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Abstract. In this paper, the development of a complex software for numerical simulation of
convective flow of viscous incompressible fluid in a doubly connected areas in a curvilinear coordinate
system is considered. For the discretization of the physical domain, the technology of construction of
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for various configurations of the cavity and temperature conditions at the border are conducted.
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1 Introduction

In recent years, it is often required to solve problems in complex areas with complex geometry.
For modeling in complex areas, in the first place it is required to discretize the physical domain,
that is, to conduct the step of modeling the physical geometry using a set of cells grids. It
should be noted that the use of nonuniform grids can cause the appearance of non-physical
sources of mass and momentum of impulse, as well as may be accompanied by the loss of
important properties inherent approximated differential equations. Equation models recorded
in curvilinear coordinates are more complicated than the original equations, in particular, they
contain variable coefficients, additional terms, non-zero right-hand sides, etc. Therefore, the
question of approximating equations on curvilinear grids is urgent and requires close attention.
In addition, the diverse requirements imposed on the difference grid make curvilinear grid a
complex mathematical problem. In this regard, the development of theoretical concepts and
methodological approaches to the use of new information technologies in the hydrodynamic
studies that takes into account the specific features of the subject area, development, adaptation
of tools and testing them in the process of modeling the natural and man-made objects that
are important for the national economy, are very relevant. In this paper, the development of a
complex of software for numerical simulation of convective flow of viscous incompressible fluid in
a doubly connected areas in a curvilinear coordinate system is considered. Discretization of the
physical domain is represented by the technology of creating curvilinear difference structure grids
using the methods of transfinite interpolation, equidistribution, and the method of Godunov-
Thompson [1-3]. For modeling the convective flow, an incompressible fluid equation is used in
the vorticity 𝜔, stream function 𝜓 and temperature 𝜃 under appropriate initial and boundary
conditions [3] in curvilinear coordinate systems.

2 Statement of the problem and the computational algorithm

General transformations of the viscous incompressible fluid equation
In the construction of finite-difference schemes, it is convenient to write the equations of
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fluid dynamics in a compact vector form. For example, the Navier-Stokes equations for an
incompressible fluid in a Cartesian coordinate system can be written as follows:

𝜕𝑈

𝜕𝑡
+
𝜕𝐸

𝜕𝑥
+
𝜕𝐹

𝜕𝑦
=
𝜕𝐸𝑣
𝜕𝑥

+
𝜕𝐹𝑣
𝜕𝑦

+
−→
𝑓 (1)

Here, the vectors 𝑈,𝐸, 𝐹,𝐸𝑣, 𝐹𝑣,
−→
𝑓 are defined as follows:

𝑈 [0, 𝑢, 𝑣, 𝜃], 𝐸[𝑢, 𝑢2 + 𝜋, 𝑢𝑣, 𝑢𝜃], 𝐹 [𝑣, 𝑢𝑣, 𝑣2 + 𝜋, 𝑣𝜃], (2)

𝐸𝑣 = 𝜇𝑥

[︂
0,
𝜕𝑢

𝜕𝑥
,
𝜕𝑣

𝜕𝑥
,
𝜕𝜃

𝜕𝑥

]︂
𝐹𝑣 = 𝜇𝑦

[︂
0,
𝜕𝑢

𝜕𝑦
,
𝜕𝑣

𝜕𝑦
,
𝜕𝜃

𝜕𝑦

]︂
. (3)

Boundary conditions:
𝑢 = 0, 𝑣 = 0, 𝜃 = 𝜃0; 𝑡 = 0,
𝑢(0, 𝑦, 𝑡) = 𝑢(𝑋, 𝑦, 𝑡), 𝑣(0, 𝑦, 𝑡) = 𝑣(𝑋, 𝑦, 𝑡), 𝜃(0, 𝑦, 𝑡) = 𝜃(𝑋, 𝑦, 𝑡); 𝑥 = 0, 0 ≤ 𝑦 ≤ 𝑌,
𝑢(𝑋, 𝑦, 𝑡) = 𝑢(0, 𝑦, 𝑡), 𝑣(𝑋, 𝑦, 𝑡) = 𝑣(0, 𝑦, 𝑡), 𝜃(𝑋, 𝑦, 𝑡) = 𝜃(0, 𝑦, 𝑡); 𝑥 = 𝑋, 0 ≤ 𝑦 ≤ 𝑌,

