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Swelling pressures from materials confined by structures can cause structural deformations and
instability. Due to the complexity of interactions between expansive solid and solid-liquid equilib-
rium, the forces exerting on retaining structures from swelling are highly nonlinear. In this paper,
we consider the initial/boundary value problem of an Euler-Bernoulli elastic beam subject to the
swelling pressure with one end clamped and another end free. We are interested in establishing
and validating a mathematical model for dynamic deflections of an elastic Euler-Bernoulli beam
with constant cross-sectional area subject to swelling pressure and some initial and boundary con-
ditions. We built a sequence of functions by using the Galerkin approximation method and the
eigenfunctions of the corresponding 4th order eigenvalue problem. It has been showed that the
sequence of solutions to the ODE systems converges to the unique solution and that the weak so-
lution is also a classical solution. This work is our initial attempt to study a semi-linear hyperbolic
problem based on the Euler-elastic beam theory and some simplistic swelling pressure model in

soil and rock mechanics. ) ) L ) )
Key words: Cantilever Euler-Beam, Expansive Swelling Pressure, Retaining Wall, Vibration

Analysis, Existence and Uniqueness of Solution.
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JlaBienne HaOyXaHUs U3 MATEPUAJIOB, OFPAHUYEHHBIX CTPYKTYPaMU, MOXKeT BbI3BATh CTPYKTYPHbIE
JgedopMaIii 1 HecTabUJIbHOCTD. 3-3a CJIOXKHOCTH B3aMMOJEHCTBUST MEXKIYy DPACITHPSIONIUMUCS
TBEPJBIM U TBEPAO-KUIKIM PABHOBECHEM CHUJIBI, JEHICTBYIOIINE HA YICPXKUBAIONINE CTPYKTYPHI OT
HabyxaHus, CUIbHO HeJuHelHbl. B Hacrodmeil pabore paccMarpuBaercsd HadajbHas / Kpaesas
3aJlava JiIsl YpaBHEHUsl yIpyroit Ganku Diiepa-BepHysumn, ¢ OJHUM MPUKPEIICHHBIM KOHIIOM
U JIPYTUM CBODOJHBIM KOHIIOM, C y4eTOM jaByieHnsl HabyxaHus. Mbl mHTepecyeMcsi BOIIPOCAMU
YCTAHOBJIEHUSI U TIOJITBEPXKIEHUN MaTeMaTUIeCKON MOJIEJIN JIJIsl IMHAMUYECKHUX [IPOrMOOB YIIPYTroii
Gaku Ditsiepa-BepHysum ¢ MOCTOAHHON IJIONIA/IBIO IIOIEPEIHOrO CEUYEeHUs C YIeTOM JIABJICHUS
HaOyXaHWss U HEKOTOPBIX HAYAJbHBIX M T'PAaHUYHBIX yciaouil. I[locTpomnum mociiemnoBaTebHOCTD
QYHKIIH, UCTIOAB3YS MeTO I, TpubnKkenns [amepKuna n coOCTBeHHbIE (DYHKITNHA COOTBETCTBYIOTIEH
CHEKTPAJIbHON 3afadn it JudHepeHnuaIbHOr0  yPaBHEHHS YETBEPTOro NOpsSiKa. DBbLio
[IOKA3aHO, YTO II0CJIe0BATEbHOCTD pEIIeHil CUCTeM OOBIKHOBEHHBIX (D (DepEeHITnaIbHBIX
ypaBHEHUI CXOIUTCS K €IWHCTBEHHOMY pPEIIeHHI0 U YTO CJab0e pellleHre TaKXKe SIBJISIeTCS
KJIACCHYECKUM DEIeHneM. JTa padoTa IIPEICTABIsIeT CODOI HAIly MepBOHAYAIBHYIO IOMBITKY
U3ydYeHUs TOJIYJIMHENRHON THUIepOOJNIecKOil 3a/1adr, OCHOBAHHOW HA Teopuu ilyiepa yrupyroi

