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Some asymptotic results for kernel density estimation

with Lipschitz smoothness

Estimates of density derivatives can be used to evaluate modes and in�ection points of f
and can be applied, for example, to the bandwidth choice for the estimation of densities
themselves. In this paper we generalized the nonparametric kernel density estimator
suggested by [6] to the estimation of 1st order density derivatives. Some results for this
estimator are obtained. Our results are based on imposing global Lipschitz conditions on
f and applying the kernel suggested by [6]. An integral representation for the bias and
the exact orders of the bias and variance of the estimator are obtained. The conditions
of consistency and uniform consistency of this estimator are studied. A criterion for the
optimal bandwidth that minimizes asymptotic integrated mean squared error is provided.
The general case will be considered elsewhere.
Key words: kernel density estimation, Lipschitz smoothness, density derivative estimator,
uniform consistency, bandwidth choice.

À.Ñ. Àèïåíîâà

Íåêîòîðûå àñèìïòîòè÷åñêèå ðåçóëüòàòû äëÿ îöåíêè ïëîòíîñòè ÿäðà ñ

Ëèïøèöåâîé ãëàäêîñòè

Îöåíêè ïðîèçâîäíûõ ïëîòíîñòè ìîãóò áûòü èñïîëüçîâàíû äëÿ îöåíîê ìîä, òî÷åê ïå-
ðåãèáà f , à òàêæå, ê ïðèìåðó, äëÿ âûáîðà ïîëîñû ïðîïóñêàíèÿ îöåíêè ñàìèõ ïëîòíî-
ñòåé. Â äàííîé ðàáîòå ìû îáîáùàåì íåïàðàìåòðè÷åñêèå ÿäåðíûå îöåíêè ïëîòíîñòè,
ïðåäëîæåííûå â [6], íà ñëó÷àé îöåíêè ïðîèçâîäíîé ïëîòíîñòè ïåðâîãî ïîðÿäêà. Äëÿ
ýòîé îöåíêè ïîëó÷åíû íåêîòîðûå ðåçóëüòàòû. Íàøè ðåçóëüòàòû îñíîâàíû íà ââåäåíèè
ãëîáàëüíûõ óñëîâèé Ëèïøèöà íà f è ïðèìåíåíèè ÿäðà ïðåäëîæåííîãî â [6]. Ïîëó÷å-
íî èíòåãðàëüíîå ïðåäñòàâëåíèå äëÿ ñìåùåíèÿ, ïîëó÷åíû òî÷íûå ïî ïîðÿäêó îöåíêè
äëÿ ñìåùåíèÿ è âàðèàöèè îöåíêè. Óñëîâèÿ ñîãëàñîâàííîñòè è ðàâíîìåðíîé ñîãëàñî-
âàííîñòè ýòîé îöåíêè èçó÷åíû. Íàéäåí êðèòåðèé äëÿ îïòèìàëüíîé ïîëîñû ïðîïóñ-
êàíèÿ, êîòîðûé ìèíèìèçèðóåò àñèìïòîòè÷åñêóþ èíòåãðèðîâàííóþ ñðåäíåêâàäðàòè÷-
íóþ îøèáêó. Îáùèé ñëó÷àé áóäåò ðàññìîòðåí â äðóãîé ñòàòüå.
Êëþ÷åâûå ñëîâà : îöåíêà ïëîòíîñòè ÿäðà, Ëèïøèöåâàÿ ãëàäêîñòü, îöåíêà ïðîèçâîä-
íûõ ïëîòíîñòè, ðàâíîìåðíàÿ ñîãëàñîâàííîñòü, âûáîð ïîëîñû ïðîïóñêàíèÿ.
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À.Ñ. Àèïåíîâà

