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Abstract. We consider the method of regularization of two dimensional (2D) inverse coefficient
problems based on the projection method and the approach of I.M. Gelfand, B.M. Levitan, M.G.
Krein and V.A. Marchenko. We propose a method of reconstruction of the potential, density and
velocity in 2D inverse coefficient problems. The 2D analogies of the I.M. Gelfand, B.M. Levitan and
M.G. Krein method are established. The 2D analog of the V.A. Marchenko equation is considered
for the Kadomtsev-Petviashvili equation. This approach can be easily applied to corresponding
multidimensional inverse problems. The results of numerical calculations are presented.
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We consider the method of regularization of 2D inverse coefficient problems based on the
projection method and the approach of I.M. Gelfand, B.M. Levitan, M.G. Krein and V.A.
Marchenko.

In 1951 I.M. Gelfand and B.M. Levitan [8] established a method of reconstructing the
Sturm–Liouville operator from a spectral function and gave the sufficient conditions for a given
monotonic function to be a spectrum function of the operator. In 1951 and 1954 M.G. Krein
[11,12] considered the physical statement of the inverse boundary value problem and proved
solvability. In 1950 and 1952 V.A. Marchenko [13,14] applied the transformation operators for
investigation of the inverse problems and proved that spectral function of the Sturm–Liouville
operator defines the operator uniquely.

In 1967 C. S. Gardner, J.M. Greene, M.D. Kruskal and R.M. Miura [7] developed the Inverse
Scattering Transform method. The idea is to solve an initial-value problem for the The Korteweg–
de Vries (KdV) equation within a class of initial conditions. Later generalised to many other
completely integrable equations such as the nonlinear Schr𝑜dinger equation, the Sine-Gordon
equation etc. The availability of the travelling wave (and, in particular, solitary wave) solutions
for the KdV equation does not constitute its integrability. The practical implication of complete
integrability is the ability to integrate the KdV equation for a reasonably broad class of initial or
boundary conditions. The Kadomtsev-Petviashvili (KP) equation is the 2D analog of the KdV
equation.

One of the advantages of our approach (for 1D inverse coefficient problems see also [27,6,26])
is that it allows one to avoid multiple solution of 2D direct problem (see also the boundary
control method proposed by M.I. Belishev [2,3] and the globally convergent method proposed by
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M.V. Klibanov [4,5]). In [16] we proved that boundary control method and the method by M.G.
Krein are equivalent in 1D case.

1 2D analogy of Gelfand-Levitan equation

Let us consider the sequence of direct problems (𝑘 = 0,±1,±2, . . .)

𝑢
(𝑘)
𝑡𝑡 = 𝑢(𝑘)𝑥𝑥 + 𝑢(𝑘)𝑦𝑦 − 𝑞(𝑥, 𝑦)𝑢(𝑘), 𝑥 ∈ R, 𝑦 ∈ R, 𝑡 > 0;

𝑢(𝑘)|𝑡=0 = 0, 𝑢
(𝑘)
𝑡 |𝑡=0 = 𝛿(𝑥)ei𝑘𝑦,

𝑢(𝑘)|𝑦=𝜋 = 𝑢(𝑘)|𝑦=−𝜋.

Inverse problem 1: find function 𝑞(𝑥, 𝑦) using additional information

𝑢(𝑘)|𝑥=0 = 𝑓 (𝑘)(𝑦, 𝑡), 𝑢(𝑘)𝑥 |𝑥=0 = 0, 𝑘 = 0,±1,±2, . . .

The uniqueness of the inverse problem 1 can be proved using the technique in [28,29]
Let us consider the sequence of the auxilary problems (𝑚 = 0,±1,±2, . . .) [18,21]

𝑤
(𝑚)
𝑡𝑡 = 𝑤(𝑚)

𝑥𝑥 + 𝑤(𝑚)
𝑦𝑦 − 𝑞(𝑥, 𝑦)𝑤(𝑚), 𝑥 > 0, 𝑦 ∈ R, 𝑡 ∈ R; (1)

𝑤(𝑚)|𝑥=0 = ei𝑚𝑦𝛿(𝑡), 𝑤(𝑚)
𝑥 |𝑥=0 = 0. (2)