6aJIK¥ U HEKOTOPOI MOJIETH YIIPOIIEHHOTO JABJICHIS HAOYXaH!sT B MEXaAHUKE TI0YB U TOPHBIX TTIOPOJI,.
KmroueBbie ciioBa: Konconbraast DittepoBa 6ajka, jgaBieHne HaOyXaHusl, MOJIIOPHAsI CTEHKA,

aHaJIN3 KOJI€63.HI/II7I, CyIIeCTBOBaHUE N € JMHCTBEHHOCTL PENIeHUd.
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Op Typai KYpPBUIBIMIApMEH IIEeKTEeIreH MaTepHaIIapAblH 06ry KBICBIMBI  KYPBIIBIMILIK
nedopMaliist MeH TYPaKCBI3IALIK TYIbLIPYbl MYMKiH. KeHefTiareH KaTThl JeHe KaHe KATThl-
CYHUBIK JeHeJep/iH Tele-TeH/Iir apachblHIarbl e3apa dPEKeTTeCY/IiH Kyp/e/uTirine O0aiiaHbICThI,
KYPBUIBIMIAP/Ibl OOTryJIeH YCTal KAJYIIbl OpPEKeT eTeTiH KYIITeD KYVIITI ChI3BIKThI eMecC
GoJibIll  TAOBLIAABI. bBys KyMbIcTa O6ry KBICBIMBIH €CKepe OTBIPBII, Oip VIIbl OeKiTiareH
JKOHE €IHI YIIbl epKiH KO3FaJIbICTarbl Jiytlep-Beprysuin  cepriMi Olmikine TeHzeyl YImiH
Gacrankpl / IIeKapaJblK ecenTi KapacrblpaMbl3. DBi3 06ery KpICbIMbl MeH Gesrii  6ip
bacTamKbl »KoHE IIEeKAPAJIBIK MapTTapIbl €CelKe aja OTBIPBIN, KOJICHEH KHUMACHIHBIH, ayIaHbl
TypakThl iiep-BepHysumm cepmimii  OiiKIneciHIH JUHAMHMKAJIBIK, aybITKYyJIapblHa apHAJFaH
MaTeMaTUKAJIBIK, MOJEJb Kypy KoHe OeKiTy Mmocejesiepine My uiesimMi3. ['ajepKuHHIH XKYybIKTAY
ojlici MeH TOpPTIHII perTi audQepeHIualIblK TeHIeyre COUKeC KeJIeTiH CIEKTPJIK eCerTiH,
MEHITNKTI (PYHKIUIIAPHIH KOJJAHY apKbLIbI (DYHKIHsIap Tiz0erin Kypambs. Kapamaitbim
muddepeHnraIablK, TeHaeyaep KYHeCiHiH ImenriMaepinis, »Kaarbl3 IIelrMre KUHAKTAIATHIHDI
JK9HE 9JICI3 MIENIIMHIH KJIaCCUKAJIBIK, [IEITM OOJIaThIHBI KOpceTiyii. Byt xKyMbic Ditiepin cepriiM i
OiTiKIITe TEOPUSICHIHA HETI3JIe/ITeH KAPThLIAil ChI3BIKTHI TUIIEPOOJIATIBIK, €CEeNTi KOHE TOIbIPAK, TIeH
Tay YKBIHBICTAPHI MEXaHUKACHIHIAFI KEHIJAETIITeH OOy KBICHIMBIHBIH Keihip MOJIE/IiH 3epTTeyre
apHAJIFAH AJITAIIKBI 9peKeTIiMi3 Tl Ol tipe/t.

Tvyiiian cesmep: Ditep Oinikine KOHCOMI, GOT'Y KBICBIMBI, Tipey KaOBIPFAChI, TepOesic Taaaaysl,
mrermiMinig 6ap 60yl MEH KAJFBI3/IBIFEI.

1 Introduction

Expansive solids such as elastomer, hydrogel, some rocks, and expansive clay present signifi-
cant problems when lateral expansive solid pressures acting on retaining walls due to swelling,
see, e.g., (Illeperuma, 2013), (Lou, 2012), and (Mansour, 2011) for descriptions of some of
the materials and their swelling properties. Determination of the deflections and the stability
of retaining walls (Illeperuma, 2013) or pipes (Rjeily, 2012) due to swelling pressures are
important for design and integrity of such walls or pipes.