Ëèïøèöòiê òåãiñòiê ºäiñiìåí òû¡ûçäû© ÿäðîñûí áà¡àëàó ³øií êåéáið

àñèìïòîòèêàëû© íºòèæåëåð

Ìîäòàðäû áà¡àëàó¡à, f -òi­ èiëó í³êòåëåðií òàáó¡à æºíå äå òû¡ûçäû©òàðäû­ °çäåðií
áà¡àëàó ³øií ©àäàìäû òà­äàó¡à òû¡ûçäû© òóûíäûëàðûíû­ áà¡àëàóëàðû ©îëäàíûëà-
äû. Á´ë æ´ìûñòà [6]-äà êåëòiðiëãåí òû¡ûçäû©òû­ ïàðàìåòðëiê åìåñ ÿäðîëû© áà¡àëà-
óëàðûí òû¡ûçäû©òû­ áiðiíøi ðåòòi òóûíäûñûíû­ áà¡àëàó æà¡äàéûíà æàëïûëàäû©.
Îñû áà¡àëàó¡à êåéáið íºòèæåëåð àëûíäû. Áiçäi­ íºòèæåëåðiìiç ãëîáàëüäû Ëèïøèö
øàðòòàðûí f -êå åíãiçóãå æºíå [6]-äà êåëòiðiëãåí ÿäðîíû ©îëäàíó¡à íåãiçäåëãåí. Îñû
áà¡àëàóäû­ û¡ûñóûíà èíòåãðàëüäû© °ðíåê æºíå û¡ûñóû ìåí âàðèàöèÿñûíû­ íà©òû
ðåòi àëûíäû. Á´ë áà¡àëàóäû­ ñºéêåñòiëiê øàðòû æºíå áið©àëûïòû ñºéêåñòiëiãi çåðò-
òåëäi. Òèiìäi ©àäàì êðèòåðèéi àñèìïòîòèêàëû© èíòåãðàëäàí¡àí îðòàøà êâàäðàòòû©
©àòåëiêòi àçàéòó àð©ûëû òàáûëäû. Æàëïû æà¡äàé áàñ©à ìà©àëàäà ©àðàñòûðûëàäû.
Ò³éií ñ°çäåð: òû¡ûçäû© ÿäðîñû­ áà¡àëàóû, Ëèïøèöòiê òåãiñòiê, òû¡ûçäû© òóûí-
äûëàðûíû­ áà¡àëàóû, áið©àëûïòû ñºéêåñòiëiê, ©àäàìäû òà­äàó.

Introduction

Let X1, X2, ..., Xn be independent identically distributed random variables with common
probability density function f . Let f ′ denote the 1st order derivative of f . Kernel estimator
is a nonparametric way to estimate the probability density function of a random variable.

The Rosenblatt-Parzen estimator for the density f evaluated at x ∈ ℜ is de�ned by

f̂R(x) =
1

n

n
∑

j=1

1

hn
K

(

x−Xj

hn

)

where hn is a sequence of positive numbers converging to 0 and K is a kernel on ℜ satisfying

∫

+∞

−∞

K(t)dt = 1. (1)

A symmetric kernel function satis�es K(t) = K(−t) for all t.
Various properties of these estimates including uniform consistency are well known, see

for example [1] and [2]. Estimation of a probability density function and its derivatives have
been considered by several authors, including [3], [4] and [5]. [5] studied asymptotic properties
of density estimates and its derivatives using the kernel method. [4] showed that the uniform
continuity of f was necessary for uniform consistency, under the condition

∑

exp(−cnh2) <
∞. This condition is substantially weakened in [5]. [7] estimated the �rst derivative when the
density is a mixture of univariate exponential densities with respect to Lebesgue measure.
They also investigated the consistency and the mean squared error convergence properties of
these estimates.

In this paper we generalize the nonparametric kernel density estimator suggested by [6]
to the estimation of 1st order density derivatives. We provide asymptotic characterization
of the proposed estimator, including uniform consistency. In addition, we discuss optimal
bandwidth selection based on the minimization of an asymptotic approximation for the
integrated mean squared error. The material of section 2 repeats the necessary de�nitions of
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[6, p. 220-222]. Section 3 provides some asymptotic results of new kernel density derivative
estimation and derives the expression for bias. Section 4 provides asymptotic property of the
proposed estimator and discusses orders of the bias and variance. Section 5 discusses a global
criterion of the choice of bandwidth.