𝑢 = 0, 𝑣 = 0, −𝑥𝜂
𝐽
𝜕𝜃
𝜕𝜉 +

𝑥𝜉
𝐽
𝜕𝜃
𝜕𝜂 = 0 (𝜃 = 𝜙1); 𝑦 = 0, 0 ≤ 𝑥 ≤ 𝑋,

𝑢 = 0, 𝑣 = 0, 𝜃 = 𝜙2

(︁
−𝑥𝜂

𝐽
𝜕𝜃
𝜕𝜉 +

𝑥𝜉
𝐽
𝜕𝜃
𝜕𝜂 = 0

)︁
; 𝑦 = 𝑌, 0 ≤ 𝑥 ≤ 𝑋.

Let us consider the coordinate transformation of the general form, which represents the (𝑥, 𝑦)
physical plane into the (𝜉, 𝜂) computing plane and providing opportunity to solve problems in a
uniform grid

𝜉 = 𝜉(𝑥, 𝑦), 𝜂 = 𝜂(𝑥, 𝑦) (4)

Applying the chain rule, we obtain the following expressions:

𝜕

𝜕𝑥
= 𝜉𝑥

𝜕

𝜕𝜉
+ 𝜂𝑥

𝜕

𝜕𝜂
;

𝜕

𝜕𝑦
= 𝜉𝑦

𝜕

𝜕𝜉
+ 𝜂𝑦

𝜕

𝜕𝜂
; (5)

To find the metric coefficients 𝜉𝑥, 𝜂𝑥, 𝜉𝑦, 𝜂𝑦, we write expressions for the differentials

𝑑𝜉 = 𝜉𝑥𝑑𝑥+ 𝜉𝑦𝑑𝑦, 𝑑𝜂 = 𝜂𝑥𝑑𝑥+ 𝜂𝑦𝑑𝑦. (6)

By comparing the corresponding elements of two matrices with the above equations, we obtain
the following metric coefficients

𝜉𝑥 =
1

𝐽
𝑦𝜂, 𝜂𝑥 = − 1

𝐽
𝑦𝜉, 𝜉𝑦 = − 1

𝐽
𝑥𝜂, 𝜂𝑦 = − 1

𝐽
𝑥𝜉. (7)

where J - Jacobian of the transformation.
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We apply the coordinate transformation to the general form of the Navier-Stokes equations
for an incompressible fluid written in vector form to obtain the following equation converted:

𝜕𝑈
𝜕𝑡 + 𝜕𝐸

𝜕𝑥 + 𝜕𝐹
𝜕𝑦 = 𝜕𝐸𝑣

𝜕𝑥 + 𝜕𝐹𝑣
𝜕𝑦 +

−→
𝑓

Applying the chain rule, we obtain the following expressions:

𝜕𝑈

𝜕𝑡
+ 𝜉𝑥

𝜕𝐸

𝜕𝜉
+ 𝜂𝑥

𝜕𝐸

𝜕𝜂
+ 𝜉𝑦

𝜕𝐹

𝜕𝜉
+ 𝜂𝑦

𝜕𝐹

𝜕𝜂
= 𝜉𝑥

𝜕𝐸𝑣
𝜕𝜉

+ 𝜂𝑥
𝜕𝐸𝑣
𝜕𝜂

+ 𝜉𝑦
𝜕𝐹𝑣
𝜕𝜉

+ 𝜂𝑦
𝜕𝐹𝑣
𝜕𝜂

+
−→
𝑓 . (8)

