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This work deals with the modelling of the Magnetohydrodynamic (MHD) turbulence decay by hy-
brid finite-difference method (HFDM) combining two different numerical methods: finite-difference
and spectral methods. The numerical algorithm of hybrid method solves the Navier-Stokes equa-
tions and equation for magnetic field by a finite-difference method in combination with cyclic
penta-diagonal matrix, which yields fourth-order accuracy in space and second-order accuracy in
time. The pressure Poisson equation is solved by the spectral method. For validation of the devel-
oped algorithm the classical problem of the 3-D Taylor and Green vortex flow is considered without
considering the magnetic field, and the simulated time-dependent turbulence characteristics of this
flow were found to be in excellent agreement with the corresponding analytical solution valid for
short times. We also demonstrate that the developed efficient numerical algorithm can be used to
simulate the magnetohydrodynamic turbulence decay at different magnetic Reynolds numbers.
Key words: Magnetohydrodynamics, Taylor-Green vortex problem, hybrid finite difference
method, spectral method, turbulence decay.

МГД турбуленттiлiктiң азғындауын үлкен құйындар әдiспен модельдеу үшiн
гибридтi ақырлы-айырымдылық әдiсi
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Жакебаев Д.Б., әл-Фараби атындағы Қазақ ұлттық университетi,
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Бұл мақала ақырлы айырымдылық және спектрлiк екi сандық әдiстердi бiрiктiретiн гибридтi
ақырлы-айырымдылық әдiспен (ГААӘ) магнитогидродинамикалық (МГД) турбуленттiлiктiң
азғындауын моделдеуiне арналған. Кеңiстiкте төртiншi реттiк және уақыт бойынша үшiншi
реттiк дәлдiгiн беретiн бес-диагональды циклдық матрицамен ақырлы –айырымдылық
әдiс көмегiмен Навье-Стокс теңдеуiнiң және магнит өрiс теңдеуiнiң шешiмдерiнiң негiзiнде
гибрид әдiсiнiң сандық алгоритмi құрылған. Қысымға арналған Пуассон теңдеуi спектрлiк
әдiспен шешiледi. Дамытылған алгоритмдi тексеру үшiн магниттiк өрiстi ескермейтiн
Тэйлор және Грин үш өлшемдi құйынды ағынның классикалық мәселесiн қарастырамыз,
және модельдеу арқылы алынған турбуленттi сипаттамалары қысқа мерзiмдi интервалдағы
аналитикалық шешiмнiң нәтижелерiмен жақсы келiсiм бередi. Әр түрлi Рейнольдс
сандарында магнитогидродинамикалық турбуленттiлiктiң азғындауын модельдеу үшiн
дамыған тиiмдi сандық алгоритм қолданылуы мүмкiн.
Түйiн сөздер: Магнитогидродинамика, Тейлор-Грин құйындылық мәселесi, соңғы
айырымдық гибридтi әдiс, спектральдық әдiс, турбуленттiлiктiң азғындауы.

Метод крупных вихрей для моделирования вырождения МГД турбулентности
конечно-разностным гибридным методом

Абдибекова А.У., Казахский национальный университет имени аль-Фараби,
Алматы, Казахстан, +77029299933, email - a.aigerim@gmail.com

Жакебаев Д.Б., Казахский национальный университет имени аль-Фараби,
Алматы, Казахстан, +77017537477, E-mail: daurjaz@mail.ru

Вестник КазНУ. Серия математика, механика, информатика №3(99) 2018



54 Abdibekova A.U., Zhakebayev D.B.

Данная работа посвящена моделированию вырождении магнитогидродинамической (МГД)
турбулентности конечно-разностным гибридным методом (КРГМ), сочетающейся из двух
различных численных методов: конечно-разностный и спектральный. Разработан численный
алгоритм гибридного метода на основе решения уравнения Навье-Стокса и уравнения для
магнитного поля конечно-разностным методом в сочетании с циклической пятидиагональной
матрицей, которая дает точность четвертого порядка по пространству и точность
третьего порядка по времени. Уравнение Пуассона для давление решается спектральным
методом. Для валидации разработанного алгоритма рассматривается классическая задача
трехмерного вихревого потока Тейлора и Грина без учета магнитного поля, и полученные
турбулентные характеристики при моделировании имеют отличные согласование с
результатами аналитического решения на краткосрочном отрезке времени. Также показано,
что разработанный эффективный численный алгоритм может быть использован для
моделирования вырождения магнитогидродинамической турбулентности при различных
числах Рейнольдса.
Ключевые слова: Магнитогидродинамика, вихревая задача Тейлора-Грина, конечно-
разностный гибридный метод, спектральный метод, вырождение турбулентности.

1 Introduction

In the study of turbulent flows of particular interest is the simulation of cascade processes
of turbulent energy transmission, large-scale and small-scale vorticity, and various turbu-
lent laws are closely interacting with each other. Cascade processes determine the internal
structure of flows and the mechanism of turbulent dissipation. A lot of work was devoted
to the study and description of cascade turbulence models [15], [21] So far, cascade models
are mainly used for the study of isotropic turbulence, but their capabilities are not limit-
ed. Therefore, it is very important to build cascade models and study with their help the
properties of such complex turbulent flows as magnetohydrodynamic (MHD) turbulence.