Lipschitz conditions and kernels

The properties of nonparametric density estimators are traditionally obtained by
assumptions on the smoothness of the underlying density. Smoothness can be regulated by
�nite di�erences, which can be de�ned as forward, backward, or centered. The corresponding
examples of �nite �rst-order di�erences for a function f(x) are f(x+h)−f(x), f(x)−f(x−h),
and f(x + h) − f(x − h), where h ∈ ℜ. Here, we focus on centered even-order di�erences

because the resulting kernels are symmetric. Let C l
2k = (2k)!

(2k−l)!l!
, l = 0, ..., 2k, k ∈ ℵ be the

binomial coe�cients, ck,s = (−1)s+kCs+k
2k , s = −k, ..., k and

∆2k
h f(x) =

k
∑

s=−k

ck,sf(x+ sh), h ∈ ℜ. (2)

They say that a function f : ℜ → ℜ satis�es the Lipschitz condition of order 2k if for any
x ∈ ℜ there exist H(x) > 0 and ε(x) > 0 such that

∣

∣∆2k
h f(x)

∣

∣ ≤ H(x)h2k for all h such that
|h| ≤ ε(x). They call H(x) a Lipschitz constant and ε(x) a Lipschitz radius. For a kernel K
[6] de�ne a new set of kernels {Mk(x)}k=1,2,3,··· where

Mk(x) = −
1

ck,0

k
∑

|s|=1

ck,s

|s|
K
(x

s

)

. (3)

In their context [6] K is a seed kernel for Mk. The main impetus for the de�nition of Mk(x)
is that it allows them to express the bias of their proposed estimator in terms of higher order
�nite di�erences of the density derivative f(x).

f̂k(x) =
1

n

n
∑

j=1

1

hn
Mk

(

x−Xj

hn

)

for k = 1, 2, · · ·

Let λk,s = (−1)
s+1

(k!)2

(k+s)!(k−s)!
, s = 1, ..., k and since −

ck,s
ck,0

= −
ck,−s

ck,0
= λk,s, s = 1, ..., k, (3) can also

be written as Mk(x) =
∑k

s=1

λk,s

s

(

K
(

x
s

)

+K
(

−x
s

))

. It follows by construction that Mk is
symmetric, that is Mk(x) =Mk(−x), x ∈ ℜ.

Since the coe�cients ck,s satisfy
∑k

|s|=0
ck,s = (1− 1)2k = 0, we have

−
1

ck,0

k
∑

|s|=1

ck,s = 1 or
k
∑

s=1

λk,s =
1

2
.

Consequently, (1) and (3) imply that

+∞
∫

−∞

Mk(x)dx =
k
∑

s=1

λk,s

s





+∞
∫

−∞

K
(x

s

)

dx+

+∞
∫

−∞

K
(

−
x

s

)

dx



 = 1,
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establishing that {Mk(x)}k=1,2,··· is a class of kernels. [8] provides several choices for a seed

kernel K, but perhaps the most popular would be a Gaussian density. In this case f̂k(x) has
derivatives of all orders.

New nonparametric kernel density estimator

In this section, we take the 1st order derivative of the [6]'s estimator to de�ne the derivative
estimator.

f̂ ′

k(x) =
1

n

n
∑

j=1

1

h2n
M ′

k

(

x−Xj

hn

)

=
1

n

n
∑

j=1

uj (4)

where uj =
1

h2
n
M ′

k

(

x−Xj

hn

)

and

M ′

k(x) = −
1

ck,0

k
∑

|s|=1

ck,s

|s|s
K ′

(x

s

)

. (5)

Given the independent and identically distributed (IID) assumption (maintained everywhere),
we have

Ef̂ ′

k(x) =
1

n

n
∑

j=1

1

h2n
E

(

M ′

k

(

x−Xj

hn

))

=
1

n

n
∑

j=1

E(uj) = Eu1 (6)

and

V
(

f̂ ′

k(x)
)

= V

(

1

n

n
∑

j=1

1

h2
n
M ′

k

(

x−Xj

hn

)

)

=

= 1

n2

n
∑

j=1

V (uj) =
V (u1)

n
= 1

n
(E(u2

1
)− (E(u1))

2)

(7)

At �rst, we need to impose restrictions on K and f needed to obtain a suitable
representation for the bias and variance of the density derivative estimators. Hence, we assume
that

Assumption 1.

a) |K(s)| = o
(

1

|s|

)

, |s| → ∞

b) |f(s)| = O(s), |s| → ∞.