We multiply the transformed equation in the Jacobian, group the similar terms and from
the equation (8) we get:

𝐽 𝜕𝑈𝜕𝑡 + 𝐽𝜉𝑥
𝜕𝐸
𝜕𝜉 + 𝐽𝜂𝑥

𝜕𝐸
𝜕𝜂 + 𝐽𝜉𝑦

𝜕𝐹
𝜕𝜉 + 𝐽𝜂𝑦

𝜕𝐹
𝜕𝜂 = 𝐽𝜉𝑥

𝜕𝐸𝑣
𝜕𝜉 + 𝐽𝜂𝑥

𝜕𝐸𝑣
𝜕𝜂 + 𝐽𝜉𝑦

𝜕𝐹𝑣
𝜕𝜉 +

+𝐽𝜂𝑦
𝜕𝐹𝑣
𝜕𝜂 + 𝐽

−→
𝑓 ,

𝐽 𝜕𝑈𝜕𝑡 + 𝐽
[︁
𝜉𝑥

𝜕𝐸
𝜕𝜉 + 𝜉𝑦

𝜕𝐹
𝜕𝜉

]︁
+ 𝐽

[︁
𝜂𝑥

𝜕𝐸
𝜕𝜂 + 𝜂𝑦

𝜕𝐹
𝜕𝜂

]︁
= 𝐽

[︁
𝜉𝑥

𝜕𝐸𝑣
𝜕𝜉 + 𝜉𝑦

𝜕𝐹𝑣
𝜕𝜉

]︁
+

+𝐽
[︁
𝜂𝑥

𝜕𝐸𝑣
𝜕𝜂 + 𝜂𝑦

𝜕𝐹𝑣
𝜕𝜂

]︁
+ 𝐽

−→
𝑓 ,

𝐽 𝜕𝑈𝜕𝑡 + 𝜕
𝜕𝜉 (𝐽𝜉𝑥𝐸 + 𝐽𝜉𝑦𝐹 ) + 𝜕

𝜕𝜂 (𝐽𝜂𝑥𝐸 + 𝐽𝜂𝑦𝐹 ) − 𝜕
𝜕𝜉 (𝐽𝜉𝑥𝐸𝑣 + 𝐽𝜉𝑦𝐹𝑣) −

− 𝜕
𝜕𝜂 (𝐽𝜂𝑥𝐸𝑣 + 𝐽𝜂𝑦𝐹𝑣) − 𝐽

−→
𝑓 − 𝐸

[︁
𝜕𝐽𝜉𝑥
𝜕𝜉 + 𝜕𝐽𝜂𝑥

𝜕𝜂

]︁
− 𝐹

[︁
𝜕𝐽𝜉𝑦
𝜕𝜉 +

𝜕𝐽𝜂𝑦
𝜕𝜂

]︁
+

+𝐸𝑣

[︁
𝜕𝐽𝜉𝑥
𝜕𝜉 + 𝜕𝐽𝜂𝑥

𝜕𝜂

]︁
+ 𝐹𝑣

[︁
𝜕𝐽𝜉𝑦
𝜕𝜉 +

𝜕𝐽𝜂𝑦
𝜕𝜂

]︁
= 0.

Considering the ratio of metric coefficients, last terms in the square brackets are zero because

𝐸
[︁
𝜕𝑦𝜂
𝜕𝜉 − 𝜕𝑦𝜉

𝜕𝜂

]︁
= 𝐸((𝑦𝜂)𝜉) − (𝑦𝜉)𝜂) = 0

𝐹
[︁
−𝜕𝜉𝜂

𝜕𝜉 +
𝜕𝑥𝜉
𝜕𝜂

]︁
= 𝐹 ((𝑥𝜉)𝜂 − (𝑥𝜂)𝜉) = 0.