It was proved in [18,21] that the solution to the problem (1), (2) has the form

�̃�(𝑚)(𝑥, 𝑦, 𝑡) =
1

4
ei𝑚𝑦𝜃(𝑥− |𝑡|)

[︃
𝑥𝑚2 +

∫︁ 𝑥+𝑡
2

0
𝑞(𝜉, 𝑦)d𝜉 +

∫︁ 𝑥−𝑡
2

0
𝑞(𝜉, 𝑦)d𝜉

]︃
+

+
1

2

∫︁ 𝑡

0

∫︁ 𝑥+𝑡−𝜏

𝑥−𝑡+𝜏
[−�̃�(𝑚)

𝑦𝑦 + 𝑞(𝑥, 𝑦)�̃�(𝑚)](𝜉, 𝑦, 𝜏)d𝜉d𝜏.

Therefore
�̃�(𝑚)(𝑥, 𝑦, 𝑥− 0) =

1

4
ei𝑚𝑦

[︂
𝑥𝑚2 +

∫︁ 𝑥

0
𝑞(𝜉, 𝑦)d𝜉

]︂
. (3)

The inverse problem 1 can be reduced to the system of integral equations (𝑘 = 0,±1,±2, . . .) of
the first

𝑥∫︁
−𝑥

∑︁
𝑚

𝑓 (𝑘)
𝑚 (𝑡− 𝑠)�̃�(𝑚)(𝑥, 𝑦, 𝑠)d𝑠 = −1

2

[︁
𝑓 (𝑘)(𝑦, 𝑡− 𝑥) + 𝑓 (𝑘)(𝑦, 𝑡 + 𝑥)

]︁
, (4)

or the second kind

�̃�(𝑘)(𝑥, 𝑦, 𝑡) +

𝑥∫︁
−𝑥

∑︁
𝑚

𝑓 (𝑘)
𝑚

′
(𝑡− 𝑠)�̃�(𝑚)(𝑥, 𝑦, 𝑠)d𝑠 =

= −1

2

[︁
𝑓
(𝑘)
𝑡 (𝑦, 𝑡− 𝑥) + 𝑓

(𝑘)
𝑡 (𝑦, 𝑡 + 𝑥)

]︁
. (5)

Here |𝑡| < 𝑥, 𝑦 ∈ R. The system of equations (4) and (5) are 2D analogy of the Gelfand-Levitan
equation.

Note that according to (3) 𝑞(𝑥, 𝑦) can be calculated as follows

𝑞(𝑥, 𝑦) = 4
d

d𝑥
�̃�(0)(𝑥, 𝑦, 𝑥− 0).
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2 2D analogy of M.G. Krein equation

Let us consider the sequence of direct problems (𝑘 = 0,±1,±2, . . .):

𝑢
(𝑘)
𝑡𝑡 = 𝑢(𝑘)𝑥𝑥 + 𝑢(𝑘)𝑦𝑦 −∇ ln 𝜌(𝑥, 𝑦)∇𝑢(𝑘), 𝑥 > 0, 𝑦 ∈ R, 𝑡 > 0;

𝑢(𝑘)|𝑡<0 ≡ 0, 𝑢(𝑘)𝑥 (+0, 𝑦, 𝑡) = ei𝑘𝑦 𝛿(𝑡);

𝑢(𝑘)|𝑦=𝜋 = 𝑢(𝑘)|𝑦=−𝜋.

Inverse problem 2: find function 𝜌(𝑥, 𝑦) using additional information

𝑢(𝑘)(+0, 𝑦, 𝑡) = 𝑓 (𝑘)(𝑦, 𝑡), 𝑘 = 0,±1,±2, . . .