Assumption 1 is used to obtain an integral representation for the bias B(f̂ ′

k(x)) =

E(f̂ ′

k(x))− f ′(x) of f̂ ′

k(x) in terms of centered even order di�erences of f ′(x).

Theorem 1 Under Assumption 1, for any hn > 0, B(f̂ ′

k(x)) = − 1

ck,0

+∞
∫

−∞

K(t)∆2k
hnt
f ′(x)dt.

Proof. Under Assumption 1, we have that
∣

∣K( l
s
)f(x− hnl)

∣

∣ = | l
s
= t| = |K(t)f(x− shnt)| =

o
(

1

|t|

)

O(|x− shnt|) = o
(∣

∣

x−shnt
t

∣

∣

)

= o(1), as |t| → ∞, hn > 0.
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Therefore by (6), apply the change of variables, by (5) and we can integrate by parts, we
get

E(f̂ ′

k(x)) = E(u1) =
1

h2n

+∞
∫

−∞

M ′

k

(

x− t

hn

)

f(t)dt =

=
1

hn

+∞
∫

−∞

M ′

k(l)f(x− hnl)dl = −
1

ck,0

k
∑

|s|=1

ck,s

|s|shn

+∞
∫

−∞

K ′

(

l

s

)

f(x− hnl)dl =

= −
1

ck,0

k
∑

|s|=1

ck,s

|s|s

[

1

hn
K

(

l

s

)

f(x− hnl)|
+∞

−∞
+ s

+∞
∫

−∞

K

(

l

s

)

f ′(x− hnl)dl

]

=

= −
1

ck,0

k
∑

|s|=1

ck,s

|s|

+∞
∫

−∞

K

(

l

s

)

f ′(x− hnl)dl =

= −
1

ck,0

[ −1
∑

s=−k

ck,s

−s
(−s)

+∞
∫

−∞

K(−t)f ′(x+ shnt)dt+

+
k
∑

s=1

ck,s

s
(−s)

−∞
∫

+∞

K(−t)f ′(x+ shnt)dt

]

=

= −
1

ck,0

k
∑

|s|=1

ck,s

∫

ℜ

K(−t)f ′(x+ shnt)dt

(8)

Hence, from (8), (2) and (1) we obtain

B(f̂ ′(x)) = −
1

ck,0

[ −1
∑

s=−k

ck,s

+∞
∫

−∞

K(−t)f ′(x+ shnt)dt+

+
k
∑

s=1

ck,s

+∞
∫

−∞

K(−t)f ′(x+ shnt)dt

]

−
ck,0

ck,0
f ′(x) =

= −
1

ck,0

[ k
∑

|s|=1

ck,s

+∞
∫

−∞

K(−t)f ′(x+ shnt)dt+ ck,0

+∞
∫

−∞

K(−t)f ′(x+ 0hnt)dt

]

=

= −
1

ck,0

+∞
∫

−∞

K(−t)
k
∑

|s|=0

ck,sf
′(x+ shnt)dt = −

1

ck,0

+∞
∫

−∞

K(−t)∆2k
hntf

′(x)dt.

(9)

The theorem has been proved.

Asymptotic property of f̂ ′

k(x) and orders of the bias and variance

In this section we give an asymptotic characterization of the estimator. Consistency of
f̂ ′

k(x) is provided by the following theorem.
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Theorem 2 Assume that: a) The characteristic function φK of K satis�es
∫

ℜ

|sφK(s)|ds <

∞; b) f ′

k(x) is bounded and uniformly continuous in ℜ; c) nh4n → ∞ as n→ ∞. Then f̂ ′

k(x)
is uniformly consistent, that is,

plimn→∞ sup
x∈ℜ

(

|f̂ ′

k(x)− f ′(x)|
)

= 0.

