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On dynamic stability of drill strings in a supersonic gas flow
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In this work stability of the drill string nonlinear dynamics, complicated by the effect of an ex-
ternal axial load, initial curvature of the drill string, geometric nonlinearity and the influence of a
supersonic gas flow as a circulating medium is studied. The drill string is modelled as a rotating
elastic isotropic rod with constant cross-section. Pressure of the gas flow used to clean the borehole
from drill cuttings and to transport them from the bottom to the surface is determined by the
nonlinear dependences of the piston theory in the third approximation. Utilization of the Galerkin
method allows to reduce the drill string mathematical model to an ordinary differential equation
for the generalized time function, containing an asymmetric nonlinear characteristic, which is fur-
ther eliminated by introducing the corresponding substitution. Considering a small perturbation
to the system and applying the harmonic balance method, characteristic determinants are con-
structed. Equations describing boundaries of instability zones of basic resonance, which allow to
determine the range of dangerous frequency regimes and to increase safety of the drilling process,
are obtained.
Key words: drill string, stability, nonlinearity, gas flow.

Дыбыстан газ ағынында бұрғылау бағанасының динамикалық тұрақтылығы туралы
Құдайбергенов Асқат Қ., Әл-Фараби атындағы Қазақ ұлттық университетi, Алматы қ.,

Қазақстан Республикасы, +77014998825, E-mail: askhatkud92@gmail.com
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Осы жұмыста бiлiкке түсетiн сыртқы жүк-салмақтың әрекетi, бұрғылау бағанасының
бастапқы қисықтығы, геометриялық сызықты еместiк және айналыстағы орта түрiнде
дыбыстан газ ағынының әсерiн ескере отырып бұрғылау бағанасы сызықты емес
динамикасының тұрақтылығын зерттеледi. Бұрғылау бағанасы тұрақты көлденең
қимасымен айналмалы серпiмдi изотроптық бiлiк түрiнде қаралады. Ұңғыманы тазарту
және бұрғылау шламын кенжарден жер бетiне тасымалдау үшiн қолданылатын газ
ағынының қысымы поршендi теорияның үшiншi жуықтауда сызықты емес тәуелдiлiктерiнен
анықталады. Галеркин әдiсiн пайдалану уақыттық функцияны жай дифференциалдык
теңдеуге ауысуға мүмкiндiк бередi. Тиiстi ауыстыру енгiзу жолымен бұл теңдеудiң
симметриялы емес сызықты емес сипаттамасын шығарылады. Шағын ұйтқу анықталай
және гармоникалық баланс әдiсi қолданылай, сипаттамалық аныктауыштар кұрылады.
Қауiптi жиiлiктiк режiм ауқымы анықтауға және бұрғылау үдерiсiнiң қауiпсiздiгiн көтеруге
мүмкiндiк беретiн негiзгi резонанс динамикалық орнықсыздығы аймақтарының шектерiн
теңдеулер табылады.
Түйiн сөздер: бұрғылау бағанасы, тұрақтылық, сызықты еместiк, газ ағыны.
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В работе изучается устойчивость нелинейной динамики бурильной колонны, осложненной
действием внешней осевой нагрузки, начальной кривизной колонны, геометрической
нелинейностью и влиянием сверхзвукового потока газа как циркулирующей среды.
Бурильная колонна моделируется в виде вращающегося упругого изотропного стержня
постоянного поперечного сечения. Давление потока газа, который применяется для
очистки скважины и переноса бурового шлама с забоя на поверхность, определяется
нелинейными зависимостями поршневой теории в третьем приближении. Использование
метода Галеркина позволяет перейти к обыкновенному дифференциальному уравнению
относительно обобщенной временной функции, содержащему несимметричную нелинейную
характеристику, которую удается исключить введением соответствующей замены.
Задавая системе малое возмущение и применяя метод гармонического баланса,
строятся характеристические определители, дающие уравнения границ зон динамической
неустойчивости основного резонанса, которые позволят определить диапазон опасных
частотных режимов и повысить безопасность процесса бурения скважин.
Ключевые слова: бурильная колонна, устойчивость, нелинейность, поток газа.

1 Introduction

Active development of oil and gas fields today makes the oil and gas extracting industry one
of the largest and dynamically developing industries in the economy of modern Kazakhstan.
Speed of driving and fail-safety of works when drilling oil and gas wells depend significantly on
quality and modernization of drilling equipment, technological imperfections of drill strings,
elaboration of the drilling modes for different types of soil rocks, influences of complicating
external loads and factors of the environment, etc.

