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Abstract. We consider the generalized solutions of the non-homogeneous fluid in a magnetic field.
Proved a theorem for a generalized solution of an inhomogeneous liquid in a magnetic field .In
this article we examine the method of fictitious areas for the non-liner hyperbolic equations. The
estimation of rate of convercence decisions is recaived. In some cases the unimproved estimation of
convergence rate of the decision is received.
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1 Introduction

The mathematical study of the correctness of boundary problems for incompressible viscous
fluid began with work Lere Zh. Various aspects of the theory of the Navier-Stokes equations
are detailed in the monograph of LadyzhenskayaA.O.Studying the correctness of the model is
dedicated to the work of an inhomogeneous fluid Ladyzhenskaya O.A. and Solonnikova V.A.
Then, this method was developed by Lions J.L., Temam R. and Smagulov S.S. Correctness of
magnetic gas dynamics for the one-dimensional case well studied in the work of Orunhanov M.K.
and Smagulov S.S.

2 Problem formulation

We consider the flow of a viscous incompressible fluid in an inhomogeneous magnetic field, motion
is described by the following non-linear system of equations [1]:

p(vi + (VV)v — p(HV) = vVo — V (p + M|H22> +pf, (1)
pe+ (vV)p =0, (2)

divo = 0, (3)

—pH; = rotE, (4)

rotH = o(E + plv, H]) + jo, (5)

divH = 0. (6)

where
v(z,t) — speed of fluid flow;
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H(z,t), E(x,t) — magnetic vectors and Voltage;
p(z,t) — pressure;
f(z,t) — external hydrodynamic forces;
jo(x,t) — given current;
1 — magnetic permeability;
o — conductivity;
p(x,t) — density of the liquid,
v — fluid viscosity.
Note that from (4) and (5) follows the equation
1 I
—uH; — ;rotrotH + protjv, H] + ;Totjo = 0. (7)

Subsequently, suppose

(Jo7)ls = 0. (8)
Let the liquid is in the limited area 2 N R? with border Sand on the border of the condition

sticking
vls =0. 9)
At the border, is an ideal conductor, must be carried out:
Hn=H,=0, E,=F—nE=0. (10)

Here,
(rotH);|s =0, when (jo)|s =0.

Assume that the initial conditions:
vlt=o = vo(x), Hle=o = Ho(z), pli=o = po(). (11)
Let us define some notations are used:

0
J(£2), JY(£2) — circuiting infinite differentiable finite solenoidal vector functions in the norms
of La(£2), W3(£2) respectively;

0
H(§2) — subspace Ly(§2), which is the closure of continuously differentiable solenoidal vector
functions normally Ly (£2), and such that

Hn|s = Hy|s =0, (12)

0
Hy,(82) — subspace W} (§2), which is the closure of continuously differentiable solenoidal
vector functions normally W, (§2), such that

Hn|s = Hy|s = 0.

0
Hy,(£2) — subspace W4({2), which is the closure of continuously differentiable solenoidal
vector functions normally W} (§2), such that

H;|s=H — Hnl|s =0. (13)
We give the following
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Definition 1. A generalized solution of problem (1) — (3), (6) — (11) is the set of functions
{v(z,1), p(z,t), H(z,t)}:

v(z,t) € Loo(0,T; 3(9)) N Ly(0, T Jol(rz))

p(ac,t) ELOO(()?T;LOO(‘Q))? 0<m§p(1‘,t) <M < oo,
0 0
H(z,t) € Loo(0,T: H(2)) N Lo(0, T; Hin(2)),

that satisfies the integral identity

T

/ (—pvs ot + (V9)@)e — u((HVVH, 9) + v(Vo, Vo)

0 (14)
(o P)aldt - / po(@)vo (), 0)da =0,
0
T
/ o+ (0 )t — / po(@)n(, 0)dax = 0, (15)
0 (9]

St~

1

/ pH + —rotH - rotyy — v, H]roty) — jor0t¢> dxdt—
o

(9}

/J/HO =0,
n

for any n, ¢, € W2 (Q), Q@ = (0,T) x §2, satisfying the conditions ¢(x,T) = 0, ¢(z,T) = 0,
n(z,T) =0, ¢ € Jl( ), € Hln((z), n € W3(Q) for all t € [0, T).