Common transformed equation will have the following canonical form:

𝐽 𝜕𝑈𝜕𝑡 + 𝜕
𝜕𝜉 (𝐽𝜉𝑥𝐸 + 𝐽𝜉𝑦𝐹 ) + 𝜕

𝜕𝜂 (𝐽𝜂𝑥𝐸 + 𝐽𝜂𝑦𝐹 ) − 𝜕
𝜕𝜉 (𝐽𝜉𝑥𝐸𝑣 + 𝐽𝜉𝑦𝐹𝑣)−

𝜕
𝜕𝜂 (𝐽𝜂𝑥𝐸𝑣 + 𝐽𝜂𝑦𝐹𝑣) − 𝐽

−→
𝑓 .

Using the metric coefficients, we obtain

𝐸𝑣 = 𝜇𝑥
𝜕𝑈

𝜕𝑥
=
𝜇𝑥
𝐽

[︂
𝑦𝜂
𝜕𝑈

𝜕𝜉
− 𝑦𝜉

𝜕𝑈

𝜕𝜂

]︂
, 𝐹𝑣 = 𝜇𝑦

𝜕𝑈

𝜕𝑦
=
𝜇𝑥
𝐽

[︂
−𝑥𝜂

𝜕𝑈

𝜕𝜉
+ 𝑥𝜉

𝜕𝑈

𝜕𝜂

]︂
(9)

Substituting the metric coefficients in the general canonical form, we have

𝐽 𝜕𝑈𝜕𝑡 + 𝜕
𝜕𝜉 (𝑦𝜂𝐸 − 𝑥𝜂𝐹 ) + 𝜕

𝜕𝜂 (−𝑦𝜉𝐸 + 𝑥𝜉𝐹 ) = 𝜕
𝜕𝜉 (𝑦𝜂𝐸𝑣 − 𝑥𝜂𝐹𝑣)+
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+ 𝜕
𝜕𝜂 (𝑦𝜉𝐸𝑣 + 𝑥𝜉𝐹𝑣) + 𝐽

−→
𝑓 .

Substitute the values of 𝐸𝑣 and 𝐹𝑣 from (9) in the general canonical form:

𝐽 𝜕𝑈𝜕𝑡 + 𝜕
𝜕𝜉 (𝑦𝜂𝐸 − 𝑥𝜂𝐹 ) + 𝜕

𝜕𝜂 (−𝑦𝜉𝐸 + 𝑥𝜉𝐹 ) = 𝜕
𝜕𝜉

(︁
𝑦2𝜂
𝐽 𝜇𝑥

𝜕𝑈
𝜕𝜉 − 𝑦𝜂𝑦𝜉

𝐽 𝜇𝑥
𝜕𝑈
𝜕𝜂

)︁
+

𝜕
𝜕𝜉

(︁
𝑥2𝜂
𝐽 𝜇𝑦

𝜕𝑈
𝜕𝜉 − 𝑥𝜂𝑥𝜉

𝐽 𝜇𝑦
𝜕𝑈
𝜕𝜂

)︁
− 𝜕

𝜕𝜂

(︂
𝑦𝜂𝑦𝜉
𝐽 𝜇𝑥

𝜕𝑈
𝜕𝜉 − 𝑦2𝜉

𝐽 𝜇𝑥
𝜕𝑈
𝜕𝜂

)︂
−

𝜕
𝜕𝜂

(︂
𝑥𝜂𝑥𝜉
𝐽 𝜇𝑦

𝜕𝑈
𝜕𝜉 − 𝑥2𝜉

𝐽 𝜇𝑦
𝜕𝑈
𝜕𝜂

)︂
.

