1). The
monotonicity and concavity of the operator A (A, u) of the form (7) are shown at the
beginning of this section. Assume that A\; < Ay, it follows that A (A, u) — A (A, u) =
(M —X2) [G(z,8)e"®Dds < 0, that is, the operator A is increasing in the variable A

Q

2
Vu € K. Next, we compose the difference A (tX, u) — 1A (A, u) = M [G(z,5)e"®ds <0
)

vt € (0, 1], which proves (10). Thus, two different values A\; and A2, A\; < Mg, correspond to
two positive solutions u; and us, having u; < us.

4 Results and discussion

Computational experiments for (1) are conducted in four domains for different values of the
parameter A and the corresponding values of the parameter (.

For the domain Q; = {(z1,22) |1 — 2% — 23 > 0} the maximum value of \* which satisfies
(8) is A* = 1.47151, the corresponding value of 3 is § = 0.99999.

For the domain Qy = {(z1,%2) |zs (1 — 23 — 23) > 0} the maximum value of \* which
satisfies (8) is \* = 3.79257 with S = 0.99999. Table 1 lists the values of wy; (z) (in the
numerator) and vy; () (in the denominator) at the points of €5 with the polar coordinates
(pi, ;). where p; = 0.2i, p; = 7{—3, i = 0,5, 7 = 0,5 (the values in the other quarter are
symmetric). Figure 1 and 2 show the surface and the level lines of the approximate solution
wyy (x) respectively and Figure 3 shows the graphs of w,, (0,22) (solid line) and v, (0, x2)
(dashed line) for n = 0, 5.

For the domain Q3 = {(x,22)|(1 —z3) (1 — 22) > 0} the maximum value of \* which
satisfies (8) is A\* = 1.24704 with f = 0.99999. Table 2 lists the values of wy; (x) (in
the numerator) and vy () (in the denominator) at the points of Q3 with coordinates
(=14 0.24,—1+0.2j), where i = 0,5, j = 0,5 (the values in the other quarters are symmet-
rical).

The dependency of the norm ||u,|| in the space C (€;), i = 1,3 from X is shown in Figure
4 in the form of graphs for 2; (solid line), Q5 (dashed line) and 23 (dotted line), where
U, = Lotin
Hencze it follows that if A tends to zero then the desired solution u (x) tends to zero too.

Since the Green’s function is known for several fairly simple domains we apply the Green’s
quasifunction method for the solution of (3) in the regions (2, and €23 and compare the results
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Table 1: The values of wy; (z) and vy (z) at the points of Qg

¥

g0 N - 2 -

0 0 0 0 0 0 0

0 0 0 0 0 0
0.9 0 | 0.12494 | 0.22831 | 0.30383 | 0.34954 | 0.36482
101 0.12493 | 0.22828 | 0.30378 | 0.34949 | 0.36477
0.4 0 | 0.21457 | 0.36929 | 0.47301 | 0.53271 | 0.55213
1 0] 0.21455 | 0.36924 | 0.47294 | 0.53262 | 0.55204
0.6 0 | 0.23401 | 0.37849 | 0.46710 | 0.51620 | 0.53179
1 01(0.23399 | 0.37845 | 0.46703 | 0.51612 | 0.53170
08 0 | 0.16504 | 0.24750 | 0.29450 | 0.31992 | 0.32787
10 (0.16503 | 0.24748 | 0.29446 | 0.31987 | 0.32782

1 0 0 0 0 0 0

0 0 0 0 0 0

Figure 1: The surface of wy; (2)

with those obtained according to the scheme (9).