Theorem 1. Let
f@,t) € La(0,T; Lg5(2)), jo(w,t) € L2(0,T, Lo(£2)), 2 C R?,
0<m< po(z) <M < oo, [po(z)llL(@r) <0

0 0
vo(z) € J(£2), Ho(x) € H(2), (Jo,7)|s =0, 7= (11,72),, divj}, 71, T2 — tangent vectors at the
border.
Then there exists at least one generalized solution of (1) — (3), (6) — (11).

For proof, first we obtain some a priori estimates.
From equation (2) follows:

0<m<p(z,t) <M < 0. (17)

In (14) and (16)
So(x>t) = U(xvt)7¢($7t) = H(x’t)v

And using (2), we obtain
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[/

0 2

T T
,u//HV Hvdccdt+// pfudzdt + C,
0

0

(plv?)dzdt + 0| VollZ,0.1:L002)) =

N
e

VIS

(|H?) dxdt+—HHH? o =
L2(0,T;H(2))

92\%

= U

ff

T

//U Hrotdedt+//jorotHda:dt+C
0

C = const.
Next, we estimate some terms, applying the Holder and Jung inequality:

T T
v2
[ [ orvdsdt < MM lsomaaliel o <5 [ [0l e
Lo(0,T:J(2)) ~ 2 Lo(0,T:J1(2))
0 ” 0 N
T 1
orotHdxdt < |4 . H < —||H + C.
0/ Z io L N =

Then the sum of the original integral equation and obtain

@] o Fllv@] 0o

Loo(0,T5J(£2)) Loo(0,T5J1(92))

+[[H ()] o +|H@ o <C <o
Loo(0,T;H (£2)) L2(0,T;H(£2))

We have the following

95

(18)

Lemma 1. For a generalized solution of the problem (1) — (3), (6) — (11) a fair assessment:

T
Jote+ )= o + |+ 0) - O < 05

0
0<o<T—0.

(19)

Proof. Fix the value of 6 and 7, 0 < t < T — §, and we consider the equation (8) in the

interval 7 € (¢,t +9).

0
Multiply (8) on ¢ € H'(£2) scalar:

_M%(H,w)g - %(rotH, rot) g + u([v, H], rot) o + %(jo, roty)q =
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Further, integrating over 7 in (¢ + 0)

t+9
—uw(H(t+6)—H(t),v)o — % /(TotH, roty) odr+
t
ttr t+r
+u /([U,H],T0t¢)gd7+i /(jo,Totw)QdT =0.
t t
Now take ¢» = H(t + ) — H(t) and find out that
t+6

—u||H(t+ ) — H(t)H%Q(Q) + % /(rotH(T), rotH(t + &) — rotH(t))odr+

t
t+1

o / (7). H(P), rotH(t + 7) — H(t))odr+

t
t+7

—l—l /(jo,rotH(t +9) — H(t) Omega)dr = 0.
o
t

Now, (27) integrable t € (0,7 — ¢§), and estimate some terms:

—0 t+4

T
0/ / / rotH(r)(rotH(t + ) — rotH(t))drdzdt =

t

g

é t+4

t+4
/rotH g/rotH(T)dededt:
t t

t+6
/(/rotH 7') dxdt =
P

t

Sl

1
2

/
7

S / ( /6 rotH(r T> do — / Q / th(T)dT)de

N 0

Here, using the Holder inequality, we have

) 2 b
/ ( / th(T)dT> dz < 6 ([ O/ Irot H (7 2drdz <

) 0
T
//\rotH )|dzdr < C,
0

i T
([(7/6 T'OtH(T)dT) dxﬁé([T[é rot H (r)2drdx <

86), 2015

(20)
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T
§5// |rotH (T |d7‘da:§05.
2 0

To have the following integral

T—
///jorot (t+9)— H(t))dzdrdt| =
0o t
T—8t+6 t+35
= / //]()Tot (/H dT) dxdrdt| =
0t t

1/2

< CH]O Z, t HL2 (0,T;L2) / (T/ TOtHdt) dx <

1/2
< CV§ (/ / |rot Hdt| dtda:) < CVo|H| o < CV.