High-amplitude flexural vibrations, axial displacements and torsional stick-slip motions of
drill strings caused by their difficult dynamic behaviour during the drilling process can result
in serious technical failures of the drilling equipment (Nandakumar, 2013: 1), (Jansen, 1993).
Therefore, there arises a problem of carrying out the dynamic analysis of the drill string
stability, which is important for the increase in efficiency of drilling operations, protection of
expensive components of the drilling equipment against undesirable vibrations and prevention
of collapse of borehole walls while drilling.

Moreover, the drill string dynamics is highly nonlinear by its nature, and it is necessary to
consider a system of nonlinear differential equations for its investigation (Al-Hiddabi, 2003:
1-2). It is caused generally by flexibility of drill strings due to their large length and the
impact of the axial compressing load that can result in finite deformations of the drill strings
(geometric nonlinearity).

This paper aims at dynamic stability of the drill string, modelled in the form of a rotating
elastic rod, taking into account a supersonic gas flow circulating from the drill string outer
side. A mathematical model studied in (Kudaibergenov, 2017) is complicated, in addition
to the variable compressing load, initial curvature of the drill string and nonlinearity of the
model, by the nonlinear influence of the gas flow in the third approximation that brings the
dynamic analysis of stability of the drill string vibrations closer to real conditions of drilling.

2 Literature review

Research of quasistatic stability of a rotating drill string, carried out in (Gulyaev, 2006:
692-697), enabled to find critical rotary speeds of drill strings. The obtained buckling mode
shapes, in turn, could be useful to determine points for installing centralizers to avoid contact
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with borehole. In (Aarsnes, 2017: 2-3) importance of using the distributed models to analyze
stability of the linearized axial-torsional dynamics of drill strings with subsequent determi-
nation of the normalized inverse of the system gain margin is shown. Coupled axial-torsional
vibrations of a drill string taking into account state-dependent time delay and nonlinearity
from dry friction and loss of contact are studied in (Liu, 2014: 1-8). The carried-out stability
analysis established that self-excited oscillations of the drill string owing to the delay time
effects could arise with high probability.

Amongst axial, lateral and torsional modes of vibration, the lateral mode is said to cause
about 75% of drilling failures (Ghasemloonia, 2012: 948). In (Sahebkar, 2011: 743-759) the
authors examine a nonlinear model of drill string lateral vibrations, obtained with application
of Hamilton’s principle, and employ the method of multiple scales to define the steady-state
response and instability regions. Research of lateral dynamic behaviour of the drill string in a
horizontal borehole taking into account continuous contact with borehole wells revealed that
studied vibrations have snaking or whirling nature (Heisig, 2000). Simultaneous appearance
of parametric resonance and whirl vibration phenomena, resulting in high-amplitude lateral
vibrations of a rotating drill string, within the range of drilling operating conditions is shown
in (Christoforou, 1997: 256-259).

Successful application of the Galerkin method to the analysis of drill string dynamics,
particularly, to their dynamic stability in vertical holes was indicated in (Vaz, 1995: 437-440).
Utilization of the Galerkin technique along with the harmonic balance and pseudo arc-length
continuation methods to investigate steady-state frequency responses and stability branches
of beam-like structures with polynomial-type nonlinearities were studied in (Bhattiprolu,
2016: 28-37). Such a combination of techniques allowed to quickly determine the harmonics
needed for convergence of a periodic solution of the system.

At present gas drilling technology involving air, nitrogen or natural gas as circulating
media is widely applied in oil and gas industry (Lian, 2015: 1412). In (Meng, 2014: 163-
170) a simple and reliable theoretical model describing the propagation and attenuation of
a pressure wave through pipes was created. It was established that static pressure had more
influence on the attenuation factor than on wave speed.

At the same time, a large number of works are related to the nonlinear dynamics of
cylindrical structures in a supersonic gas flow. Influences of the critical Mach number on the
flutter emergence and limit cycle oscillations, existence of bifurcation and chaotic motions of
a composite laminated plate under transversal aerodynamic pressure modelled by the first-
order piston theory is given in (Chen, 2015: 1-8). The use of the third-order piston theory
and shock wave aerodynamics is described in (Librescu, 2002: 802-810), whereas in (Kiiko,
2009: 135) the authors derive an expression for the excess pressure, essentially different from
the piston theory formulae, and obtain purely investigated eigenvalue problems.