further group the similar terms

𝐽 𝜕𝑈𝜕𝑡 + 𝜕
𝜕𝜉 (𝑦𝜂𝐸 − 𝑥𝜂𝐹 ) + 𝜕

𝜕𝜂 (−𝑦𝜉𝐸 + 𝑥𝜉𝐹 ) =

= 𝜕
𝜕𝜉

[︁
𝑦2𝜂𝜇𝑥+𝑥

2
𝜂𝜇𝑦

𝐽
𝜕𝑈
𝜕𝜉 − 𝑦𝜂𝑦𝜉𝜇𝑥+𝑥𝜂𝑥𝜉𝜇𝑦

𝐽 𝜇𝑥
𝜕𝑈
𝜕𝜂

]︁
−

− 𝜕
𝜕𝜂

[︂
𝑦𝜂𝑦𝜉𝜇𝑥+𝑥𝜂𝑥𝜉𝜇𝑦

𝐽 𝜇𝑥
𝜕𝑈
𝜕𝜉 − 𝑥2𝜉𝜇𝑦+𝑦

2
𝜉𝜇𝑥

𝐽
𝜕𝑈
𝜕𝜂

]︂
+
−→
𝑓 .

As a result, we obtain the Navier-Stokes equations in curvilinear coordinates of the form:

1
𝐽
𝜕𝑈
𝜕𝑡 + 𝜕

𝜕𝜉 (𝑦𝜂𝐸 − 𝑥𝜂𝐹 ) + 𝜕
𝜕𝜂 (−𝑦𝜉𝐸 + 𝑥𝜉𝐹 ) =

= 𝜕
𝜕𝜉

[︁
(𝐽𝜇𝑥𝑦

2
𝜂 + 𝐽𝜇𝑦𝑥

2
𝜂)
𝜕𝑈
𝜕𝜉

]︁
+ 𝜕

𝜕𝜂

[︁
(𝐽𝜇𝑥𝑦

2
𝜉 + 𝐽𝜇𝑦𝑥

2
𝜉)
]︁
−

− 𝜕

𝜕𝜉

[︂
(𝐽𝜇𝑥𝑦𝜉𝑦𝜂 + 𝐽𝜇𝑦𝑥𝜉𝑥𝜂)

𝜕𝑈

𝜕𝜂

]︂
− 𝜕

𝜕𝜂

[︂
(𝐽𝜇𝑥𝑦𝜉𝑦𝜂 + 𝐽𝜇𝑦𝑥𝜉𝑥𝜂)

𝜕𝑈

𝜕𝜉

]︂
+

−→
𝑓

𝐽
. (10)

The obtained Navier-Stokes equations for a viscous incompressible fluid in general curvilinear
coordinates are convenient for the numerical solution of the Navier-Stokes equations in domains
with complex geometry using the method of curvilinear grids.

The final form of the equations of fluid dynamics in divergent form is as follows:

𝜕

𝜕𝜉
(𝑦𝜂𝑢− 𝑥𝜂𝑣) +

𝜕

𝜕𝜂
(−𝑦𝜉𝑢+ 𝑥𝜉𝑣) = 0. (11)

1
𝐽
𝜕𝑢
𝜕𝑡 + 𝜕

𝜕𝜉 (𝑦𝜂𝑢
2 − 𝑥𝜂𝑢𝑣) + 𝜕

𝜕𝜂 (−𝑦𝜉𝑢2 + 𝑥𝜉𝑢𝑣) + 𝜕
𝜕𝜉 (𝑦𝜂𝜋) − 𝜕

𝜕𝜂 (𝑦𝜉𝜋) =

=
𝜕

𝜕𝜉

(︂
𝑎11

𝜕𝑢

𝜕𝜉

)︂
+

𝜕

𝜕𝜂

(︂
𝑎22

𝜕𝑢

𝜕𝜂

)︂
− 𝜕

𝜕𝜉

(︂
𝑎12

𝜕𝑢

𝜕𝜂

)︂
− 𝜕

𝜕𝜂

(︂
𝑎12

𝜕𝑢

𝜕𝜉

)︂
+

−→
𝑓

𝐽
. (12)