2 Review of literature

In 1994, Mesri et al., see (Mesri, 1994), developed a simplistic equation for swelling pressure
as a function of mobilized volume strain which can be used to show that the pressure p acting
on a wall due to swelling can be modeled by p = fe~**®!  where /3 is the swelling pressure
against the unyielding wall, a a constant depending upon the solid-liquid equilibrium (see,
e.g., (Schadlich, 2012), (Illeperuma, 2013)) and v(z,t) the deflection of the wall modeled as
a cantilever beam at location x along the beam from the clamped end and at time ¢. Similar
and equivalent forms of the swelling pressure formula were also presented earlier in (Grob,
1972), (Gysel, 1977), and (Gysel, 1978) and are used in (Rjeily, 2012) and it is also called

Grob’s semi-logarithmic swelling law in literature.
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In this paper, we consider the initial /boundary value problem of an Euler-Bernoulli elastic
beam subject to the swelling pressure with one end clamped and another end free. We are
interested in establishing and validating a mathematical model for dynamic deflections of an
elastic Euler-Bernoulli beam with constant cross-sectional area subject to swelling pressure
and some initial and boundary conditions.

3 Materials and methods

In Section 1, we state the dynamic beam problem and define the solution spaces. In Section
2, we prove that there exits an unique weak solution. In Section 3, we construct a sequence
converging to the unique solution and show that the solution is also a classical solution.

3.1 The Semi-linear Hyperbolic Problem

Based on Euler’s elastic beam theory and adapting the formula of the swelling force stated
in the introduction, we consider the following semi-linear hyperbolic problem
0? 0t
1

v

subject to the initial conditions

{ v(x,0) = vo(), (2)

9 (z,0) =v1(2),0 <z <L
and the the boundary conditions

v(0,t) = 52(0,t) =0, (3)
Po(Lt) = Z8(L,t) =0,0 <t < T,
where v(z,t) is the vertical deflection of the beam at = and at time ¢, 7" and L are positive
constants, F'(v,t) = Be~* + g(x,t), vo(z) is the initial deflection, v;(z) the initial velocity.
This semi-linear hyperbolic problem defined by (1), (2), and (3) is used to model an elastic
cantilever beam subject to the swelling force p = fe~*¥ and a dynamic driving force g(z,t).
The boundary conditions (3) correspond to the standard clamped-free ends conditions in
structural mechanics as mentioned in the introduction. We are interested in studying the
well-posedness of the problem defined by (1), (2), and (3). We will use v for the time
derivative % and prime v’ for the spatial derivative % respectively and the similarly for the
higher order derivatives. We will use the standard Sobolev norm spaces HZ(0, L) = {v,v',v" €
L?(0, L))|v satisfies the boundary condition (3) }, L?(0,T; H2(0, L)), L*(0,T; L*(0, L)), and
L*(0,T; H'(0, L)) in the following sections. Here H~!(0, L) stands for the topological dual
space of H2(0,L). We also use X = {v € L>(0,T; H2(0, L)|v" € L>(0,T; L*(0, L) }with the

norm
[[v]] = eSSSUpogth("U(t)HHg(o,L) + [[v(®)|z200,1))

as solution space.
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3.2 Existence and Uniqueness of Solution

We use the following definition of a week solution:

Definition 1 We say that a function uw € L*(0,T;HZ(0,L)), for which u €
L*(0,T; L*(0, L)), 4 € L*(0,T; H (0, L)), is a weak solution of the semi-linear hyperbolic
problem defined by (1), (2), and (3), if

L
/ (pAiw + ETu"v" — fe™*"v — gv)dx = 0
0

for each v € H2(0,L) and a.e. in [0,T); and u(zx,0) = vo(x),w = vi(z),Vz € (0, L).

First, we show a priori boundedness of a solution by using the method of conservation of
energy.

Theorem 1 Suppose that vy € HZ(0,L) and vy € L*(0,L)and both satisfy the boundary
condition (3), and suppose that u is a solution of the problem in the sense of Definition 1
with these initial conditions, and with g € L>(0,T; L*(0,L)). Then u € X and there exists a
positive constant M > 0 such that ||u|| < M.

Proof. Suppose that u is a solution of the problem. Let

L

pA .o EI /3 J—

B(O) = [ (il + S+ Be — guyd
0

we have

L
E(t) = / (pAuii + ETu"d" + fe™ " — gu)dx.
0

By using integrations by parts on the second term and applying the boundary conditions, we
have fOL u"u"dr = fOL u"V)4dx. Therefore