3 Materials and methods

3.1 Mathematical model

Let us consider a nonlinear mathematical model of the drill string lateral vibrations (Ku-
daibergenov, 2017), based on Novozhilov’s nonlinear elasticity theory (Novozhilov, 1999)
taking into consideration the plane section hypothesis and obtained with application of Hamil-
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ton’s variation principle. The Cartesian coordinate system Oxyz (z-axis coincides with the
drill string axis) is used. Vibrations of the drill string, presented as a rotating elastic isotropic
rod with symmetric cross-section, in the Oyz-plane are studied.

In order to take into account the effect of a supersonic incompressible gas flow on the
drill string dynamics relations of the piston theory (Volmir, 1967), connecting the aerody-
namic pressure of the flow with speed of sound, are applied. According to them, we have the
following:

P = P0

(
1− κ− 1

2

Un

C0

) 2κ
κ−1

, (1)

where Un is the normal projection of the gas flow speed on the drill string surface; C0 the
sound speed for the unperturbed gas flow; P0 the pressure of the unperturbed flow; κ the
polytropic exponent.

The gas is supposed to move in the upward direction, i.e. in the opposite direction to the

drill string motion. Considering the stationary gas flow, when Un = Vg
∂v

∂z
(Kudaibergenov,

2018: 570), and expanding (1) into a power series up to third order, we arrive at the following
expression for the excessive pressure of the supersonic gas flow:

∆P = P − P0 = P0κ

(
−M̄ ∂v

∂z
+
κ+ 1

4
M̄2

(
∂v

∂z

)2

− κ+ 1

12
M̄3

(
∂v

∂z

)3
)
, (2)

The use of nonlinear expression (2), containing the cubic power of M̄
∂v

∂z
allows to get

sufficiently exact values of pressure. At the same time, the process of perturbation distribution
in gas can be considered as isentropic (Volmir, 1967).

Hence, the nonlinear mathematical model of plane lateral vibrations of the rotating drill
string allowing for the nonlinear effect of the supersonic gas flow is written as follows

ρA
∂2v

∂t2
+ EIx

∂4v

∂z4
− ρIx

∂4v

∂z2∂t2
+

∂

∂z

(
N (z, t)

∂ (v + v0)

∂z

)
− EA

1− ν

∂

∂z

(
∂v

∂z

)3

− ρAω2v + h∆P = 0, (3)

where ρ is the mass density, A the cross-section area of the rod, v (z, t) the displacement of
the flexural center of the cross-section along the y-axis owing to bending, E Young’s modulus,
Ix the axial inertia moment, v0 (z) the initial curvature of the rod, ν Poisson’s ratio, ω the
angular speed of rotation of the drill string, h the drill string wall thickness.

Boundary conditions for the simply supported rod are given by

v (z, t) = 0, EIx
∂2v (z, t)

∂z2
(z = 0, z = l) . (4)

The external loads having generally variable in time nature significantly influence the
drill string dynamic stability. Accepting that the harmonic effect corresponds to the loading
regime, the variable axial compressive load can be presented as

N = N0 +Nt cos Ω̃t, (5)
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where N0 and Nt are the constant and variable in time components, respectively; Ω̃ is the
frequency of the external effect.

When investigating natural and resonant oscillations of construction elements with non-
linear and elastic characteristics a sought solution is often approximated by a finite number
of normal modes with subsequent reduction of an initial partial differential equation of mo-
tion to modal equations of motion, applying the Galerkin method. Studying oscillations of
continuous systems with large amplitude such as rods, beams and shells the single-mode
method which assumes independence of the modal form of oscillations from the influence of
nonlinearity is effectively used (Szemplinska-Stupnicka, 1983).