1
𝐽
𝜕𝑣
𝜕𝑡 + 𝜕

𝜕𝜉 (𝑦𝜂𝑢𝑣 − 𝑥𝜂𝑣
2) + 𝜕

𝜕𝜂 (−𝑦𝜉𝑢𝑣 + 𝑥𝜉𝑣
2) − 𝜕

𝜕𝜉 (𝑥𝜂𝜋) + 𝜕
𝜕𝜂 (𝑥𝜉𝜋) =

=
𝜕

𝜕𝜉

(︂
𝑎11

𝜕𝑣

𝜕𝜉

)︂
+

𝜕

𝜕𝜂

(︂
𝑎22

𝜕𝑣

𝜕𝜂

)︂
− 𝜕

𝜕𝜉

(︂
𝑎12

𝜕𝑣

𝜕𝜂

)︂
− 𝜕

𝜕𝜂

(︂
𝑎12

𝜕𝑣

𝜕𝜉

)︂
+

−→
𝑓

𝐽
. (13)

1
𝐽
𝜕𝜃
𝜕𝑡 + 𝜕

𝜕𝜉 (𝑦𝜂𝑢𝜃 − 𝑥𝜂𝑣𝜃) + 𝜕
𝜕𝜂 (−𝑦𝜉𝑢𝜃 + 𝑥𝜉𝑣𝜃) =



Computational Technologies, Vol 20, 2015 The Bulletin of KazNU, № 3(86), 2015 87

=
𝜕

𝜕𝜉

(︂
𝑎11

𝜕𝜃

𝜕𝜉

)︂
+

𝜕

𝜕𝜂

(︂
𝑎22

𝜕𝜃

𝜕𝜂

)︂
− 𝜕

𝜕𝜉

(︂
𝑎12

𝜕𝜃

𝜕𝜂

)︂
− 𝜕

𝜕𝜂

(︂
𝑎12

𝜕𝜃

𝜕𝜉

)︂
+

−→
𝑓

𝐽
. (14)

where 𝑎11 = 𝐽(𝑦2𝜂𝜇𝑥 + 𝑥2𝜂𝜇𝑦), 𝑎22 = 𝐽(𝑦2𝜉𝜇𝑥 + 𝑥2𝜉𝜇𝑦), 𝑎12 = 𝐽(𝑦𝜉𝑦𝜂𝜇𝑥 + 𝑥𝜉𝑥𝜂𝜇𝑦).

Expanding the brackets in the equation of continuity (11) and in the convection terms of
the equations (12) - (14) and applying the chain rule, the equations (11) - (14) can be written
as follows:

𝑦𝜂
𝜕𝑢

𝜕𝜉
− 𝑥𝜂

𝜕𝑣

𝜕𝜉
− 𝑦𝜉

𝜕𝑢

𝜕𝜂
+ 𝑥𝜉

𝜕𝑣

𝜕𝜂
= 0 (15)

1
𝐽
𝜕𝑢
𝜕𝑡 + (𝑦𝜂𝑢− 𝑥𝜂𝑣)𝜕𝑢𝜕𝜉 + (−𝑦𝜉𝑢+ 𝑥𝜉𝑣)𝜕𝑢𝜕𝜂 + 𝑦𝜂

𝜕𝜋
𝜕𝜉 − 𝑦𝜉

𝜕𝜋
𝜕𝜂 =

=
𝜕

𝜕𝜉

(︂
𝑎11

𝜕𝑢

𝜕𝜉

)︂
+

𝜕

𝜕𝜂

(︂
𝑎22

𝜕𝑢

𝜕𝜂

)︂
− 𝜕

𝜕𝜉

(︂
𝑎12

𝜕𝑢

𝜕𝜂

)︂
− 𝜕

𝜕𝜂

(︂
𝑎12

𝜕𝑢

𝜕𝜉

)︂
+

−→
𝑓

𝐽
. (16)