Proof. To establish the uniform consistency f̂ ′

k(x), we denote ψj =
x−Xj

h
, then (4) yields

f̂ ′

k(x) =
1

n

n
∑

j=1

1

h2M
′

k(ψj) and using (5) we get

M ′

k(ψj) = −
1

ck,0

k
∑

|s|=1

ck,s

|s|s
K ′

(

ψj

s

)

(10)

By a) the inversion theorem for Fourier transforms means that

K ′

(

ψj

s

)

=
(−i)

2π

∫

ℜ

exp

{

−itψj

s

}

tφK(t)dt. (11)

Using (4), (5), (11) and by changing variables in integration we have

f̂ ′

k(x) =
1

nh2n

n
∑

j=1

M ′

k

(

x−Xj

hn

)

=
1

nh2n

n
∑

j=1

M ′

k(ψj) =

=
i

2πck,0

n
∑

j=1

1

nh2n

k
∑

|s|=1

ck,s

|s|s

+∞
∫

−∞

exp

{

−itψj

s

}

tφK(t)dt =

=
i

2πck,0

n
∑

j=1

1

nh2n

k
∑

|s|=1

ck,s

|s|s

+∞
∫

−∞

exp

{

−it

(

x−Xj

shn

)}

tφK(t)dt =

=
i

2πck,0

n
∑

j=1

1

n

[ −1
∑

s=−k

ck,s

−s
s

−∞
∫

+∞

exp{−iτx} exp{iτXj}τφK(shnτ)dτ+

+
k
∑

s=1

ck,s

s
s

+∞
∫

−∞

exp{−iτx} exp{iτXj}τφK(shnτ)dτ

]

=

=
i

2πck,0

n
∑

j=1

1

n

k
∑

|s|=1

ck,s

+∞
∫

−∞

exp{−iτx} exp{iτXj}τφK(shnτ)dτ =

=
i

2πck,0

+∞
∫

−∞

exp{−iτx}
n
∑

j=1

1

n
exp{iτXj}

k
∑

|s|=1

ck,sτφK(shnτ)dτ =

=
i

2πck,0

+∞
∫

−∞

exp{−iτx}φ̂n(τ)∆(τ)dτ

(12)
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where φ̂n(τ) =
n
∑

j=1

1

n
exp{iτXj} is an unbiased estimator for the characteristic function φf (t)

of f and ∆(τ) =
k
∑

|s|=1

ck,sτφK(shnτ). Thus,

E(f̂ ′

k(x)) =
i

2πck,0

∫

ℜ

exp{−iτx}Eφ̂n(τ)∆(τ)dτ =
i

2πck,0

∫

ℜ

exp{−iτx}φf (τ)∆(τ)dτ (13)

Hence, by (12) and (13)

|f̂ ′

k(x)− E(f̂ ′

k(x))| ≤ c

∫

ℜ

|φ̂n(τ)− φf (τ)|| exp{−iτx}||∆(τ)|dτ.

Since | exp{−iτx}| = 1,

sup
x∈ℜ

|f̂ ′

k(x)− E(f̂ ′

k(x))| ≤ c

∫

ℜ

|φ̂n(τ)− φf (τ)||∆(τ)|dτ.

with no sup on the right-hand side because it does not depend on x. It follows from Lemma
2.1 of [7] that sup | · | is measurable, its expectation is well de�ned and

E

(

sup
x∈ℜ

|f̂ ′

k(x)− Ef̂ ′

k(x)|

)

≤ c

∫

ℜ

E
∣

∣

∣φ̂n(τ)− φf (τ)
∣

∣

∣ |∆(τ)|dτ.

Now,

E
(

|φ̂n(τ)− φf (τ)|
)

= E(|
1

n

n
∑

j=1

exp{iτXj} − E(exp{iτXj})|)

= E(|Y1 + iY2|) = E|Y1|+ E|Y2| ≤ (EY 2

1
)
1

2 + (EY 2

2
)
1

2

where














Y1 =
1

n

n
∑

j=1

(cos(τXj)− E(cos(τXj)))

Y2 =
1

n

n
∑

j=1

(sin(τXj)− E(sin(τXj)))

Using the i.i.d assumption, it is easy to see that

EY 2

1
=

1

n2

n
∑

j=1

[

E cos2(τXj)− (E cos(τXj))
2
]

=

=
1

n2

n
∑

j=1

V (cos(τXj)) =
1

n
[V (cos(τX1))]
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10 A.S.Aipenova

and

EY 2

2
=

1

n2

n
∑

j=1

[

E sin2(τXj)− (E sin(τXj))
2
]