Using the Galerkin method, consider the general form of the drill string nonlinear vibra-
tions. In the given case, the lateral displacement v (z, t) and initial curvature v0 (z) can be
approximated by periodic functions of the form:

v (z, t) = f (t) sin
(πz
l

)
, v0 (z) = f0 (t) sin

(πz
l

)
. (6)

On substituting expression (6) into governing equation (3), after integration under meeting
the requirement of orthogonality of the substitution result to the basis function sin

(πz
l

)
and

introducing the dimensionless time τ = Ω0t, the problem reduces to the nonlinear ordinary
differential equation for the generalized function f (τ):

d2f

dτ 2
+ (1− 2β cosΩτ) f + α1f

2 + α2f
3 = F0 + F1 cosΩτ, (7)

where

β =
β2
β1
, Ω =

Ω̃

Ω0

, αi =
α̃i

Ω2
0

, Fi =
F̃i

Ω2
0

, i = 1, 2;

β1 =
1

2δ1

(
EJ

(π
l

)4
−N0

(π
l

)2
− ρAω2

)
, β2 =

Ntπ
2

4lδ1
, Ω0 =

√
β1
δ1
,

δ1 =
ρl

2

(
A+ J

(π
l

)2)
, α̃1 =

M̄2P0κ (κ+ 1)πh

6lδ1
, α̃2 =

3EAπ4

8 (1− ν) l3δ1
,

F̃0 = f0
N0π

2

2lδ1
, F̃1 = f0

Ntπ
2

2lδ1
.

Here Ω0 is the frequency of the drill string natural vibrations allowing for the constant
component of the axial load, β the excitation coefficient.

It is worth noting that the influence of the supersonic gas flow is taken into account
in the term with quadratic nonlinearity, in contrast to the authors’ works (Kudaibergenov,
2014: 594), (Kudaibergenov, 2016: 496) where the flow of gas appeared in the term with
cubic nonlinearity. Cubic term in equation (7) arises due to nonlinearity of the mathematical
model of the drill srting.

Moreover, the nonlinear characteristic in equation (7) is asymmetric because of existence
of the quadratic term α1f

2. Making the substitution f = f̂ − α1

3α2

(Hayashi, 1986) we obtain

the equation with symmetric nonlinear characteristic:

d2f̂

dτ 2
+ (γ − 2β cosΩτ) f̂ + αf̂ 3 = F̂0 + F̂1 cosΩτ, (8)
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where

γ = 1− α2
1

3α2

, α = α2, F̂0 = F0 +
α

3α2

− 2α3
1

27α2
2

, F̂1 = F1 −
2α1β

3α2

.

3.2 Stability analysis

For stability investigation let us suppose that f̂0 is the periodic solution of equation (7), and
introduce a small variation δf :

f̂ = f̂0 + δf. (9)

If the variation δf rises indefinitely at τ → ∞, then the solution f̂0 (τ) is unstable. In the
case when δf remains limited at τ → ∞, the solution f̂0 (τ) is stable.

On substituting (9) into equation (8), eliminating f̂0, and neglecting the powers of δf
higher than one, the following linearized equation in terms of the variation δf is obtained:

d2δf

dτ 2
+
(
γ − 2β cosΩτ + 3αf̂2

0

)
δf = 0. (10)

Considering the case of basic resonance for the periodic solution f̂0 (τ):

f̂0 (τ) = r1 cos (Ωτ − ϕ1) , (11)

where r1 is the amplitude, ϕ1 the phase of the periodic solution; we arrive at the generalized
Hill type equation in variations:

d2δf

dτ 2
+

(
θ0 +

2∑
n=1

(θnc cosnΩτ + θns sinnΩτ)

)
δf = 0, (12)

where

θ0 = γ +
3

2
αr21, θ1c = −2β, θ1s = 0, θ2c =

3

2
αr21 cos 2ϕ1, θ2s =

3

2
αr21 sin 2ϕ1.

In order to determine zones of instability, the particular solution of equation (12) is given
by a spectrum of vibrations (Szemplinska-Stupnicka, 1983: 19):

δf = eητ
∑
k

cos (kΩτ − ψk) , k = 1, 3, 5, . . . ,∞ or k = 0, 2, 4, . . . ,∞, (13)

where η is the characteristic exponent that can take a real or imaginary value.
Hence, the behaviour of the quantity δf depends on the behaviour of the function eητ ,

which, in turn, depends on the behaviour of the characteristic exponent η. Thus, if
1) the characteristic exponent has a negative real part, i.e. Re (η) < 0, then the solution

δf → 0 at τ → 0, that means the solution is stable;
2) Re (η) = 0, we get the solution on the boundary of stability and instability zones;
3) Re (η) > 0, then the solution δf is unstable since it increases indefinitely at τ → 0.
The method of harmonic balance according to which coefficients at the corresponding

cosines and sine are equated to zero is applied to find the zones of dynamic instability. At
the same time, the order of the corresponding characteristic determinants depends on the
number of harmonics retained in solution (13).
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4 Results and discussion

Transition to the symmetric nonlinear characteristic in equation (8) allows to restrict our-
selves by finding the instability zones of the odd order, which involve the terms corresponding
to the odd harmonics in expression (13).

