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It is noteworthy to observe that a first-order linear ordinary differential equation without delay
does not possess oscillatory solutions. Therefore the investigation of oscillatory solutions is of
interest for equations with delays or for the discrete analogue difference equations. Furthermore, the
mathematical modelling of several real-world problems leads to differential equations that depend
on the past history rather than only the current state. In this article conditions are presented
such that all solutions of delay and difference equations are oscillatory while all solutions of the
corresponding ordinary differential equations without delay are, for example, decreasing and tend
to zero. Equations with constant and variable arguments are investigated. Several examples of
delay and difference equations with applications to many sectors of life are presented.
Key words: oscillation, delay differential equations, difference equations.

1 Introduction

The oscillation theory of Ordinary Differential Equations (ODEs) was originated by Sturm
[26] in 1836. Since then hundreds of papers have been published studying the oscillation
theory of ODEs.

The oscillation theory of Delay Differential Equations (DDEs) was mainly developed
after the 2nd world war. It was during the war that the admirals and officers in Navy (Fleet)
observed that the ships were vibrating and asked the engineers and the scientists to solve the
problem. Investigating the problem of vibrations (oscillations) the scientists found out that
the equation which was to be taken into consideration was not an ODE (a usual equation
without delays) but it was a differential equation with delays.

In the decade of 1970 a great number of papers were written extending known results from
ODEs to DDEs. Of particular importance, however, has been the study of oscillations which
are caused by the delay and which do not appear in the corresponding ODE. In recent years
there has been a great deal of interest in the study of oscillatory behavior of the solutions to
DDEs and also the discrete analogue Delay Difference Equations (D∆Es). See, for example,
[1-31] and the references cited therein.

The problem of establishing sufficient conditions for the oscillation of all solutions to the
differential equation

x′(t) + p(t)x(τ(t)) = 0, t ≥ t0, (1)

where the functions p, τ ∈ C([t0,∞),R+) (here R+ = [0,∞)), τ(t) is non-decreasing, τ(t) < t
for t ≥ t0, and limt→∞ τ(t) = ∞, has been the subject of many investigations. See, for
example, [4-6, 8-12, 14-17, 19, 21, 22, 24, 28, 29, 31] and the references cited therein.
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By a solution of Eq. (1) we understand a continuously differentiable function defined on
[τ(T0),∞) for some T0 ≥ t0 and such that (1) is satisfied for t ≥ T0. Such a solution is called
oscillatory if it has arbitrarily large zeros, and otherwise it is called nonoscillatory.

The oscillation theory of the (discrete analogue) delay difference equation

∆x(n) + p(n)x(τ(n)) = 0, n = 0, 1, 2, ..., (1)′

where p(n) is a sequence of nonnegative real numbers and τ(n) is a sequence of integers such
that τ(n) < n − 1 for n ≥ 0 and limn→∞ τ(n) = ∞, has also attracted growing attention
in the recent few years. The reader is referred to [1-3, 7, 13, 18, 20, 23, 25, 27, 30] and the
references cited therein.

By a solution of Eq. (1)′ we mean a sequence x(n) which satisfies (1)′ for n ≥ 0. A solution
x(n) of (1)′ is said to be oscillatory if the terms of the solution are not eventually positive
or eventually negative. Otherwise the solution is called nonoscillatory.

2 Oscillation Criteria for Delay Equations

In this section we study the delay equation

x′(t) + p(t)x(τ(t)) = 0, t ≥ t0. (1)

The first systematic study for the oscillation of all solutions to Eq.(1) was made by
Myshkis. In 1950 [22] he proved that all solutions of Eq.(1) oscillate if

lim sup
t→∞

[t− τ(t)] < ∞ and lim inf
t→∞

[t− τ(t)] lim inf
t→∞

p(t) >
1

e
. (C1)

In 1972, Ladas, Lakshmikantham and Papadakis [19] and in 1982 Koplatadze and Can-
turija [15] concluded the same result if

A := lim sup
t→∞

∫ t

τ(t)

p(s)ds > 1, (C2)

or

α := lim inf
t→∞

∫ t

τ(t)

p(s)ds >
1

e
; (C3)

respectively, while ([15]) if

lim sup
t→∞

∫ t

τ(t)

p(s)ds <
1

e
, (N1)

then Eq.(1) has a nonoscillatory solution.
It is obvious that there is a gap between the conditions (C2) and (C3) when the limit

lim
t→∞

∫ t

τ(t)
p(s)ds does not exist. How to fill this gap is an interesting problem which has been

investigated by several authors.
In 1988, Erbe and Zhang [6] proved that all the solutions of Eq.(1) are oscillatory, if

0 < α ≤ 1
e

and

A > 1− α2

4
. (C4)
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In 1991, Jian [12] derived the condition

A > 1− α2

2(1− α)
, (C5)

while in 1992, Yu and Wang [28] and Yu, Wang, Zhang and Qian [29] obtained the condition

A > 1− 1− α−
√
1− 2α− α2

2
. (C6)