L
E(t) = / (pAii + ETu"Y) — Be= — g)idz = 0,
0

which implies that

b pA EI
B0 =50 = [ i+ Epie 4 Lo — guar = 0
0

where C' equals a constant, where go denotes g(x,0). Therefore, we have

A EI L
[ i Bl Loy = [ guae v
0 0

which implies that ||u”(t )||L2 0.0y < Cillg(@)|[r2[|w(®)||z2(0,r) + C. By Sobolev inequalities, we
have

lu(®)[[720.0) < Collu”®)][72 < Cllg)llel[u(t)l 220,y + Cs

where C', Cy, C5 are all positive constants. This last inequality implies that there exists M > 0
independent on wu, such that ||u||ze(0.r;r2(0,0)) + ||| L0, 1:0200,0)) < M.
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Theorem 2 Suppose that vy € HE(0, L) and vy € L*(0, L) both satisfy the boundary condi-
tion (3), and g € L>=(0,T; L*(0,L)). Then problem defined by (1), (2), and (3) can have
only one weak solution in u € L*(0,T; H2(0, L)) in the sense of Definition 1.

Proof. To prove existence and uniqueness of solutions, we shall assume that vy € H?(0, L)
and v; € L?*(0,L). Therefore E(t) is a constant for the given initial conditions w(z,0) =
vo(z), u(x,0) = vi(x),0 <z < L.

We shall adapt the standard energy method to prove uniqueness of the solution to our
problem. Suppose that there are two solutions which are denoted by v; and vy respectively.
Let w = v; — vy, then we have

pAw + ETw!Y) = F(vy,t) — F(vy,t).

Multiply both sides of this equation by w, perform integration by parts and applying the
initial /boundary conditions, we have

A L EI L t L
'07 / | 2da + 7/ " Pdx = / / [B(e™ ™ — e ) + glwdxdt.
0 0 0 Jo

By Holder’s inequality, the Sobolev inequality, and by Theorem 1, we have

pA [*

) EI (* ¢ i
5 [ 2dx + 7/ \w”[2das < C/ (1wl 220,y + 11922 0,)) [0 22 (0,2 At
0 0 0

Whence, an application of Gronwall’s lemma yields w = 0 and v; = vy. By using Brouwer’s
Fixed Point Theorem in the Banach space X defined above, we can prove the existence of
solution by the method similar to the what is presented in B§12.2.1 of (Evans, 2010) and
obtain the following:

Theorem 3 Suppose that vy € HZ(0,L) and vy € L*(0, L) both satisfy the boundary condi-
tion (8), and g € L>(0,T;L*(0,L)). Then, problem defined by (1), (2), and (3) has an
unique solution in u € L*(0,T; HZ(0,L)) in the sense of Definition 1.

For simplicity, we do not present the proof here.

3.3 Construction of a classical Solution

In the above, we have shown the well-posedness of our problem for a general force g. In
this sections, we show that an explicit construction of a sequence of functions can be made
for smooth g and this sequence converges to a classical solution of our problem. We denote
by C#(G,R) the set of fourfold continuously differentiable functions v(z,t) defined in G =
{(z,t): 0 <z <L, 0<t<T} satisfying the initial and boundary conditions (2), and (3).
We rewrite equation (1) in the following operator form

Bv = pAi 4+ EIvY) = F(v,t). (4)

We use C#[0, L] for the set of fourfold continuously differentiable functions of z in [0, L]
satisfying the boundary condition (3).
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Definition 2 A function v(z,t) € C(G,R) is said to be a solution of the problem (1), (2),
and (3), if there exists a sequence {v,}r_, and a function v(z,t) in C3(0,L) such that
[om = llcao,ry = 0 and ||Bom — F(v)llgpr) — 0 as m — oo for all fived t € [0,T] and
moreover that the limit function v(x,t) satisfies conditions (3).

We first consider the free vibration case g = 0, which means F'(v,t) = fe~*". For sim-

plicity, we shall use v’ for the spatial derivative %, ¥ for the time-derivative %, and similar
notations for the higher order derivatives. We use G = {(z,t) : 0 <z < L, 0 <t < T} as

the space-time domain. The main result of this section is

Theorem 4 For the given functions F(v,t) = fe”*", vy, vy, suppose that
vo(z),v1(7) € Cyl0, L], (5)

then there exists a unique solution v(z,t) € C(G,R) of the nonlinear problem (1), (2), and
(3) in the sense of Definition 2.

The proof of this theorem requires some classical results of the corresponding linear FEuler
beam problem which can be found in, e.g., (Collatz, 1963). For completeness, we state the
results as auxiliary lemmas below.

