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Abstract. The paper considers the problem of compound bending of non-uniform round flexible
plate subjected to lateral load under temperature changes through the thickness of the plate with
the influence of tension on bending. The problem is reduced to the study of an unrelated system of
differential equations, analytical solution of which has not been possible using existing mathematical
apparatus. The paper managed to decompose the related system of equations into two unrelated
equations and to find a solution using the method of partial discretization of differential equations.
Results are represented as formulae and graphs.
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In the mechanics of deformable solid bodies are of particular interest the problems associated
with bends of flexible plates and of various flexible shells working in a inhomogeneous temperature
field. Such problems commonly encountered in applied problems of construction, petroleum
engineering, mechanical engineering, water and air transport.

In mathematical consideration of such problems one have to deal with systems of linear
differential equations with variable coefficients and nonlinear terms, obtaining analytical solutions
of which presents considerable mathematical difficulties. Analytical solutions of such problems
can be obtained using the method of partial discretization, developed by Professor A.N.
Tyurekhodzhaev based on the theory of generalized functions.

Consider the problem of thermoelasticity of inhomogeneous circular plates under
axisymmetric temperature field allowing for the changes in the elastic properties of the plate
material by its thickness. Complex bending of inhomogeneous flexible circular plate, exposed to
the action of the lateral load, under the temperature change across the thickness of the plate is
described by a system of connected differential equations [1]:
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Here F' is the stress function, u,is the deflection of the middle surface of the plate, h is the
thickness of the plate, E is the modulus of elasticity, v is the Poisson ratio, ¢, is the external
distributed lateral load per unit area of the middle surface, C' is the constant of integration.

Solving these equations for d%sz and %VQUZ and considering the expression (2), we obtain
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Consider the problem of thermoelasticity of inhomogeneous circular plates under
axisymmetric temperature field allowing for the influence of tension on the bending and the
changes in the elastic properties of the plate material by its thickness.

It is generally accepted [1] that the system of equations (1) in the case of considering the
influence of tension on the bending is not reduced to unconnected equations. In fact, the system
of resolving equations (1) can be reduced to a system of differential equations with nonlinear
terms, each of which includes only one resolving function:
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And the functions F' and u, are related by
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The third order differential equations (4) to (5) relative to the normal force N,., acting in the
cylindrical section, and the normal turning angle 9J,., defined given an axisymmetric field by the
relation
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are rewritten in the following form
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Radial force and deflection angle are related by
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The exact solution of such equations using existing mathematical tools is not possible.
Applying the method of partial discretization of differential equations, we determine the solution
of these equations.

It should be noted that in this case it is sufficient to solve one of the equations (7)-(8). For
instance, one can determine the turning angle of the normal, and then find the radial force by
the formula (26).

Applying the method of partial discretization to the differential equation (7), we derive the
following expression for the general solution of this equation
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where H (z) is the Heaviside unit function. Substituting the expression (10) into the formula (26),
we derive
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Consider the annular plate of constant thickness, the outer contour of which is rigidly clamped
and inner one can shift in the axial direction of the plate, but it does not turn. The contours of
the plate are free of radial forces. Then the constants are determined from the following boundary
conditions

NT{T:a: 0, NT|T:b: 0, 19T‘T:a: 0, ﬂr},,:b: 0. (12)

According to (12) the constants C; and Cy will be equal to zero. C yuerom 3uadennii Given
values of C and Cy the differential equation (7) becomes
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Discretizing the last term on the left hand side of the equation (13), we derive its following
general solution
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Consequently, for the deflection wu,(r) will be
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The constant C is determined from the condition of rigid support of the plate’s outer contour

uz"l‘:b: 0. (16)

Relation (26), taking into account the values of the constants C, Cy will take the form
A 9,
Ny =——=. - — 17
T B r ( )
Substituting the expression (14) into (17) we obtain
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The constant C' is determined from
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where @), is the lateral force. Let the load be evenly distributed along the circumference with
radius ro with intensity qg

q. = qod(r — o)

Then the constant would be equal to zero.
Taking into account the boundary conditions (12), the deflection angle of the plate can be
written as
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And the analytic expression of the turning angle at points rj is determined as follows
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The deflection of the middle surface of the plate is equal to
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Radial force in the case of the plate, exposed to the lateral load, distributed evenly along the
circumference with radius ro with intensity qo, is expressed by the formula
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Performing numerical calculations of the turning angle and deflection of annular plate of
constant thickness, exposed to the lateral load evenly distributed along the circumference rg,
given the elasticity modulus and coefficient of varying by the plate thickness according to the
linear law given the certain values of the parameters, we plot down the curves. Figures 1 and 2
show the curves for changes in the turning angle of the normal and deflection for different cases
of the lateral load distribution [1].

The considered method allows to find a solution to the equations (4) — (5) for virtually any
laws of change both in the elastic modulus and the Poisson ratio.
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Fig. 1. The curves of changes in the angle of turning for the plate with an orifice, subject to the lateral load

distributed: 1 — evenly over the plate surface; 2 — evenly over the area of the annular with radius and width ; 3 —
evenly along the circumference of radius 7o (¢ < 1o < d).
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Fig. 2. The curves of changes in the deflection for the plate with an orifice, subject to the lateral load distributed:

1 — evenly over the plate surface; 2 — evenly over the area of the annular with radius and width; 3 — evenly along
the circumference of radius 7o (¢ < ro < d).