In 1990, Elbert and Stavroulakis [4] and in 1991, Kwong [17], using different techniques,
improved (C4), in the case where 0 < α ≤ 1

e
, to the conditions

A > 1− (1− 1√
λ1

)2 (C7)

and
A >

lnλ1 + 1

λ1

, (C8)

respectively, where λ1 is the smaller root of the equation λ = eαλ.
In 1994, Koplatadze and Kvinikadze [16] improved (C6), while in 1998, Philos and Sficas

[23] and in 1999, Zhou and Yu [31] and Jaroš and Stavroulakis [11] derived the conditions

A > 1− α2

2(1− α)
− α2

2
λ1, (C9)

A > 1− 1− α−
√
1− 2α− α2

2
− (1− 1√

λ1

)2, (C10)

and

A >
lnλ1 + 1

λ1

− 1− α−
√
1− 2α− α2

2
, (C11)

respectively.
Consider Eq.(1) and assume that τ(t) is continuously differentiable and that there exists

θ > 0 such that p(τ(t))τ ′(t) ≥ θp(t) eventually for all t. Under this additional condition, in
2000, Kon, Sficas and Stavroulakis [14] and in 2003, Sficas and Stavroulakis [24] established
the condtions

A > 2α+
2

λ1

− 1, (C12)

A >
lnλ1 − 1 +

√
5− 2λ1 + 2αλ1

λ1

. (C13)

In the case where α = 1
e
, then λ1 = e, and (C13) leads to A >

√
7− 2e/e ≈ 0.459987065.

It is to be noted that as α → 0, then all the previous conditions (C4) − (C12) re-
duce to the condition (C2), i.e. A > 1. However, the condition (C13) leads to A >√
3 − 1 ≈ 0.732, which is an essential improvement. Moreover (C13) improves all the

above conditions when 0 < α ≤ 1
e

as well. Note that the value of the lower bound
on A can not be less than 1

e
≈ 0.367879441. Thus the aim is to establish a condition
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which leads to a value as close as possible to 1
e
. For illustrative purpose, we give the

values of the lower bound on A under these conditions when α = 1
e
. (C4):0.966166179,

(C5):0.892951367, (C6):0.863457014, (C7):0.845181878, (C8):0.735758882, (C9):0.709011646,
(C10):0.708638892, (C11):0.599215896, (C12):0.471517764, (C13):0.459987065.

We see that the condition (C13) essentially improves all the known results in the literature.
Example 2.1 ([24]) Consider the delay differential equation

x′(t) + px(t− q sin2
√
t− 1

pe
) = 0, p > 0, q > 0 and pq = 0.46− 1

e
.

Then α = lim inft→∞
∫ t

τ(t)
pds = lim inft→∞ p(q sin2

√
t+ 1

pe
) = 1

e
and

A = lim sup
t→∞

∫ t

τ(t)

pds = lim sup
t→∞

p(q sin2
√
t+

1

pe
) = pq +

1

e
= 0.46.

Thus, according to (C13), all solutions of this equation oscillate. Observe that none of the
conditions (C4)-(C12) apply to this equation.

3 Oscillation Criteria for Difference Equations

Consider the first order linear delay difference equation

∆x(n) + p(n)x(τ(n)) = 0, n = 0, 1, 2, ..., (1)′

where p : N → R+, τ : N → N, τ(n) is nondecreasing τ(n) ≤ n − 1 and lim
n→+∞

τ(n) = +∞,
and the particular case of the equation with constant delay

∆u(n) + p(n)u(n− k) = 0, k ∈ N (1)′′

which has been the subject of many recent investigations.
In 1981, Domshlak [3] studied this problem in the case where k = 1. In 1989, Erbe and

Zhang [7] proved that all solutions of (1)′′ oscillate if

β := lim inf
n→∞

p(n) > 0 a3nd lim sup
n→∞

p(n) > 1− β (D1)

or

lim inf
n→∞

p(n) >
kk

(k + 1)k+1
(D2)

or

A := lim sup
n→∞

n∑
i=n−k

p(i) > 1. (C2)
′′

while Ladas, Philos and Sficas [20] improved the above condition (D2) as follows

lim inf
n→∞

1

k

n−1∑
i=n−k

p(i) >
kk

(k + 1)k+1
. (C3)

′′
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Concerning the constant kk

(k+1)k+1 in (D2) and (C3)
′′ it should be empasized that, as it is shown

in [7], if

sup p(n) <
kk

(k + 1)k+1
, (N1)

then (1)′′ has a nonoscillatory solution. Moreover, when p(n) is a constant, say p(n) = p,
then conditions (D2) and (C3)

′′ reduce to

p >
kk

(k + 1)k+1
,

oscillation of all solutions to Eq.(1)′′.
In 1990, Ladas [18] conjectured that Eq.(1)′′ has a nonoscillatory solution if