3.4 Some classical results

We denote by B the operator, corresponding to the boundary value problem

goIV/(x) = f(:vl)l,() <z< %,
©(0)=0,9(0) =0, (L) =0,p (L) =0,

which maps a function f € Ly(0, L) to ¢ = B(f) as the solution to the problem. It is well
known that it is a closed operator and domain, denoted by D(B), of the operator B is dense
in the functional space Ly(0, L).

Lemma 1 Operator B is self-adjoint in the space Ly(0,L).

Proof. Since

(o) = | ) ) p(a)ds — ¢

" 1

(@(@)lg — ¢ (@) (2)l§ + ¢ (@ @)l5  (6)

e @l [ e @ar = [ @i = (p.8¢)

for all (), (z) € D(B) and since the range of the symmetric operator B coincides with

Ls(0, L), the operator B is self-adjoint. The eigenvalue problem for the operator Bis

QD(IV)(:L‘) =Ap,0 <z <L,
©0(0)=0,0(0)=0,¢" (L) =0,p)(L) = 0.

It is also well known that the operator B has a discrete spectrum. The eigenvalues of the
operator B can be arranged in non-decreasing order A\; < Ay < -+ < A\ < ---. The proof of
this Lemma is omitted here. We will state and outline the proof of the following lemma.
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Lemma 2 The asymptotic distribution of the eigenvalues of the operator B satisfies the
following expression

A
lim k

M5
k—o0 (2]{3 —+ ]_)4 ’

where § is a constant.

Proof. It is known (cf., e.g., (Collatz, 1963)) that the spectrum of the operator B can be
determined uniquely by the zeroes of entire function

A(X) = cosrLcoshrL = —1, (7)

where 7t = \.

Applying the well-known Rouche’s theorem, one can determine the asymptotic behavior
of the zeroes of entire function. The two sets of zeros of equation (7) as the spectrum of the
operator are found to be asymptotically expressed by

with the corresponding eigenfunctions also expressed asymptotically as

(2k4+1)7 _ (2k+D)7

R e 2 (2k+ 1) e 2 2kt

Ur(x) = (— e 2L "4 ———¢ 2L “”) (14+0(1)),k=1,2,..
Tk Tk

rk::I:

Here we denote by 0(1) and o(1) the infinitesimal quantities as k — oo.

Let m, < gx(x) < My for all & = 1,2,..., where my, = mingcp ) Jx(x) and M, =
maxXgeo,z] Jr (). i

We note that the eigenfunctions {gx(z)},>, of the operator B is orthogonal system of

functions in Lo (0, L), since B = B* by Lemma 1. For further purposes it is convenient to
normalize the system of functions {gx(z)},-,, namely traverse to system

finer - )
||gk||L2(07L) 1@17

where || - || z,(0,) is the norm of the space L(0, L).
Let m be a fixed natural number. We consider the system of nonlinear differential equa-
tions with respect to ¢ (t), ca(t),..., cm(t)

pAE(1) + EINey(t) = B [y e S exOul@y, (z)dr,
pACZ (t) + E[)\QCQ (t) = 5 fOL e_a Z;nzl Ck(t)yk($)y2(x)dx7 (8)

pAE, (1) + ElNpmcn(t) = B foL e~ iz Oy, (2)dz,

with initial conditions

Cl(O) :dl,...,Cm(O) :dm, (9)
1(0) = hy, ..., 6m(0) = Ry,
for a given set of numbers dy,...,d,, and hy,..., hy,.
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Lemma 3 The system of nonlinear differential equations (8), (9) is equivalent to the fol-
lowing system of nonlinear integral equations

—dkcos\/>t+\/7sm\/7t—l— (10)

8 t . v —« ¢ (T)y;
ﬁfo sin\/ \x(t — 7) fo 2= (M@ () dadr.

wherexg:E[fj’“,g pA, k=1,2,.

Proof. The proof of the Lemma 3 is based on the direct verification that the right-hand
side of (10) satisfies relations (8), (9). The reverse is also true.

Lemma 3 implies immediately that

Corollary 1 If there exist the solutions of (10), then they are infinitely differentiable with
respect to t.

Lemma 4 There exists an unique solution of the system of integral equations (10) in the
class of smooth functions with respect to t.