The essence of the Green’s quasifunction method in Rvachev’s interpretation [19] (for
linear partial differential equations) with our adjustments for nonlinear partial differential
equations [20, 21, 22| consists in the transition from the boundary value problem (1) to the
equivalent nonlinear integral equation

u(x) = /Gq (z,5) Ae"®ds + /u (s) K (z,s)ds, (11)
Q Q
where
Gy (z,s) = % <1n% —C (a:,s)) , C(z,8) = —%ln (r* + 4w (z) w (s)) ,
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0.8t

0.6

0.4}

0.2¢

[ S—

0.0 &,
-1.0

-0.5 0.0 0.5 1.0

Figure 2: The level lines of wy; ()

Figure 3: The graphs of w,, (0, x2) (solid line) and v, (0, x2) (dashed line) for n = 0,5

Table 2: The values of wy; (z) and vy (z) at the points of €

X2
I 08 0.6 0.4 0.2 0
10 0 0 0 0 0
0 0 0 0 0 0
‘o5 |0 | 0:08458 | 0.13846 | 0.17550 | 0.19564 | 0.20311
0 | 0.08457 | 0.13845 | 0.17549 | 0.19562 | 0.20310
0.6 |0 | 0-13846 | 0.23664 | 0.30471 | 0.34332 | 0.35683
0 | 0.13845 | 0.23662 | 0.30468 | 0.34328 | 0.35679
o4 |0 [ 017550 | 0.30471 | 0.39602 | 0.44870 | 0.46700
0 | 0.17549 | 0.30468 | 0.39598 | 0.44865 | 0.46695
"0y |0 | 0-19564 | 034332 | 0.44870 | 0.51022 | 0.53146
0 | 0.19562 | 0.34328 | 0.44865 | 0.51016 | 0.53140
o | 0| 0.20311 | 0.35683 | 0.46700 | 0.53146 | 0.55376
0 1 0.20310 | 0.35679 | 0.46695 | 0.53140 | 0.55370

K(I7S> = _%Asc (‘r78)7
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iz |l

A of
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Figure 4: The dependency of the norm |[|u,|| from A for Q; (solid line), Q5 (dashed line) and
23 (dotted line)

for Q C R? and

Gy (z,s) i(%—C(m,s)), C(:U,s):(r2+4w(x)w(s)) ,

:47r

N

1
K (ZE, S) = _EASQ. (ZL’, S) 3
for Q C R2. Also in both cases

N
0? >0 Ve,
r=le—sli A=) 55 s€QCRY; “(5’3):{ 0 Vo e o
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We use the method of successive approximations in Svirsky’s interpretation [23] to con-
struct an approximate solution of (11) which leads us to a sequence of linear integral equations

i @:)-/unﬂ (S)K(x,s)dS:/Gq (2, 8) A" Ods, n=12,...,
Q Q

where we put u; () = 0.
Each of these equations can be solved by the Bubnov-Galerkin method [23]. We obtain
the following sequence of approximate solutions

k
un(x)zzcn7z¢z(x), n:1,2,...,
=1

I
=
-

where {¢; ()}, is a coordinate sequence, ¢,; (i n = 2,3,...) is a solution of a

system of linear algebraic equations

ai | [onta)oy@ydn— [ [ K (@5)01(5) 0, (o) ds | =
Q Q Q

i=1
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/Gq z,8) A
Q

Zcm Q/@ ) ¢; (x dx—//szqﬁZ ) ¢; () dsdz | =

¢J (z) dsdz,

Vo (x) dsdx, j§ =1k,

unl

Q Q
We use the Legendre polynomials which are orthogonal on the segment [—1, 1] to construct
the coordinate sequence
1 a4 ,, i
A
For the domain Qy = {(z1,22) |r2 (1 — 2% — 23) > 0}, \* = 3.79257 and 8 = 0.99999
Table 3 lists the values of u, (z) for n = 10 at the points of Qs with the polar coordinates
(pi,pj), where p; = 0.2i, p; = 7{—3, i = 0,5, 7 = 0,5 (the values in the other quarter are
symmetric).

P (2) = z € R.