1

k

n−1∑
i=n−k

p(i) ≤ kk

(k + 1)k+1

holds eventually. However this conjecture is not correct and a counter-example was given in
1994 by Yu, Zhang and Wang [30]. Moreover, in 1999 Tang and Yu [27], using a different
technique, showed that Eq.(1)′′ has a nonoscillatory solution if the so-called "corrected Ladas
conjecture"

n∑
i=n−k

p(i) ≤
(

k

k + 1

)k+1

for all large n, (N2)

is satisfied.
In 2017 Karpuz [13] studied this problem and derived the following conditions. If

lim inf
n→∞

inf
λ≥1

[
1

λ

n∏
i=n−k

[1 + λp(i)]

]
> 1,

then every solution of Eq.(1)′′ oscillates, while if there exists λ0 ≥ 1 such that

1

λ0

n∏
i=n−k

[1 + λ0p(i)] ≤ 1 for all large n,

nonoscillatory solution. From the above conditions, using the Arithmetic-Geometric mean,
it follows that if

n∑
i=n−k

p(i) ≤
(

k

k + 1

)k

for all large n, (N3)

then Eq.(1)′′ has a nonoscillatory solution. That is, Karpuz [13] replaced condition (N2) by
(N3), which is a weaker condition.

As in Section 2, it is interesting to establish sufficient conditions for the oscillation of all
solutions to Eq.(1)′′ when both (C2)

′′ and (C3)
′′ are not satisfied.

In 2004 Stavroulakis [25] established the following: Assume that 0 < α ≤
(

k
k+1

)k+1
.Then

either one of the conditions

lim sup
n→∞

n−1∑
i=n−k

p(i) > 1− α2

4
(C4)

′′
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or

lim sup
n→∞

n−1∑
i=n−k

p(i) > 1− αk (D3)

implies that all solutions of (1)′ oscillate.
In 2008, Chatzarakis, Koplatadze and Stavroulakis [1,2] investigated for the first time

the oscillatory behaviour of equation (1)′ in the case of a variable delay argument τ(n) and
derived the following. If

lim sup
n→∞

n∑
j=τ(n)

p(j) > 1 (C2)
′

or lim supn→∞
∑n−1

i=τ(n) p(i) < +∞ and

α := lim inf
n→∞

n−1∑
i=τ(n)

p(i) >
1

e
(C3)

′

then all solutions of equation (1)′ oscillate.

4 Applications

1. Nicholson’s blowflies
The delay differential equation

·
N(t) = −δN(t) + PN(t− τ)e−aN(t−τ), t ≥ 0 (4.1)

was used by Gurney et al. [9, p.51] to describe the dynamics of Nicholson’s blowflies. Here P
is the maximum per capita daily egg production rate, 1/a is the size at which the population
reproduces at its maximum rate, δ is per capita daily adult death rate, τ is the generation
time and N(t) is the size of the population at time t.

2. Delay logistic equation
The delay differential equation

·
N(t) = rN(t) [1−N(t− τ)/K] , (4.2)

where r, τ,K ∈ (0,∞) is known as delay logistic equation and has been investigated by
numerous authors [9, p.85]. This equation is a prototype in modelling the dynamics of single-
species population systems whose biomass or density is denoted by a differentiable function
N. The constant r is called the growth rate and the constant K is called the carrying capacity
of the habitat.

3. The Lasota-Wazewska model for the survival of red blood cells
The delay differential equation

·
N(t) = −µN(t) + pe−γN(t−τ), t ≥ 0 (4.3)
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has been used by Wazewska-Cryzewska and Lasota [9, p.89] as a model for the survival of
red blood cells in an animal. Here N(t) denotes the number of red blood cells at time t, µ
is the probability of death of a red blood cell, p and γ are positive constants related to the
production of red blood cells per unit time, and τ is the time required to produce a red blood
cell.

4. Discrete delay logistic equation
The delay difference equation

Nt+1 =
αNt

1 + βNt−k

(4.4)

where α ∈ (1,∞), β ∈ (0,∞), and k ∈ N was considered by Pielou [9, p.194] as the discrete
analogue of the delay logistic equation (4.2).

5. Kalman Filter-Solar Station
Several real world PVC (Photovoltaic) parks use various mechanisms, including micro-

controllers and autonomous robots to rotate the panels to the sun. The obvious advantage of
rotating (as the sunflower) over stationary panels is that the first produce 40% more energy
than the second.

There can be several approaches to track the sun. Since the sun’s trajectory is fairly
regular, the panel’s current position – angle θ(n) and the sequence ∆θ(n−1) , . . .∆θ(n−k), of
previous rotation to the sun provide an accurate estimate of the rotation to the sun’s current
location. This idea has a simple formal description in the following equation:

y(n) =
N∑
i=1

ai∆θ(n− i) +
N−1∑
i=0

biθ(n− i) = 0, (4.5)

meaning that the rotation to bring the panel to an optimal orientation to the sun’s current
location is a function of the preceding N rotations and the panel’s angle in each of the panel’s
N most recent positions, along its trajectory.

5 Note

The results of this paper were presented in the 2nd International Summer School "Mathe-
matical Methods in Science and Technology"held in Almaty, Kazakhstan, 28 May-08 June
2018.
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