Proof. For each positive integer k between 1 and m, we construct the sequence of approxi-
mations to solution of system (10)

Cl(cn)() (0) \/7/ Sln\/ t—T / yk )_O‘ZJ 1€ J >(Ty; dl’dT

for n > 1, with c,(g) = dj, cos \/ A t For n > 2, we have the following

difference equations

sin \/ Ap(t — 7)| x

\/— fo
< ()] ‘ —a X i) _ e S S| gdr
(k=1,2,...,m)
By the mean value theorem, we obtain the inequality

‘ —a X T (i) _ e iy o () ()

—a ™ (Y (1) +0(2) el D (1)), (x n—1) n—2
<ma11<n]a%}7(n| j( )|€ >t (e ()+0(2)c; (m)y;(2) | Cg' (T)—C; )(7_)"
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where values of 6(z) lie between 0 and 1. By virtue of boundedness of the quantities

sm\/i(t—ﬂ, @), | + 0@ )],

J

\/%tc max;<jem | V(1) — "2 ()]
(k=1,2,...,m)

where C' does not depend on k. We note, if inequalities

itC’gl,(k:LQ,...,m) (11)

VA
hold, it follows the convergence of the sequence {c,&”) (t)} for all k. The proof of the Lemma
n>1

4 is complete. Inequality (11) holds for large values of k, since Lemma 2 holds. Thus, for

all k£ there exist limits lim,,_, c,(:”) (t) = cx(t), which are solutions of the system (10). It is
convenient to denote the above set with two subscripts by {c1,m(t), -+, cmm(t) }-

Lemma 5 The sequences {cim(t), , Cmm(t) tm>1,  {¢im(t),  , émm(t) }m>1, and
{éim(t),  , émm(t) }m>1 are all Cauchy sequences for fized t € [0,T), if dp — 0 and
hi, — 0 as k — oco.

Proof. Together with the sequence {cp,(t)}7-,, we consider the sequence of functions
{Chmip(t)} 2P for arbitrary p > 1, that satisfies the integral equations system

Chmp(t) = (12)
\/7 At +

\/_ fysiny/ At —7) [ e ‘”ZFI cimte (M3 @)y (1) dadr.

(k=m+1,...,m+p)

dj, cos

We take, that the sequences d, — 0 and h, — 0 as k — oo. Eigenvalues Xk — 00 by Lemma
2. Therefore, (12) implies that ¢ m4p — 0 as m — oo, k > m and for all ¢ € [0, 7.

Let p > 1. Now we show that the differences ¢k, (t) — ¢t m4p(t) for fixed ¢ approach zero
as m — oo. Systems (10) and (12) imply that the differences ¢y, (t) — cxm4p(t) satisty the
following equations

Chamtp(t) = Crm(t) = (13)

7 t
B / sin \/ Mt — 7) / [e—azﬁtf'q,mﬂmwu)_e—azgzlcjmmyj(m) i () dadr.
/5\;6 0
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Further, we transform (13)
Chmtp(t) = Chm(t) = (14)
Nelt — 7)dr [ [efaz;”:tp(cj,mﬂ(r)fcjm(r))yj(x) 1] x

B rt.:
\//\:kfosm

e~ =1 cm(7)y;(2) (I+0(1) yp(z)dz.(k=1,2,...,m)

If we introduce the notation 8,,(t) = ckm(t) — Crmp(t), then (14) can be rewritten in the
following form

om(t) = (15)
% [ sin A/ A(t — 7)dr [ [e‘a S5 dm(m)ys (@) _ 1] X
k
e~ Ximem (M@ (1 4 5(1)) yp(z)de.(k = 1,2,...,m)
Thus, we have obtained the nonlinear integral equation (15). Since, the right hand side of

(15) is infinitesimal quantity, then it has only solution 4,,(t) that approaches zero as m — oc.
So the proof of Lemma 5 is complete.

By using
{Clm(t>7 e 7Cmm(t)}>

we construct the sequence of functions in (x, )

(2, 8) = crm ()i (). (16)

k=1

m

Lemma 6 The sequences of functions {vy,(z,t)}m>1, {Om(x,t) bm>1

and {Vm(x,t)}m>1 are Cauchy sequence in max-norm of C(G, R) with respect to x for all

fized t € [0,T7].
Proof. By (15), we have
[Omp (2, 1) — v (2, 1)] <
2t [Ckmep(t) = Com (8)[ [y ()] +
>t ks ()l ly(@)] = 0
as m — 0o, k > m and for all fixed ¢ € [0, T|. Hence

m 7t - Um 7t S 17
s [y ,1) = ) )

MaXee(o,r] 2y [Chmtp(t) — Chm ()] lyr(2)] +
Hlaxme[ovL] ZZL:TZ+1 |Ck,m+p(t)Hyk ('ZC)‘ — 07