The inverse problem 2 can be reduced to the 2D analogy of M.G. Krein equation [18,21]
𝑘 = 0,±1,±2, . . .:

2𝛷𝑘(𝑥, 𝑡) +
∑︁
𝑚

𝑥∫︁
−𝑥

𝑓 (𝑘)
𝑚

′
(𝑡− 𝑠)𝛷(𝑚)(𝑥, 𝑠)d𝑠 = −

𝜋∫︁
−𝜋

ei𝑘𝑦

𝜌(0, 𝑦)
d𝑦, |𝑡| < 𝑥. (6)

The inverse problem solution 𝜌(𝑥, 𝑦) can be calculated by the formula

𝜌(𝑥, 𝑦) =
𝜋2

𝜌(0, 𝑦)

[︁ ∞∑︁
𝑚=−∞

𝛷(𝑚)(𝑥, 𝑥− 0) e−i𝑚𝑦
]︀−2

. (7)

For finding inverse problem solution 𝜌(𝑥, 𝑦) in point 𝑥0 > 0 we have to solve the system (6)
with 𝑥 = 𝑥0 and calculate 𝜌(𝑥0, 𝑦) by formula (7). For numerical calculations (see figures 1–4)
we use 𝑁–approximation [17,22] of M.G. Krein equation [21] e.g. we cut the system (6) putting
𝛷𝑘(𝑥, 𝑡) ≡ 0 for all 𝑁 < |𝑘| [23].

Discrete analogies of the Gelfand–Levitan equation were considered in [9,25,19,20].

3 2D analogy of M.G. Marchenko equation

The Kadomtsev-Petviashvili equation (the KP equation) is a nonlinear partial differential
equation in two spatial and one temporal coordinate which describes the evolution of nonlinear,
long waves of small amplitude with slow dependence on the transverse coordinate. There are two
distinct versions of the KP equation, which can be written in normalized form as follows:

(𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥)𝑥 + 3𝜎2𝑢𝑦𝑦 = 0. (8)

Here 𝑢 = 𝑢(𝑥, 𝑦, 𝑡) is a scalar function, 𝑥 and 𝑦 are respectively the longitudinal and transverse
spatial coordinates, and 𝜎2 = ±1.

The case 𝜎 = 1 is known as the KPII equation, and models, for instance, water waves
with small surface tension. The case 𝜎 = i is known as the KPI equation, and may be used to
model waves in thin films with high surface tension. The equation is often written with different
coefficients in front of the various terms, but the particular values are inessential, since they can
be modified by appropriately rescaling the dependent and independent variables.

The KP equation is a universal integrable system in two spatial dimensions in the same way
that the Korteweg-de Vries (the KdV) equation can be regarded as a universal integrable system
in one spatial dimension, since many other integrable systems can be obtained as reductions. As
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such, the KP equation has been extensively studied in the mathematical community in the last
forty years. The KP equation is also one of the most universal models in nonlinear wave theory,
which arises as a reduction of system with quadratic nonlinearity which admit weakly dispersive
waves, in a paraxial wave approximation. The equation naturally emerges as a distinguished limit
in the asymptotic description of such systems in which only the leading order terms are retained
and an asymptotic balance between weak dispersion, quadratic nonlinearity and diffraction is
assumed. The different role played by the two spatial variables accounts for the asymmetric way
in which they appear in the equation.

The KP equation originates from a 1970 paper by B.B. Kadomtsev and V.I. Petviashvili
[24]. They derived the equation as a model to study the evolution of long ion-acoustic waves
of small amplitude propagating in plasmas under the effect of long transverse perturbations. In
the absence of transverse dynamics, this problem is described by the KdV equation. The KP
equation was soon widely accepted as a natural extension of the classical KdV equation to two
spatial dimensions, and was later derived as a model for surface and internal water waves [1],
and in nonlinear optics [15], as well as in other physical settings.

As shown in [10], the KP equation

𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 + 3𝜎2𝑤𝑦 = 0, (9)
𝑤𝑥 = 𝑢𝑦, (10)

on the half-plane 𝑥 ∈ R, 𝑦 > 0 with the boundary condition

𝑢𝑥 + 𝜎𝑤|𝑦=0 = 0, (11)

is compatible with such characteristic signs of integrability as higher symmetries and the
B�̈�cklund transformation.

The problem can be reduced to the following Gelfand–Levitan–Marchenko equation

𝐾(𝑥, 𝑧, 𝑦, 𝑡) + 𝐹 (𝑥, 𝑧, 𝑦, 𝑡) +

𝑥∫︁
−∞

𝐾(𝑥, 𝜉, 𝑦, 𝑡)𝐹 (𝜉, 𝑧, 𝑦, 𝑡)d𝜉 = 0, (12)

where the kernel 𝐹 (𝑥, 𝑧, 𝑦, 𝑡) solves the system of partial-differential equations

𝜎𝐹𝑦 − 𝐹𝑥𝑥 + 𝐹𝑧𝑧 = 0,

𝐹𝑡 + 4(𝐹𝑥𝑥𝑥 + 𝐹𝑧𝑧𝑧) = 0.