Table 3: The values of u, (z) for n = 10 at the points of €y

G R 0 2
010 0 0 0 0 0
0.2 ] 0] 0.12847 | 0.23407 | 0.31131 | 0.35798 | 0.37355
0.4 10 0.21253 | 0.37045 | 0.47570 | 0.53492 | 0.55393
0.6 | 0] 0.22795 | 0.37949 | 0.47028 | 0.51744 | 0.53199
0.8 1 0] 0.15910 | 0.25238 | 0.30189 | 0.32573 | 0.33292
I |0 0 0 0 0 0

For the domain Q3 = {(z1,22) | (1 —22) (1 —2%) > 0}, \* = 1.24704 and 8 = 0.99999
Table 4 lists the values of wu, (z) for n = 10 at the points of 3 with coordinates
(—=1+0.2i, -1+ 0.25), where i = ﬁ 0,5

,5 (the values in the other quarters are symmet-
ric).

Now we apply the Green’s quasifunction method to (3) for the domain Q4 =

{(x1,29) |1 — 2% — 2§ > 0}. We use the inequality \ < T [ G fee(
16959

to select the values of the

parameter A, where (23 is the smallest square containing Q4 Hence we have \* = 1.24704,
f = 0.99999. Table 5 lists the values of u, () for n = 9 at the points of 4 with polar
coordinates (p;, ¢;), where p; = 0.2, ¢; = T, i = 0,5, j = 0,5 (the values in the other
quarters are symmetric).

In contrast to the authors who solved the Liouville-Gelfand problem in some rather simple
domains and for the most part found solutions in cases where the equations of the problem
could be reduced to an ordinary differential equation, in our work we propose a technique
for finding a regular solution in almost any domain. However, it should be noted that we
have not considered the solutions multiplicity, but proved the existence and uniqueness of a
regular solution of (1).
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Table 4: The values of w,, (x) for n = 10 at the points of €3

T

U 08 0.6 04 0.2 0

0 0 0 0 0 0
1 0 0 0 0 0 0
-0.8 | 0 [0.07651 | 0.13407 | 0.17415 | 0.19778 | 0.20559
-0.6 | 0 | 0.13406 | 0.23487 | 0.30502 | 0.34638 | 0.36004
-0.4 | 0 [0.17411 | 0.30500 | 0.39605 | 0.44971 | 0.46744
-0.21 0 [0.19772 | 0.34632 | 0.44969 | 0.51060 | 0.53071
0 | 01]0.20553 | 0.35998 | 0.46741 | 0.53071 | 0.55161

Table 5: The values of u, (x) for n =9 at points of 4

P 0 E T 2 3T 2T T
10 5 10 5 2
0.50295 | 0.50295 | 0.50295 | 0.50295 | 0.50295 | 0.50295
0.2 | 0.48881 | 0.48883 | 0.48884 | 0.48885 | 0.48885 | 0.48885
0.4 | 0.44608 | 0.44621 | 0.44636 | 0.44635 | 0.44621 | 0.44611
0.6 | 0.36934 | 0.37146 | 0.37444 | 0.37440 | 0.37140 | 0.36930
0.8 | 0.23022 | 0.24560 | 0.26746 | 0.26739 | 0.24544 | 0.23008
1 — 0.04938 | 0.11977 | 0.11966 | 0.04927 —

5 Conclusion

In this paper we have proven the possibility of constructing of two-sided approximations to
regular positive solutions of the Liouville-Gelfand problem. We have obtained the conditions
that guarantee the convergence of the two-sided iterative process. Constructing the cone
segment (vg, wp), we have obtained an a priori estimate of the sought solution u*, since
vy < u* < wy. The obtained two-sided approximations to the solution of the problem makes
it possible to make a posteriori conclusions.

One of the advantages of the applied method in comparison with others is the relatively
simple algorithm in terms of implementation.

We note that for the first time we have constructed two-sided approximations for the
Liouville-Gelfand problem in certain domains for which Green’s function of the problem is
known. We propose to use Green’s quasifunction method in case of complex domains where
Green’s function is unknown. We have improved the method to solve boundary value problems
for nonlinear elliptic equations. The above-mentioned represents the scientific novelty of the
results.

The practical value lies in the fact that this approach can be used to find solutions to
applied problems with mathematical models represented by boundary value problems for
nonlinear elliptic equations.
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