1
𝐽
𝜕𝑣
𝜕𝑡 + (𝑦𝜂𝑢− 𝑥𝜂𝑣)𝜕𝑣𝜕𝜉 + (−𝑦𝜉𝑢+ 𝑥𝜉𝑣)𝜕𝑣𝜕𝜂 − 𝑥𝜂

𝜕𝜋
𝜕𝜉 + 𝑥𝜉

𝜕𝜋
𝜕𝜂 =

=
𝜕

𝜕𝜉

(︂
𝑎11

𝜕𝑣

𝜕𝜉

)︂
+

𝜕

𝜕𝜂

(︂
𝑎22

𝜕𝑣

𝜕𝜂

)︂
− 𝜕

𝜕𝜉

(︂
𝑎12

𝜕𝑣

𝜕𝜂

)︂
− 𝜕

𝜕𝜂

(︂
𝑎12

𝜕𝑣

𝜕𝜉

)︂
+

−→
𝑓

𝐽
. (17)

1
𝐽
𝜕𝜃
𝜕𝑡 + (𝑦𝜂𝑢− 𝑥𝜂𝑣)𝜕𝜃𝜕𝜉 + (−𝑦𝜉𝑢+ 𝑥𝜉𝑣) 𝜕𝜃𝜕𝜂 =

=
𝜕

𝜕𝜉

(︂
𝑎11

𝜕𝜃

𝜕𝜉

)︂
+

𝜕

𝜕𝜂

(︂
𝑎22

𝜕𝜃

𝜕𝜂

)︂
− 𝜕

𝜕𝜉

(︂
𝑎12

𝜕𝜃

𝜕𝜂

)︂
− 𝜕

𝜕𝜂

(︂
𝑎12

𝜕𝜃

𝜕𝜉

)︂
+

−→
𝑓

𝐽
. (18)

Such an approach of the transformation of equations will help to avoid computing second
derivatives of the metric coefficients and the emergence of non-linear terms. And besides strictly
divergent form of the equations is useful in the development of difference schemes.

For the numerical modeling of convective flows in curvelinear doubly connected domain, we
consider the formulation of the problem in curvilinear coordinate systems of the form

𝜕

𝜕𝜉
(𝑦𝜂𝑢− 𝑥𝜂𝑣) +

𝜕

𝜕𝜂
(−𝑦𝜉𝑢+ 𝑥𝜉𝑣) = 0 (19)

1
𝐽
𝜕𝑢
𝜕𝑡 + 𝜕𝑢

𝜕𝜉 (𝑦𝜂(𝑢
2 + 𝜋) − 𝑥𝜂𝑢𝑣) + 𝜕

𝜕𝜂 (−𝑦𝜉𝑢2 + 𝑥𝜉𝑢𝑣) =

= 𝜕
𝜕𝜉

[︁
(𝐽𝜇𝑥𝑦

2
𝜂 + 𝐽𝜇𝑦𝑥

2
𝜂)
𝜕𝑈
𝜕𝜉

]︁
+ 𝜕

𝜕𝜂

[︁
(𝐽𝜇𝑥𝑦

2
𝜉 + 𝐽𝜇𝑦𝑥

2
𝜉)
𝜕𝑈
𝜕𝜂

]︁
−

=
𝜕

𝜕𝜉

[︂
𝐽𝜇𝑥𝑦𝜉𝑦𝜂 + 𝐽𝜇𝑦𝑥𝜉𝑥𝜂

𝜕𝑈

𝜕𝜂

]︂
− 𝜕

𝜕𝜂

[︂
𝐽𝜇𝑥𝑦𝜉𝑦𝜂 + 𝐽𝜇𝑦𝑥𝜉𝑥𝜂

𝜕𝑈

𝜕𝜉

]︂
+

−→
𝑓

𝐽
. (20)
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In numerical constructing of curvilinear grids in doubly connected domains using the
equidistribution method and the method of Godunov-Thompson, as well as the numerical
implementation of incompressible fluid equations, an implicit scheme and the method of fractional
steps are used. In the direction of the external and internal borders, the cyclic sweep is used,
and in the direction of the normal the scalar sweep is used.