=

=
1

n2

n
∑

j=1

V (sin(τXj)) =
1

n
[V (sin(τX1))]

Consequently,

(V (cos(τX1)))
1

2 ≤
[

E cos2(τX1) + (E cos(τX1))
2
] 1

2 ≤

≤
[

E cos2(τX1) + E cos2(τX1)
] 1

2 ≤
√
2

and

(V (sin(τX1)))
1

2 ≤
[

E sin2(τX1) + (E sin(τX1))
2
] 1

2 ≤

≤
[

E sin2(τX1) + E sin2(τX1)
] 1

2 ≤
√
2

Hence, (EY 2

1
)
1

2 + (EY 2

2
)
1

2 ≤ 2
√

2
√

n
. Then, E

(∣

∣

∣
φ̂n(τ)− φf (τ)

∣

∣

∣

)

≤ 2
√

2
√

n
and

∫

ℜ

|∆(τ)|dτ ≤

k
∑

|s|=1

|ck,s|

∫

ℜ

|τ ||φK(shnτ)|dτ ≤

≤
1

h2n

k
∑

|s|=1

|ck,s|

s2

∫

ℜ

|tφK(t)|dt =
c

h2n

∫

ℜ

|tφK(t)|dt.

Finally,

E

(

sup
x∈ℜ

|f̂ ′

k(x)− Ef̂ ′

k(x)|

)

≤
c

h2n
√
n

∫

ℜ

|tφK(t)|dt

by condition c) tends to zero as n→ ∞. Furthermore, using Markov's inequality, we get

P (sup
x∈ℜ

|f̂ ′

k(x)− Ef̂ ′

k(x)| > ε) → 0 (14)

as n→ ∞, for all ε > 0, implying that supx∈ℜ |f̂ ′

k(x)− Ef̂ ′

k(x)|
p
→ 0. Finally,

sup
x∈ℜ

|f̂ ′

k(x)− f ′(x)| ≤ sup
x∈ℜ

|f̂ ′

k(x)− Ef̂ ′

k(x)|+ sup
x∈ℜ

|Ef̂ ′

k(x)− f ′(x)|.

The �rst term on the right-hand side from (14) is op(1). The second term tends to zero
by (8), condition b) and Theorem 5 (for the case where m = 0) in [6]. Then we have
limn→∞ supx∈ℜ |f̂ ′

k(x)− f ′(x)| = 0. Consequently, f̂ ′

k(x) is uniformly consistent.
The theorem has been proved.

In the following theorem we give orders of the bias and the variance.
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Some asymptotic results for kernel density estimation with Lipschitz . . . 11

Theorem 3 Assume that a) f ′(x) is bounded and continuous, b) there exist functions
H2k(x) > 0 and ε2k(x) > 0 such that

∣

∣∆2k
h f

′(x)
∣

∣ ≤ H2k(x)h
2k for all |h| ≤ ε2k(x) (15)

and c)
∞
∫

−∞

|K(t)|t2kdt <∞. Then, for all x ∈ ℜ and 0 < hn ≤ ε2k(x)

∣

∣

∣
B(f̂ ′

k(x))
∣

∣

∣
≤ ch2kn

(

H2k(x) + ε−2k
2k (x)

)

(16)

where the constant c does not depend on x or hn.

Suppose additionally that d)
∞
∫

−∞

|K ′(t)|2dt < ∞ and
∞
∫

−∞

|M ′

k(t)|
2dt < ∞ Then, for all

x ∈ ℜ and 0 < hn ≤ ε2k(x)

V (f̂ ′

k(x)) =
1

nh3n



f(x)

∞
∫

−∞

[M ′

k(t)]
2
dt− hn[f

′(x) +R2k(x, hn)]
2



 (17)

where the residual satis�es

|R2k(x, hn)| ≤ ch2kn (H2k(x) + ε−2k
2k (x)) (18)

with constant c independent of x and hn.

