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Some asymptotic results for kernel density estimation
with Lipschitz smoothness

Estimates of density derivatives can be used to evaluate modes and inflection points of f
and can be applied, for example, to the bandwidth choice for the estimation of densities
themselves. In this paper we generalized the nonparametric kernel density estimator
suggested by [6] to the estimation of 1% order density derivatives. Some results for this
estimator are obtained. Our results are based on imposing global Lipschitz conditions on
f and applying the kernel suggested by [6]. An integral representation for the bias and
the exact orders of the bias and variance of the estimator are obtained. The conditions
of consistency and uniform consistency of this estimator are studied. A criterion for the
optimal bandwidth that minimizes asymptotic integrated mean squared error is provided.
The general case will be considered elsewhere.

Key words: kernel density estimation, Lipschitz smoothness, density derivative estimator,
uniform consistency, bandwidth choice.

A.C. Aunenosa
HekoTopbie acuMnTOTHYECKNE PE3YJIbTATHI JJ9 OIMEHKHN MJIOTHOCTH spa C
JlunmuiieBoil ryiaJgKocTu

O1neHKY TPOU3BOJAHBIX TIOTHOCTH MOTYT OBITH MCIMOJIB30BAHBI [IJIsT OIEHOK MOJI, TOYEK Tie-
peruba f, a TakKe, K IpUMepY, I BLIOOPA IMOIOCH! MPOIIYCKAHNS OIEHKN CAMUX ILJIOTHO-
creit. B nanmoit pabore mbr 0600611aemM HemapaMeTPUIECKUe siI€PHbBIE OIEHKN TIJI0OTHOCTH,
peJIoKeHnble B [6], HA CIydail OIMEHKN MPOM3BOAHON MJIOTHOCTH TIEPBOTO MOpsiika. s
9TO OIEHKH IT0JIy9€HbI HEKOTOPbIE Pe3y/IbTaThl. Hamm pe3yibTaThl OCHOBAHBI HA BBEICHUN
r106abHBIX yesoBuit Jlunmmia Ha f u npuMeneHnu gapa npeiokeHaoro B [6]. Iloryde-
HO MHTErpaJjbHOE NPeACTaBJICHUEe JJld CMEIIeHUs, IIOJIyYeHbl TOYHbIC 110 NOPAJKY OLECHKUN
TSI CMeEITeHUsd W BapUallud OIeHKU. YCJIOBHUS COTJIACOBAHHOCTH M PABHOMEDHOM COTJIACO-
BAHHOCTH dTOU OueHKu n3ydenbi. Haiijen xkpurepuil /i ONTUMAJIBHOM TOJIOCHI IIPOILYC-
KaHUdA, KOTOPbIA MUHUMU3UPYET aCUMIITOTUYECKYI0 UHTEIPUPOBAHHYIO CPEJHEKBAAPATAY-
Hyto ormubky. Ob6mumit caydait 6y1eT pacCMOTpeH B APYToil cTaThe.

Karoueswvie ca06a: OTIEHKA TIOTHOCTH SIPa, JIWmIuieBast 1aIKOCTh, OIIeHKa MPOU3BO/I-
HBIX ILJIOTHOCTH, PABHOMEPHAs COIVIACOBAHHOCTH, BEIOOD MOJIOCHI IIPOIYCKAHUSI.
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A.C. Aunenosa
JIunmunTik TericTik saaiciMeH TBHIFBI3ABIK SAAPOCHIH Oarajiay YIIiH Keibip
ACUMIITOTUKAJIBIK, HOTHXKEJIEP