Assuming that the frequency of the small perturbation δf coincides with frequency of the
periodic solution f̃0, the first instability zone is determined. Then the solution of equation
(12) can be written as

δf = eητb1 cos (Ωτ − ψ1) . (14)

On substituting solution (14) into the equation of perturbated state (12) and applying
the method of harmonic balance, we get the following characteristic determinant:

∆(η) =

∣∣∣∣∣∣∣
η2 − Ω2 + θ0 +

θ2c
2

2ηΩ +
θ2s
2

−2ηΩ +
θ2s
2

η2 − Ω2 + θ0 −
θ2c
2

∣∣∣∣∣∣∣ , (15)

that provided ∆(η = 0) = 0, defines the boundaries of the first instability zone of the basic
resonance:(

A0 − Ω2
)2

+
(
B0 −B1Ω

2
)
r21 + C0r

4
1 = 0, (16)

where

A0 = γ, B0 = 3αγ, B1 = −3α, C1 =
27

16
α2.

Existence of cubic nonlinearity in the model supposes finding the instability zones of higher
order. When determining the third zone of instability of the basic resonance the expression
for the small variation δf is given by

δf = eητ (b1 cos (Ωτ − ψ1) + b3 cos (3Ωτ − ψ3)) . (17)

Similarly, on substituting (17) into (12), we apply the method of harmonic balance and
take into consideration that the results of substitution have to be satisfied at any nontrivial
values of bk, ψk, k = 1, 3. Assuming that b1 = b3 = 1, we come to the fourth-order character-
istic determinant of the form:

∆(η) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

η2 − Ω2 + θ0 +
θ2c
2

2ηΩ +
θ2s
2

θ2c
2

θ2s
2

−2ηΩ +
θ2s
2

η2 − Ω2 + θ0 −
θ2c
2

−θ2s
2

θ2c
2

θ2c
2

−θ2s
2

η2 − 9Ω2 + θ0 6ηΩ

θ2s
2

θ2c
2

−6ηΩ η2 − 9Ω2 + θ0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (18)

Then the boundaries of the third zone of instability can be described by the following
equation, satisfying the condition ∆(η = 0) = 0:(

A0 − A1Ω
2 + A2Ω

4
)2

+
(
B0 +B1Ω

2 +B2Ω
4 +B3Ω

6
)
r21 +

(
C0 + C1Ω

2 + C2Ω
4
)
r41

+
(
D0 +D1Ω

2
)
r61 + E0r

8
1 = 0, (19)
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where

A0 = γ2, A1 = −10γ, A2 = 9,

B0 = 6αγ3, B1 = −90αγ2, B2 = 354αγ, B3 = −270α,

C0 =
189

16
α2γ2, C1 = −909

8
α2γ, C2 =

3357

16
α2,

D0 =
135

16
α3γ, D1 = −567

16
α3, E0 =

405

256
α4.

The third zone of instability allows to refine the solution of the problem and to determine
the frequencies at which ultra-harmonic resonant oscillations resulting in loss of the drill
string stability can arise.

5 Conclusion

The dynamic model of the drill string flat bending, developed by the authors, refines the
known models and brings them closer to a real physical process. It becomes possible due to
introducing to the model of the drill string vibrations their nonlinearity of geometric nature
(finiteness of deformations, initial curvature of the drill string), and nonlinearity from pressure
of the supersonic gas flow.

In this work, the methodology of the dynamic stability analysis of the systems without
imposing limits on the magnitudes of their nonlinearity and nonautonomous terms is pro-
posed. It is based on determining the instability zones of resonant vibrations and finding the
corresponding characteristic determinants with application of the harmonic balance method.
Completeness of the mathematical model allows to predict the drill string behaviour with
high accuracy, eliminating dangerous resonant frequencies from the range of their operating
regimes, thereby increasing efficiency and reliability of the drill string operation. Despite the
fact that the proposed techniques were used to research stability of the system basic reso-
nance, they can be successfully applied to the analysis of resonances on higher frequencies as
well.

In future, the results of the work will be generalized to the case of spatial vibrations of
the drill string with conducting their detailed numerical analysis.
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