Lo (0,T;H(£2))
2 T—

0
Now turn to the equation (1). Multiply it by @ € J(£2) scalar Ly(2) and obtain

Zp(ryo(), D) — (Lo(r), o — (090, B — (o)) V), 0o+

Hu((H(T)VE, H(T)) o + v(ve(7), 82)0) = (p(1)f(7), P) -

Using (2) we have

2 ov. B~ (V). 0)0 + (HYS, H) o+ 0(Hy 80)0 = (of B)o

Next, we use the expression
o(t+ B)0(t +8) — p(t)o(t) = plt + B)(ult +8) — v(t)) + (ot +8) — p(t))t).
From (2), integrating 7 € [t,t + d], we find

1+46

p(t+0)—p(t) =— /(v * V) pdr.

t

Now we integrate (28) over 7 € [t,t + 0] and let & = v(t + J) — v(t), we have

97

(21)

(23)
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1/ p(t +8)[v(t+6) —v >]H%2<m+

+((p(t +6) - ())—U( ), u(t+06) —v(t)) o+
t+6

i / / (p()0(F)V)o(t + 8) — v(E)]v(r))dzdr+
t+5
+u / / v(t+0) —v(t)|H(1))dzdT+ (24)
t+6

ﬂ//”m T)[va(t + 6) + vy (t)])dadr =

t+5
/ / u(t + 8) — v(t)])dzdr.

Next we will consider some integral terms (24). Firstly, using (23) we have

[0l +) — penueoie+8) - vit)de =
(%
t+9

// v(®)(v(t + 8) — v(t))drda.

Integrate it with respect to t from 0 to T'— § and estimate

—0 t+6

// v(t +0) — v(t))p(7)drdrdt <

o\’ﬂ

—6t+d

<M /(!U(t)llvx(t)l(lv(t +0)| = o(t))dx)drdt <
9]

o\ﬂ
—~7F

-4 t+0

T
<M [ Joe®liallote + 8l [ o@ldrat <
0 t

-4
CM [ (Jva(O) |z vs(t + Ol 24 ([0(7) La0,7,2.) vV (V)dE <

D\’ﬂ

< C\/S‘U$ (t> HLQ(O,T;LQ(Q) H ’UHL2(O,T;L4(Q) H < C\/g
Similarly, evaluated and integral

T—6t+6

/ / / vt +8) —v(t)v(r)dedrdt < CV.

Next, consider the following integral in (24), pre-integrated with respect to ¢ from 0 to — ¢
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/ / / U (T) [V (t + 8) — v (1)]dadrdt =
T—5 45 : ttfs t+5
— ///%(T)gt/vx( drdzdt = //6t (/ dT) e —
0 2t ;

. 1/2 s 1/2
1
< 2/ (1 vx2dt) _ (/ Ux2dt) V3| dx <

0

< CV6||vall Ly (0.100(2)) < CVO.

Now we estimate the integral

T-6 6 T—6t+6
///p ot +8) — vt )]da:det<M/ /HfHLﬁ/s 2)%
0o t

T—6 t+9

<[t + )l + ()]l Lo]drdt < CM / lo(®) 12 / 1l oy drdt <

- t+46
<oM / ol 2oV ( / fL6/5<de) it <
0 t

< CVO|fl| (0.7 52 1] o <CVo

L2(0,T;J1(£2))

Now, with all the resulting integral inequalities developed (24) and (27). As a result, we
obtain

)

T—
/ IV/PE+0) (w(t + ) — v(E) % + pllH (t+ 8) — H(t)|2dt < CV,
0

that is

T
/yv (t+8) — w2 + |H(t+ ) — HE)|2)dt < V3, 0<6<T 3.
0

Lemma 1 is proved.
Now turn to the proof of Theorem 1. To do this, use the method of Galerkin. The solution
of (1) = (3), (6) — (11) will be sought in the form

N N
=> o (tw;, HY1) =N, (25)
J=1 j=1



100 Beraucnurensuble Texaosiornu, T.20, 2015 Becruuk KasHY, Ne 3(86), 2015

where {aév (t) ;V:D {,B;V (t) §V:1 — is found by solving a system of ordinary differential equations:

(") @ (1) + (VN V)o),wj)e — p(HYV)HY ,w5) 0 +o(Vor, Vw;)o =

(26)
1
w(HN (t),1) 0 + = (rotHY [ rotl;) o — p([™, HN), rotl;) o—
’ (27)
—(orotly)a =0, j=1,...,N;
p"(t) — these are the solutions of differential equations of the first order:
pr (8) + (0N (8) - V)P (1) = 0. (28)
The problem (26) — (28) is solved with the initial conditions
vV ()0 = 05 (x), HY()]e=0 = H' (z), pVle0 = p5 (2). (29)

N
> (Ho(z),1j)0l;

Jj=1

<.
Il
-

this implies the
aj(t)li=0 = (vo(2),wj)a, Bj(t)l=0 = (Ho(x), )0

Reduce the problem (25) — (29) to an operator equation and on the basis of the theorem of
Schauder prove its determination. In the space C[0,T] we take a limited closed space

K={p@) [ ¢(t) € Cl0,T], [l¢] <C},
a;’ (0) = (vo(),w;),
BY(0) = (uo(x),1;),
where
G(t) = (af (t), a5 ..., an(t), B (1), B3 (), .-, BN (1)),

N

1) = maz: (Y (1 () + [BY ()))) /2.

i=1

C - inequality

v(t)|? . + ||H(t)|? <C,
[0 0722020y T | ()HLOO(O,T;JEI(Q))

which, in turn, determined from (18).
Take some element of K :

0 N _N N aN N
P = (a1,0=a2,07--waN,0w31,07--~75N,0)~
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We form vectors N
0 0
=3, 6 =30
j=1
and on the set u%(z,t) and G°(z,t) we find r(x,t) of the following task

T+ (UOV) =

AR e (31

Problem (31) is uniquely solvable. Indeed, let y(7, ¢, z) is the solution of the famous problem

or ’ (32)
y|t=7‘ =T

Then the solution of problem (32) in the form

r :pév(y(T,t,:C)tNT:o, (33)

From this we have:
0<m<r(z,t) <M< oo, (34)

when 0 < m < po(z) < M < 0.
Then u°(t) and G°(t) we substitute in (26) and (27) and find

ut(z Z%l Jwj and Gz, t) = Zﬁle

7j=1

from a system of ordinary differential equations

(rui + (ru®V)ut,wj) o — p((G°V)GY w)) + v(up,wjz) e, j=1,N,
WG e = 5 (rotG' rotly) o — p([u', G, rotly) o — (jo, rotlj)a, j=1,N.

The solvability of (35) follows from the theory of ordinary differential equations.
That is,uniquely defines the vector

1 N N N N N N
(0 :(0‘1,17042,17---704N,1751,1752,1>-~-75N1)~
Multiplying the first and the second identity in (35) on a% and ﬁNl respectively and summing
over j = 1, N, obtain the estimate

lu o+ IIGlll <t
Loo (0,137 (£2)) 0.7:H

ei Y € K.

Thus, we are structured operator A : K — K. The fixed point of A along with the proper
function of 7(t) defines the solution of the problem (26) and (27). The continuity of A. It follows
from a general theorem of stability of solutions of ordinary differential equations for the coefficient
from right-hand side. So, Schauder’s theorem there is a fixed element ¥ € K : Ay = 1), that is,
from (25) — (29) is uniquely v”, p™, HY. For them, we have the estimates:

o™ ()] o +INll o < C<oo,
Loo(0,T5J(£2)) Loo(0,T5J1(02))

IHN (#)]] o +I[HN®) o < C<oo, (36)
Lo (0,T;H(£2)) Loo(0,T;HL(£2))

0<m<pN(t) <M < 0.
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Further, for the approximate solutions v, p™, H™ as in Lemma 1, we can prove rating:

[N (t+ 8) = N (Ol Lyor—siLa(2) + IHN (E+6) = HN (8) | Ly0,7—s5505) < C6Y/*.

Here the constants C' do not depend on N. Therefore,from the sequences
{vNY, {HN N}, {pN} can select a subsequence for which the following relations:

0
vV = v* weakly in Lo (0,T;.J(12)),
)

0
vN — v weakly in L2(0,T; JY(2)),
vl — v strongly in Lo(0,T; La(£2)),
pN = v weakly in Loo(Q,), (37)

0
HYN — H* weakly in Lo (0,T; H($2)),
0
HN — H weakly in Lo(0,T; H'(£2)),
0
HN — H strongly in Ly(0,T; H(£2)).

Then, taking the limit as N — oo in the identities (26) — (28), we find that the limit function
v(z,t), H(z,t), p(z,t) is a generalized solution of (1) — (3), (6) — (11). Indeed, for the functions
PV, vV, HN will show the limit in terms of the integral multiple (14).