Proof. Condition c) implies for any N > 0

∫

|t|>N

|K(t)| dt ≤

∫

|t|>N

|K(t)|

∣

∣

∣

∣

t

N

∣

∣

∣

∣

2k

dt ≤ N−2k

∞
∫

−∞

|K(t)| t2kdt. (19)

Using (9) and conditions of Theorem 3, we have

∣

∣

∣B(f̂ ′

k(x))
∣

∣

∣ =

∣

∣

∣

∣

1

ck,0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∫

−∞

K(t)∆2k
hntf

′(x)dt

∣

∣

∣

∣

∣

∣

≤

≤ c1







∫

|hnt|≤ε2k(x)

+

∫

|hnt|>ε2k(x)






|K(t)||∆2k

hntf
′(x)|dt ≤

≤ c2






H2k(x)

∫

|hnt|≤ε2k(x)

|K(t)|(hnt)
2kdt+ sup

x∈ℜ
|f ′(x)|

∫

|hnt|>ε2k(x)

|K(t)|dt






.

It remains to apply (15) and (19) to obtain (16).
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12 A.S.Aipenova

Now, we proceed with derivation of (17). According to (7), we need to evaluate Eu2
1
and

(Eu1)
2. Now,

Eu1 = E(f̂ ′

k(x)) = f ′(x) + B(f̂ ′

k(x)) = f ′(x) + R2k(x, hn) (20)

where R2k(x, hn) satis�es (18). Now,

Eu2
1
=

(

1

h2n

)2 ∫

ℜ

[

M ′

k

(

x− t

hn

)]2

f(t)dt =
1

h3n

∫

ℜ

[M ′

k(t)]
2
f(x− hnt)dt. (21)

Now we show that
∫

ℜ

(M ′

k(t))
2
dt < ∞. From (5), we have M ′

k(x) =
k
∑

|s|=1

asK
′

(

x
s

)

, where

as = − 1

ck,0

ck,s
|s|s

. Hence, by H�older's inequality

∫

ℜ

(M ′

k(x))
2
dx =

∫

ℜ

k
∑

|s|,|t|=1

asatK
′

(x

s

)

K ′

(x

t

)

dx ≤

≤

k
∑

|s|,|t|=1

|asat|

∫

ℜ

∣

∣

∣
K ′

(x

s

)∣

∣

∣

∣

∣

∣
K ′

(x

t

)∣

∣

∣
dx ≤

≤

k
∑

|s|,|t|=1

|asat|





∫

ℜ

|K ′|
2

(x

s

)

dx





1

2




∫

ℜ

|K ′|
2

(x

t

)

dx





1

2

= c1





∫

ℜ

|K ′(t)|
2
dt



 <∞

because K ′ ∈ L2(ℜ).
Note that (17) is a consequence of (20) and (21). In addition, if f(x) ̸= 0 and for small

hn we can rewrite (17) as

V (f̂ ′

k(x)) =
1

nh3n



f(x)

∫

ℜ

(M ′

k(t))
2
dt+O(h)



 . (22)

The theorem has been proved.

Asymptotically Optimal Bandwidth

In this section we obtain a criterion of the choice of hn. We consider optimal choice of
bandwidth by minimizing the Integrated Mean Squared Error (IMSE),

IMSE(f̂ ′(x)) =

∫

ℜ

(

V (f̂ ′(x)) + (B(f̂ ′(x)))2
)

dx.

The value of hn which minimizes IMSE is called the asymptotically optimal bandwidth. This
is done in the following theorem.

Theorem 4 Let Assumptions of Theorem 3 hold. Suppose that H2k, ε
−2k
2k ∈ L2 and f, f

′ ∈ L1,
then IMSE is bounded by a function ϕ(h) = c1

nh3 + c2h
4k. The optimal hn resulting from the

minimization of ϕ is of order hopt ≍ n−
1

4k+3 .
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Proof. Replacing V (f̂ ′(x)) and B(f̂ ′(x)) in IMSE by their approximations (16) and (22),
we get an asymptotic integrated mean squared error, which is denoted by

AIMSE =

∫

ℜ





1

nh3n



f(x)

∫

ℜ

(M ′

k(t))
2
dt− h[f ′(x) + R2k(x, hn)]

2



+R2

2k(x, hn)



 dx.

Under the conditions and minimizing AIMSE over hn, we have hopt ≍ n−
1

4k+3 .
The theorem has been proved.
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