Mojrapapl 6aratayra, f-Tif uijy HyKTejepin TabyFa *KOHE Jie ThIFbI3bIKTAP/IbIH 03/1epiH
OaraJiay VIOiH KaJaMIbl TAHIAYFa THIFBI3ILIK TYBIHIbLIAPBIHEIH Oaraaayaapbl KO IAHBLIA-
abl. Byt skymbicra [6]-4a Kearipiiare ThiFbI3/IbIKTBIH, TAPAMETPJIK eMeC si/IPOJIbIK Dara/ia-
VJIAPBIH THIFBI3ABIKTHIH OIPIHII PETTI TYBIHILICHIHBIH Darajay KargaibIiHa KAITBLIAIBIK.
Ocpbl baragayra Keiibip HoTHzKeJIep aJblHAbI. Bi3ain HoTmKenaepiMmis rimobaabanl JIumimmig
mapTrapbin f-Ke eHrisyre xkoHe [6]-1a Kesripiaren sigpoHbl KosaHyra Herizaeared. Ock
OaraJiayablH bIFBICYBIHA HHTEIPAILIBIK OPHEK XKOHE BIFBICYBI MEH BAapHUAIIASACHIHBIH, HAKTHI
peti anbiaABI. By 6araiay b COMKECTIIK mapThl KoHE 0IPKAJIBIITHI CONKECTIIr 3epT-
Teami. TuiMal KajgaM KpUTepHiti aCHMIITOTHKAJIBIK, MHTErpAJITaHFaH OpTallla KBaIPATTHIK
KaTeJiKTi a3aifiTy apKbLabl TaObLIIbI. 2Kaanbl 2Kargai 0acka MaKa/Ia/[a KapacThIPhLIAIbI.
Ty ce3dep: THIFBI3IBIK sAIPOCHIH Oarayiaybl, JIUIMUNITIK TEriCTiK, THIFBI3IBIK TYbIH-
IBLIAPBIHBIH Oaraiaybl, OiPKAJIBIITHl CORKECTLIIK, KaIaM/Ibl TaAHIAY.

Introduction

Let X1, X5, ..., X,, be independent identically distributed random variables with common
probability density function f. Let f’ denote the 15 order derivative of f. Kernel estimator
is a nonparametric way to estimate the probability density function of a random variable.

The Rosenblatt-Parzen estimator for the density f evaluated at = € R is defined by

n

) = £ > r (5

n

where h,, is a sequence of positive numbers converging to 0 and K is a kernel on R satisfying

+o0
K(t)dt = 1. (1)

—0o0

A symmetric kernel function satisfies K (t) = K(—t) for all t.

Various properties of these estimates including uniform consistency are well known, see
for example [1] and [2]. Estimation of a probability density function and its derivatives have
been considered by several authors, including [3], [4] and [5]. [5] studied asymptotic properties
of density estimates and its derivatives using the kernel method. [4] showed that the uniform
continuity of f was necessary for uniform consistency, under the condition Y exp(—cnh?) <
oo. This condition is substantially weakened in [5]. |7] estimated the first derivative when the
density is a mixture of univariate exponential densities with respect to Lebesgue measure.
They also investigated the consistency and the mean squared error convergence properties of
these estimates.

In this paper we generalize the nonparametric kernel density estimator suggested by [6]
to the estimation of 1% order density derivatives. We provide asymptotic characterization
of the proposed estimator, including uniform consistency. In addition, we discuss optimal
bandwidth selection based on the minimization of an asymptotic approximation for the
integrated mean squared error. The material of section 2 repeats the necessary definitions of
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[6, p. 220-222]. Section 3 provides some asymptotic results of new kernel density derivative
estimation and derives the expression for bias. Section 4 provides asymptotic property of the
proposed estimator and discusses orders of the bias and variance. Section 5 discusses a global
criterion of the choice of bandwidth.

Lipschitz conditions and kernels

The properties of nonparametric density estimators are traditionally obtained by
assumptions on the smoothness of the underlying density. Smoothness can be regulated by
finite differences, which can be defined as forward, backward, or centered. The corresponding
examples of finite first-order differences for a function f(x) are f(z+h)— f(x), f(z)— f(z—h),
and f(x + h) — f(z — h), where h € R. Here, we focus on centered even-order differences
because the resulting kernels are symmetric. Let C, = [ =0,..,2k k € X be the

(2k: l'l"
binomial coefficients, cj , = (—1)*T*C5* s = —k, ...,k and
AR f () chsforsh)heéR (2)

s=—k

They say that a function f : 38 — R satisfies the Lipschitz condition of order 2k if for any
x € R there exist H(z) > 0 and e(z) > 0 such that |A¥ f(z)| < H(x)h* for all h such that
|h| < e(x). They call H(x) a Lipschitz constant and €(x) a Lipschitz radius. For a kernel K
[6] define a new set of kernels { M (x)}r—123... where

k

1 Ch.s T

My(z) = —— S Fo g (-) . (3)

Cro “— 5| s
[s|=1

In their context [6] K is a seed kernel for Mj. The main impetus for the definition of M (x)

is that it allows them to express the bias of their proposed estimator in terms of higher order

finite differences of the density derivative f(z).