Therefore, the solution of nonlinear equation can be found by formula

𝑢(𝑥, 𝑦, 𝑡) = 2
𝜕

𝜕𝑥
𝐾(𝑥, 𝑥, 𝑦, 𝑡).

4 Reconstruction of the velocity 𝑐(𝑥, 𝑦)

Inverse problem 3: find the velocity 𝑐(𝑥, 𝑦) from the sequence of relations (𝑘 = 0,±1,±2, . . .):

𝑐−2(𝑥, 𝑦)𝑢
(𝑘)
𝑡𝑡 = 𝑢(𝑘)𝑥𝑥 + 𝑢(𝑘)𝑦𝑦 , 𝑥 ∈ R, 𝑦 ∈ R, 𝑡 > 0;

𝑢(𝑘)|𝑡=0 = 0, 𝑢
(𝑘)
𝑡 |𝑡=0 = ei𝑘𝑦 𝛿(𝑥).

𝑢(𝑘)(0, 𝑦, 𝑡) = 𝑓 (𝑘)(𝑦, 𝑡), 𝑢(𝑘)𝑥 (+0, 𝑦, 𝑡) = 0.
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Let 𝜏(𝑥, 𝑦) be a solution of Cauchy problem for the eikonal equation

𝜏2𝑥 + 𝜏2𝑦 = 𝑐−2(𝑥, 𝑦), 𝑥 > 0, 𝑦 ∈ R; (13)

𝜏 |𝑥=0 = 0, 𝜏𝑥|𝑥=0 = 𝑐−1(0, 𝑦), 𝑦 ∈ R. (14)

Let us introduce new variables 𝑧 = 𝜏(𝑥, 𝑦), 𝑦 = 𝑦 and new functions

𝑣(𝑘)(𝑧, 𝑦, 𝑡) = 𝑢(𝑘)(𝑥, 𝑦, 𝑡), 𝑏(𝑧, 𝑦) = 𝑐(𝑥, 𝑦). (15)

Since the velocity is supposed to be strictly positive this change of variables is not degenerate
at least in some interval 𝑥 ∈ (0, ℎ).

Let us consider the sequence of the auxiliary problems (𝑚 = 0,±1,±2, . . .) [18,?]:

𝑤
(𝑚)
𝑡𝑡 = 𝑤(𝑚)

𝑧𝑧 + 𝑏2𝑤(𝑚)
𝑦𝑦 + 𝑞𝑤(𝑚)

𝑦𝑧 + 𝑝𝑤(𝑚)
𝑧 , 𝑧 > 0, 𝑦 ∈ R, 𝑡 ∈ R; (16)

𝑤(𝑚)(0, 𝑦, 𝑡) = ei𝑚𝑦 𝛿(𝑡), 𝑤(𝑚)
𝑧 (0, 𝑦, 𝑡) = 0. (17)

Here
𝑞(𝑧, 𝑦) = 2𝑏2𝜏𝑦, 𝑝(𝑧, 𝑦) = 𝑏2(𝑧, 𝑦)(𝜏𝑥𝑥 + 𝜏𝑧𝑧). (18)

We suppose that 𝑐(0, 𝑦) = 𝑏(0, 𝑦) is known and for simplicity 𝑏(0, 𝑦) ≡ 1 for 𝑦 ∈ R.
In the neighborhood of the plane 𝑡 = 𝑧 the solution of the direct problem (16), (17) has the

form [18,?]:

𝑤(𝑚)(𝑧, 𝑦, 𝑡) = 𝑆(𝑚)(𝑡, 𝑦)𝛿(𝑧 − 𝑡) + 𝑄(𝑚)(𝑡, 𝑦)𝜃(𝑧 − 𝑡) + �̃�(𝑚)(𝑧, 𝑦, 𝑡). (19)