By arguing as in (17), we obtain

II;I[%’)L(] Uy (1) — v, (2, 1) | < (18)

MaXae(o,) Dot [Chamip(t) = Crm ()Y ()] +

max,e(o,) doprt it [Chmp()|[y5 ()] = 0,
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1"

7 t . " : t ‘ < 19
xrél[g’}[{/] Um+p (ZE ) Um (I ) — ( )
maxXrefo,1) 2o [Chmen(t) = Chm (B)l[ye (7)) +
maXgeo, L] ZZZZJA ’Ck,erp(t)Hyl: (x)| — 0,
" : t . " ’ t ‘ < 20
zrél[g:)l(l] Um+p (‘CE ) Um (.CE ) — ( )

maXgzeo,L] kazl |Ck,m+p(t) - Ckm(t)Hy;g" (z)] +

maX,e(o,) dopt 1 [Cemtp(E)|[yp ()] = 0

as m — 0o, k > m and for all fixed ¢ € [0, T].
By combining (17)- (20), we have the uniformly convergence of the sequence vy, (x,t)°_,
with respect to x in the norm of the space C[0, L] for all fixed ¢ € [0, 7], i.e.

4
k
v sp(@1) = v (@ Dll oo,y = D_ max o (. 8) = oz, 1) = 0

as m — 0o, k > m and for all fixed t € [0, T]. The proof of Lemma 6 is complete. Similarly,
we can show that {0, (,1)}m>1 and {9, (2, 1) }n>1 also satisfy estimates like (17)- (20) and
therefore are also Cauchy-sequences in the norm of C(G, R) for each t € [0,T].

3.5 Proof of Theorem 4

We will search for a solution v(x,t) of the problem (1), (2), and (3) as a limit in the norm
C(G, R) of the sequence {v,,(x,)}>_,, i.e.

|vm (z,t) —v(z,t)||c@r —+ 0 as m — oo.

Usually v,,(z,t) can be found as the following linear combination (16) by some system of
functions {yx(z)}, and besides the coefficients ¢, (t) may vary together with numbers m.

We note that the set of functions {cim(t), -, Cmm(t)} is the solution of the Cauchy
problem (8)- (9), where the set of numbers dy, . ..,d,, and hy, ..., h,, are the first m Fourier
coefficients of functions vy(z,t) and vy (z,t), respectively, by system {yx(z)}r>1.

Further, by Lemmas 3, 4, 5 and 6, the sequences of functions {v,,(x,t) };n>1, {0m(z,
and {i,,(z,t)};m>1 are all Cauchy sequences in max-norm with respect to z in Ci(G,
for all fixed ¢ € [0,T]. Thus, the proof of Theorem 4 is complete.

m>1,

0
R) and

4 Results and discussions

We prove existence and uniqueness of a weak solution to this semi-linear hyperbolic problem
in certain function spaces by using the standard energy estimates and a fixed point argument
(see, e.g., (Evans, 2010) for the notations and argument). We construct a sequence of functions
by using systems of ODEs, the Galerkin approximation method, and the eigenfunctions of the
corresponding 4th order eigenvalue problem. We demonstrate that the sequence of solutions
to the ODE systems converges to the unique solution and that the weak solution is also a
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classical solution. Our results validates the well-posedness of the hyperbolic problem and and
provide an explicit numerical procedure to compute a sequence of functions converging to
the solution. In the following sections of this paper, the density of the beam is denoted by p,
the Young’s modulus of the beam is F, the constant cross-sectional area is A, and the area
moment of inertia is I, all of which are assumed to be positive constants. To our knowledge,
this problem and our results have not been available in literature and therefore our results
are novel in this regard, although some numerical results are reported in (Rjeily, 2012) for
the corresponding steady state problem which determines the deflection of the beam subject
to such force and similar boundary conditions.

5 Summary

We have proved the well-posedness of a semi-linear hyperbolic problem which is a model for
the the dynamic behavior of a cantilever Euler beam subject to a nonlinear swelling load with
fixed-free ends. For smooth initial conditions and smooth force g, we also show existence of
classical solutions by using explicit construction of a sequence of functions corresponding to
a sequence of nonlinear DOEs convergent to the solution. Our proof also provides explicit
algorithms for computing solutions to the sequence of approximating ODE problems. The
novelty here is the consideration of the nonlinear effect of the swelling force acting on the
lateral side of the Euler beam.
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