A I~ 1 T — X
fk(x)zﬁjzlh_an< W )fork:1,2,---
Let \ps = % = 1,...,k and since —Z:—O = Cé“ko“‘ = Mes, s = 1,..., k, (3) can also

be written as My(x) = lezl ’\’“’5 (K( ) + K( )) It follows by construction that M} is

S

symmetric, that is My (z) = My(—x),z € R.
Since the coefficients ¢ s satisfy chs\:o crs = (1 —1)% =0, we have

——chs—lor Z)\ks——

0 Jsl=1
Consequently, (1) and (3) imply that

“+00 “+00

/Mk Vdz = iAZ /K(g)dx—l—/K(—f)dx =1,

s=1

[e.9] —00
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establishing that {Mj(x)}r=12,.. is a class of kernels. [8] provides several choices for a seed

kernel K, but perhaps the most popular would be a Gaussian density. In this case fk(x) has
derivatives of all orders.

New nonparametric kernel density estimator

In this section, we take the 1°* order derivative of the [6]’s estimator to define the derivative
estimator.

SN BN B AN
fila) = Zl h_%Mk . = gzluj (4)
j= j=

n

where u; = & M] <x_Xj> and

M)~ Y e (2. 9

Given the independent and identically distributed (IID) assumption (maintained everywhere),
we have

pie) =33 e (e (152)) = 5 3 B = ©)

and

(7)

At first, we need to impose restrictions on K and f needed to obtain a suitable
representation for the bias and variance of the density derivative estimators. Hence, we assume
that

ASSUMPTION 1.

a) [K(s)| = o (1Y) 5] = oo
b) [£(s)| = O(s), || = ox.

Assumption 1 is used to obtain an integral representation for the bias B(f(z)) =
E(fi(z)) — f'(z) of fi.(z) in terms of centered even order differences of f'(z).

N +oo
Theorem 1 Under Assumption 1, for any h, >0, B(fl(x)) = —== [ K(t)A¥ f'(z)dt.

Ck.,0 nt

Proof. Under Assumption 1, we have that | K (L) f(z — h,0)| = | =t| = [K(t) f(z — shat)| =
o () Ol — shut]) = o (=2 ]) = o(1), as 1] = 0, b > 0.

t
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Therefore by (6), apply the change of variables, by (5) and we can integrate by parts, we
get

“+oo

B(fy(w) = E(w) = 4z / i (xh‘n’f) (ot =

k +oo
1 Ck.s
= M ( hpl)dl = —— K’ — hypl)dl
/ A ) Cko';_lwshn/ ) s ha)

R0 o=t 191
- o
Ck s /
- S(—s) | K(—t hot)dt
| X 2 [ K0 shs
k: —0o0
Ck,s
+) ; (—s)/K( t)f'(x + sh t)dt}
s=1 +oo
1 k
N / K(—=t)f (x + shat)dt
Ck,0 Is=1 A

Hence, from (8), (2) and (1) we obtain

B(f'(x Cko[zcks/f( ['(x + shyt)dt+

+ZC}cs/K f(x+ sh t)dt] Ckof(if):

Ck,0

(9)
Cko[chs/K f'(x + sh, t)dt—l—cko/K t)f'(z + Oh,t)dt

Isl=1
1 +00 1 +o0

=—-—— [ K(— chsf (z + shot)dt = —— | K(—t)AF, f'(z)dt
CkO_ I51=0 Ck,O_

The theorem has been proved.