Here �̃�(𝑚) is continuous function and functions 𝑆(𝑚) and 𝑄(𝑚) solve the following problems:

2𝑆
(𝑚)
𝑡 + 𝑞𝑆(𝑚)

𝑦 + 𝑝𝑆(𝑚) = 0, 𝑡 > 0, 𝑦 ∈ R; (20)

𝑆(𝑚)|𝑡=0 =
1

2
ei𝑚𝑦. (21)

2𝑄
(𝑚)
𝑡𝑡 = 𝑆

(𝑚)
𝑡𝑡 −

[︁
𝑞𝑄(𝑚)

𝑦 + 𝑏2𝑆(𝑚)
𝑦𝑦 + 𝑝𝑄(𝑚)

]︁
, 𝑡 > 0, 𝑦 ∈ R; (22)

𝑄(𝑚)|𝑡=0 = 0. (23)

The 2D analogy of M.G. Krein equation follows from (19) (𝑚 = 0,±1,±2, . . .):

∑︁
𝑚

𝑆(𝑚)(𝑧, 𝑦)𝑓 (𝑘)
𝑚

′
(𝑡− 𝑧) + �̃�(𝑘)(𝑧, 𝑦, 𝑡) +

∑︁
𝑚

𝑧∫︁
−𝑧

𝑓 (𝑘)
𝑚

′
(𝑡− 𝑠)�̃�(𝑚)(𝑧, 𝑦, 𝑠)d𝑠 = 0, |𝑡| < 𝑧. (24)

So for solving the inverse problem 3 we can solve the system (20)–(24), using the projection
method and then find 𝑐(𝑥, 𝑦) from the following iterative algorithm.

First, we introduce 𝑁 -approximation of the system (20)–(24), e.g. let �̃�(𝑚), 𝑆(𝑚) and 𝑄(𝑚) be
equal to 0 for all |𝑚| > 𝑁 . Let us suppose that 𝑐𝑛(𝑥, 𝑦) is known. Then we calculate 𝜏𝑛(𝑥, 𝑦) from
(13), (14), 𝑏𝑛(𝑧, 𝑦) from (15) and 𝑞𝑛(𝑧, 𝑦) and 𝑝𝑛(𝑧, 𝑦) from (18). Function 𝑆

(𝑚)
𝑛 (𝑡, 𝑦) is calculated

from (20), (21). Then solving the 2D analogy of M.G. Krein equation (24) we find �̃�
(𝑚)
𝑛 (𝑧, 𝑦, 𝑡)

for |𝑚| ≤ 𝑁 . It follows from (19) that 𝑄(𝑚)
𝑛 (𝑡, 𝑦) = �̃�

(𝑚)
𝑛 (𝑡+0, 𝑦, 𝑡). Then from equations (20) and

(22) we find function 𝑏𝑛+1(𝑧, 𝑦) and after that new value 𝑐𝑛+1(𝑥, 𝑦) = 𝑏𝑛+1(𝑧, 𝑦) is calculated.
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In numerical experiments (see figures 1–4) 2D inverse problem 2 is approximated by the finite
system of one dimensional inverse acoustic problems [21,22,23]. The inverse problem 2 is solved
in the domain 𝑥 ∈ (0, 1), 𝑦 ∈ (−𝜋, 𝜋) and 𝑡 ∈ (0, 2). The number 𝑁 is equal to 5 for figure 2 and
the number 𝑁 is equal to 10 for figures 3 and 4. The noisy data is taken as

𝑓 𝜀(𝑡) = 𝑓(𝑡) + 𝜀𝛼(𝑡)(𝑓max − 𝑓min).

Here 𝜀 is the level of noise, 𝛼(𝑡) is white noise for fixed 𝑡, 𝑓max and 𝑓min are maximum and
minimum values of exact data. The dimension of the space grid is equal to 100 × 100.
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Fig. 1. The exact solution of the inverse
problem 2.
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Fig. 2. The approximate solution of the
inverse problem 2, 𝑁 = 5, 𝜀 = 0.
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Fig. 3. The approximate solution of the
inverse problem 2, 𝑁 = 10, 𝜀 = 0.
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Fig. 4. The approximate solution of the
inverse problem 2, 𝑁 = 10, 𝜀 = 0.05.
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