One of the most common traditional methods of constructing curvilinear grids from the
considered class of methods is the method of equidistribution, that is the class in which the
grid are obtained by mapping the computational domain to the physical domain. The idea of
the equidistribution method is to find a non-degenerate mapping carrying the fixed (uniform
rectangular) grid on the computational domain to the adaptive mesh refinement on the physical
domain which satisfies the principle of equidistribution:

𝑤𝐽 = 𝑐𝑜𝑛𝑠𝑡
where J is Jacobian of this transformation, w is the function of the grid density.

The value of the Jacobian is proportional to the measure of the grid cell. The term of measure
refers to the length of the cell in a one dimensional domain, area in two-dimensional domain,
and volume in the three-dimensional case. Therefore, the meaning of the ratio is that the larger
the value of the density function at the grid cell, the smaller measure of this cell. When using
the equidistribution method, it is required to find a direct mapping from the computational
domain to the physical domain by solving a complex non-linear equation with variable coefficients
in the computational domain of a simple shape, square. Now we have to look for the reverse
transformation by solving simple equations in the physical domain whose boundaries are generally
curvelinear. Curvilinear boundary complicates the numerical solution of the problem. Therefore,
the direct conversion is preferably provided that the inverse transform is the solution of equations.
This approach was proposed in the works of S.K. Godunov and J.F. Thompson and colleagues
[3], so the method of constructing curvilinear grids called the Godunov-Thompson method (GT-
method).

For the discretization of the physical domain, the technology of construction of difference
curvilinear structure grids using the method of transfinite interpolation is presented. Transfinite
interpolation is implemented in two stages. In the first stage, values of grid nodes from the
left and right borders are interpolated. In the second stage, grid nodes from lower and upper
boundaries of the domain are interpolated.

There are several algorithms for constructing curvilinear grids and results of the application
of these algorithms for the domains of simple form. Unfortunately, the quality of the obtained
mesh can be judged only visually. When using curvilinear grids in the calculation of mathematical
physics problems, there are some objective characteristics of grids:

– Orthogonality,
– Locally uniformly,
– Undrawn cells, etc.

With these features, one can evaluate the quality of the grid and its suitability for the
calculations. Quantitative information on the grid given by quality criteria may be useful for
preliminary assessment of grids allowing certainly reject unsuitable grids even before solving the
main problem. Thus, there is a need for automatic determination of the characteristics of the
grid. Some approaches for the analysis of the quality of grids are given in [1].

In order to select the most appropriate grids for the main problem, the quality of difference
grids are considered on the following evaluation criteria:
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– Convexity of the cells;
– Orthogonality of coordinate grid lines;
– Elongation of the cells;
– Adaptation of the grid to a predetermined control function, proposed in [1,4].

3 Simulation results

The calculations for various configurations of the cavity and temperature conditions at the
border are conducted. To obtain the graphs of numerical calculations, we use the graphical
editor Tecplot.

In this paper, the numerical algorithm is used for the doubly connected domain with
curvelinear boundaries.

Fig. 1. The changing of the vector 𝜓

Fig. 2. The changing of the vector 𝜓 at the iteration of 5x5000
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Fig. 3. Changes in temperature at the iteration of 50x20000

Fig. 4. Changes in temperature at the iteration of 5x5000
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4 Conclusion

Modern requirements to the reliability of the numerical results and the reliability of methodical
software requires careful testing and verification of the developed software. Testing of the
developed methods, algorithms and software complex for the problems is performed on the
development of a viscous incompressible fluid flow [5]. On the basis of the proposed methods,
methods for constructing curvilinear grids of this class for the doubly-connected domains are
developed. A complex of software for the automated construction of curvilinear grids is developed,
as well as the quality criteria of the grid is considered. Experimental studies of the proposed
methods are conducted. As a result of testing, it is revealed that the quality of the resulting grid
meets the generally accepted criteria.
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