Asymptotic property of f,’g(x) and orders of the bias and variance

_In this section we give an asymptotic characterization of the estimator. Consistency of
fi.(x) is provided by the following theorem.
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Theorem 2 Assume that: a) The characteristic function ¢x of K satisfies [ |spr(s)|ds <
R

o0; b) fi(x) is bounded and uniformly continuous in R; c¢) nhl — oo asn — oo. Then f,’c(x)
s uniformly consistent, that is,

plimisocsup (| fi(x) = £/ (@)]) = 0.

zeR

Proof. To establish the uniform consistency fi(x), we denote 1); = (4) yields

fi(z)=1 zl L M (1;) and using (5) we get
J:

M) =~ Y e (‘Z’—) (10)
R o o |s|s s

By a) the inversion theorem for Fourier transforms means that

K (%) _ %/exp {%%}tqﬁ;((t)dt. (11)

R

Using (4), (5), (11) and by changing variables in integration we have

k s
+> %5 / exp{—iTz} eXP{iTXj}TﬁbK(Sh"T)dT} -
s=1

Z chs/exp{—wx} exp{i7 X, }7¢K (sh,T)dT

27TCk0 1 ‘ =
. +w
i
= - X )8 hn
dreng /exp{ ’LT:L‘}Z exp{iT }l;ck TOk (shyT)dT
. +<x>
= 27:%0 /exp{—iTJ}}qgn(T)A(T)dT
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xp{i7X;} is an unbiased estimator for the characteristic function ¢¢(t)

where ¢,(r) = 3 L ex
7j=1
of fand A(T) = i CksTOK (sh,T). Thus,
|s|=1
5 1 . - 1 .
E(fi(z)) = e /eXp{—ZT$}E¢n(T>A(T)dT = Smere /exp{—wx}(bf(T)A(T)dT (13)
’ TR

Hence, by (12) and (13)
i) - / bulr

Since |exp{—iTa}| =1,

sup|fila) - B(fi(s |<c/|¢n ~ oy (DIIAT)

zeR

7)|| exp{—iTx}||A(T)|dT.

with no sup on the right-hand side because it does not depend on x. It follows from Lemma
2.1 of 7] that sup]| - | is measurable, its expectation is well defined and

B (sup|f,;<w> - Ef,;<a:>|) <o m/ B

Gu(r) = 65(7)| |A(T)ldr.

zeR

Now,

B (160(r) = 0(0)]) = B(= S explirX;} — Blexp{irX,}))

= B([Ys + %) = E| + E|Ya| < (EYR)% + (BY2)}
where
%i(COS(TX> E(cos(7Xj)))
Yy =1 zn:(sin(TXj) — B(sin(7Xj)))

Using the i.i.d assumption, it is easy to see that

EY? = el Z [E cos’(7X;) — (E COS(TX]-))Q} _

=1

[V (cos(TX7))]

I
=
<
a
%
3
<
S
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and

EY? = ;2 Z [Esin®(7X;) — (Esin(7X;))?] =

1 : Lo

= Z V (sin(7X;)) = - [V (sin(7X1))]
Consequently,

(V(cos(rX1))? < [Ecos?(rXy) + (B cos(rX1))Y]? <

< [Ecos®(TX7) + ECOSQ(TXl)}% <V2
and

(V(sin(TXl)))% < [E sin®(7X,) + (E sin(TXl))Q}% <

< [Esin®(rX;) + ESiDQ(TXl)}% <2

Hence, (EY?)? + (EY7)? < 22, Then, E(

On(7) = 04(7)]) < 22 and

Hdr < Z |cks|/|f||¢K (shor)|dr <

|s|=1

[tox (t)|dt = [tox (t)|dt.
ey

£ (sup i) - Eﬁ;<x>|) < e [ Hontoli
R

:‘6\

L Jens|
haZ

Finally,

TER

by condition c) tends to zero as n — co. Furthermore, using Markov’s inequality, we get

P(sup|fila) = Efy(a)| > ) =0 (1)

as n — oo, for all & > 0, implying that sup,cy |fi(z) — Eff(z)] £ 0. Finally,
sup | fi(x) = f'(z)] < sup| fi(x) = Efy(x)] +sup |Efi(x) = f'(x)].
zeR zeR zeER

The first term on the right-hand side from (14) is o0,(1). The second term tends to zero
by (8), condition b) and Theorem 5 (for the case where m = 0) in [6]. Then we have
limy, 0 SUP,eq | f1(z) — f(2)] = 0. Consequently, fi(x) is uniformly consistent.