At first
T T
//pNUNgotda:dt = //(pN — pluprdxdt+
0 0 0 2
T T
+//pN(v —v)tptdmdt+//pv<ptdxdt,
0 N 0 N
where
T
h_)m //(pN — p)vprdzdt = 0,
0 N
by
pY = p weakly in Lo (Qr)
and
T T
dxdt < 9 dt < <C
[ [vedeit < [0l @lelamde <ol o lolen < ©
0 2 0
Also
T
Jim /pN(UN ~ o)prdzdt < M Tim [0 — ol dt <
N—o00 N—o0
0
< M li N _ =0,
<M lim v UHLQ(&T&(Q))H@tHLz(QT)
by

vV s v, vV = v strongly in Ly(Qr).



Computational Technologies, Vol 20, 2015 The Bulletin of KazNU, Ne 3(86), 2015

T T
lim //pNUNgotd:cdt://pvgotdxdt.
N—o00

0 0

Next, consider another integral

T T T
- / / (HNV)HY pdxdt = — / / (HNV)(HN o)dadt + / / (HNV)pHY dxdt =
0 0 N 0

T
://(HNV)¢HNdxdt.
0 2

0
Y € W3(0,T; 7' (2)),
T

Jim / / (HNV)oHN ddt = / / (HV)pHdxdt.
—00
0 N 0 N

To do this, expand the integral

T
/ / (HNV)oHY dodt =
0

T T
/ / (HN — H)V)oHN dzdt + / / (HV)(HYN — H)dzdt+
0 0 N

T

—l—//HV pwHdxdt,
0

That is, there is a

Now we show that

and evaluate the following integrals

N—oo

T
lim / / (HYN — H)V)pHN dedt <
0

T
< lim / / VEN — H | BN L[Vl adt <
N—o00
0 N”
. N N
+J\}E>noo||H _H||L2(O,T;L4)HH ||L4(0,T;L4)||(10|| 0 :Oa

W3 (0,7371(£2))

by HYN — H strongly in Ly(0,T; Ly(£2)), which follows from the embedding theorems

/T/(HV)w(HN — H)dzdt =0,
0

103
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0
by HYN — H weakly in Ly(0,T; H(2)),

IHNV Ly 0,7:0(2)) < NH | L0100 IVl Lo0, 110 (2)) < C,s

0
for all ¢ € W4(0,T; J(£2) N W2(£2)).

So,
T
Jim / / (HNV)oHN dadt = / / (HV)pHdxdt.
—00
0 N 0

Now we study the following integral

T T T
//(VUN,ch)dlldt = //(VUN — Vo, Vp)dzdt + //(VU,V@)dwdt,
02 00 00

lim //(VUN — Vo, Vo)dzdt =0,

where

N—o0

0 0
by vV — v weakly in Ly(0,T; H(£2)) and Vo € Ly(0,T; J(£2)).
Limit transition in the rest of member (6) is not much difficult. Now we show the limit in
several Member States of the identity (27). For example,

T T
//[UNHN]rotz/dedt = //[’UN — v, HNrotdzdt+
0 0

T T
- / / [v, HY — Hlrotydzdt + / / [v, H]rotydzdt.
0 0

where

St~

/ JHY — Hlrotipdzdt <
Q
< ClloN = vl y07:La @) H Y | a0.7:00 1€l Lo 0.152.4(2)) = O,

when N — oo.
Similarly,

N—o0

T
lim / / ,HYN — Hrotpdzdt = 0,
0

then

N—oo

T
lim / / (rot(HN — H), rotp)dadt = 0,
0

by HY — H weakly in Ly(0, T} Hl(Q)) and roty € L2(0,T; La(£2)).
Also go to the limit of the rest of Member States (27). So, we have fully justified limit in the

corresponding integral identities. Then the limit functions v, H, p — generalized solution of (1)
—(3), (6) — (11). Theorem 1 is proved.
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