The theorem has been proved.

In the following theorem we give orders of the bias and the variance.
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Theorem 3 Assume that a) f'(x) is bounded and continuous, b) there exist functions
Ho(z) > 0 and 9 (z) > 0 such that

|AY ()| < Hon(z)h*  for all  |h| < eg(w) (15)

and ¢) [ |K(t)|t**dt < co. Then, for all x € R and 0 < h,, < e ()

Bfia))| < eh (Harla) + 32 (x) (16)

where the constant ¢ does not depend on x or hy,.

Suppose additionally that d) f |K'(t)]?dt < oo and f |M[(t)|?dt < oo Then, for all

r€R and 0 < h,, < egp()

o0

VU@ = o | 70) [ GO @t =17 @)+ Rt ) a7)
where the residual satisfies
| Row(, )| < chyf (Haw(x) + €32 (x)) (18)

with constant c independent of x and h,.

Proof. Condition ¢) implies for any N > 0

/|K |dt</yK )

[t|>N [t|>N

dt < N2 / |K ()| t*dt. (19)
Using (9) and conditions of Theorem 3, we have

Bl = |-

/K (AR, f(x)dt| <

Ck,0

<o i /’ K (1)]| A2, ' ()] dit <

hnt|<ear(z)  |hnt[>ear(z)

< o | Hop(a) / K ()| (hat)?*dt + sup | £/ ()] / K ()]t
TER
|hnt|<ear(z) © |hnt|>eor ()

It remains to apply (15) and (19) to obtain (16).
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Now, we proceed with derivation of (17). According to (7), we need to evaluate Eu? and
(Euy)?. Now,

Euy = E(fi(2)) = f'(x) + B(fi(x)) = f'(x) + Rox(w, h) (20)
where Roy(x, h,,) satisfies (18). Now,

Bu? = (hz) [ (I_t)] t)dt = hi%/[M,;(t)]Qf@—hmdt. (21)
R
Now we show that f(]W,’g(t))2 dt < oo. From (5), we have M/ (z) = 3 asK' (%), where
|

[s|=1

Ck:s
cryo lsls”

/ v = [ 3w (2) K () do <

R g Ishlt=1

< 3 b f[r 2 3o

Is],[¢]=1

< Z st /|K’ /|K'|2 (%) dr | = /|K’(t)|2dt <0
R

Isl,[t]=1 R
because K’ € Ly(R).
Note that (17) is a consequence of (20) and (21). In addition, if f(z) # 0 and for small
hy, we can rewrite (17) as

s = — Hence by Holder’s inequality

Vi) = o @) [ Qs i+ o) (22)

R

The theorem has been proved.

Asymptotically Optimal Bandwidth

In this section we obtain a criterion of the choice of h,. We consider optimal choice of
bandwidth by minimizing the Integrated Mean Squared Error (IMSE),

IMSE(f @) = [ (V@) + (B @)?) ds
R
The value of h,, which minimizes IMSE is called the asymptotically optimal bandwidth. This
is done in the following theorem.

Theorem 4 Let Assumptions of Theorem 3 hold. Suppose that Hoy., 55,3’“ € Ly and f, f € Ly,
then IMSE is bounded by a function p(h) = 35 + coh* . The optimal h,, resulting from the

minimization of ¢ is of order hoy < n™ 1%+3,
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Proof. Replacing V(f'(x)) and B(f'(x)) in IMSE by their approximations (16) and (22),
we get an asymptotic integrated mean squared error, which is denoted by

AIMSE = / nihi f(x) / (ML(t))* dt — h[f'(z) + Rop(z, ho))? | + R3.(2, hy) | de.

R Rid

Under the conditions and minimizing AIMSE over h,,, we have hqy < n" TR,
The theorem has been proved.
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