2 Literature review

The problem of the magnetic field influence on turbulent flows was first raised by [2], who
provided basic equations and an analytical solution for the movement of an electrically con-
ducting fluid. The first numerical study of magnetohydrodynamic turbulence problem of the
first type conducted by [19] at the magnetic numberRem << 1. The numerical experiment
of Schumann was the reflection of the idea of [16], who researched a homogeneous isotropic
ow influenced by an applied external magnetic field. The modeling outlined in the publi-
cations of these scientists is performed using a spectral method, which is used as the basis
for presenting a quantitative description of magnetic damping, the emergence of anisotropy,
and the dependency of the results on the presence or the absence of a non-linear summand
in the Navier-Stokes equation. The low performance of computing machines at that time
did not permit the full solution of this problem. Later, a similar problem was researched by
[9] and later by [24]. These authors presented the results of direct numerical modeling of
large-scale structures in a periodic magnetic field, which reflected a change in the turbulence
statistical parameters as a result of an imposed magnetic field influence. The contribution
of these scientists in this area of expertise is determined by proving that the behavior of
two- and three-dimensional structures varies substantially. A similar result was obtained by
[22] in examining locally isotropic structures by the method of large eddies. The process of
the magnetic field influence on a developed turbulence was examined by [7],[14], and [14]
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demonstrated the possibility of using the quasi-stationary approximation for the solution of
the second type problem and suggested to use quasi-linear approximations to solve the prob-
lem at Rem = 20. The aim of this study is to study MHD turbulence flows that are weakly
induced by a homogeneous external magnetic field by adapting the existing finite-difference
and spectral methods to this particular problem.

For validation of the developed algorithm the classical problem of the 3-D Taylor and
Green vortex flow is considered, and the simulated time-dependent turbulence characteristics
of this flow were found to be in excellent agreement with the corresponding analytical solution
valid for short times. The classical problem proposed by Taylor and Green [21] who considered
a possibility of solving the Navier-Stokes equations analytically by a method for successive
approximations, in order to describe three-dimensional turbulence evolution (specifically en-
ergy cascade and viscous dissipation) over time, with the resulting flow now known as the
Taylor-Green vortex flow. Their work was motivated by the decay of three-dimensional tur-
bulent flow produced in a wind tunnel, a fundamental process in turbulent flow, due to the
grinding down of eddies, produced by nonlinearity of the Navier-Stokes equations. In their
work the kinetic energy and its dissipation rate were determined analytically.

Taylor and Green’s original analytical investigation is rigorous only for short times. To
extend the understanding of the 3D Taylor-Green vortex flow, Brachet et al [5] solved the
Taylor- Green vortex problem by two methods: numerical solution using the spectral method
and power-series analysis in time. The resulting average kinetic energy and energy spectra
at different flow Reynolds numbers were presented and compared. Later, in [6] three dimen-
sional Navier-Stockes equations were numerically integrated with the periodic Taylor-Green
initial condition. In this direct numerical simulation study the slope of energy spectrum was
compared with Kolmogorov’s −5/3 slope in the inertial subrange. Moreover, the compress-
ible Navier-Stokes equations have also been applied to the Taylor-Green vortex problem using
large-eddy simulation in [8] at different grid resolutions, and the time evolutions of the kinetic
energy and its dissipation rate were compared at different grid resolutions.

3 Materials and methods

To evaluate the MHD turbulence decay is necessary to numerically simulate the change of all
physical parameters over time at different magnetic Reynolds number. This work is devoted
to study of self-excitation of magnetic field and the motion of the conducting fluid at the
same time taking into account acting forces. The idea is to specify in the phase space of
initial conditions for the velocity field and magnetic field, which satisfy the condition of
continuity [23]. Given initial condition with the phase space is translated into physical space
using a Fourier transform. The obtained of velocity field and magnetic field are used as initial
conditions for the filtered MHD equations. Further is solved the unsteady three-dimensional
equation of magnetohydrodynamics to simulate MHD turbulence decay.

3.1 Statement of the problem

The numerical modeling of MHD turbulence decay based on the large eddy simulation method
depending on the conductive properties of the incompressible fluid is reviewed. The numeri-
cal modeling of the problem is performed based on solving non-stationary filtered magnetic
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hydrodynamics equations in conjunction with the continuity equation in the Cartesian coor-
dinate system in a non-dimensional form:



∂(ūi)
∂t

+
∂(ūiūj)

∂xj
= −∂(p̄)

∂xi
+ 1

Re
∂

∂xj

(
∂(ūi)
∂xj

)
− ∂(τui j)

∂xj
+ A ∂

∂xj

(
H̄iH̄j

)
,

∂(ūj)

∂xj
= 0,

∂(H̄i)
∂t

+
∂(ūjH̄i)

∂xj
− ∂(H̄j ūi)

∂xj
= 1

Rem
∂

∂xj

(
∂(H̄i)
∂xj

)
− ∂(τHi j)

∂xj
,

∂(H̄j)
∂xj

= 0,

τuij = ((uiuj) − (ūiūj)) −
((
HiHj

)
− (H̄iH̄j)

)
,

τHij =
(

(uiHj) − (ūiH̄j)
)
−
(
(Hiuj) − (H̄iūj)

)
,

(1)

where ūi (i = 1, 2, 3) are the velocity components, H̄1, H̄2, H̄3 are the magnetic field strength
components, A = H2/(4πρV 2) = Π/Re2m is the Alfvén number, H is the characteristic value
of the magnetic field strength, V is the typical velocity, Π = (VAL/νm)2 is a dimensionless
value (on which the value Π depends in the equation for H̄i). If Π << 1, then ∂H̄i

/
∂t = 0.

The publication by [11] discussed in detail the physics of phenomena related to the ability
to disregard the summand ∂H̄i

/
∂t. (VA)2 = H2

/
4πρ is the Alfvén velocity, p̄ = p + H̄2A

/
2

is the full pressure, t is the time, Re = LV /ν is the Reynolds number, Rem = V L /νm is the
magnetic Reynolds number, L is the typical length, ν is the kinematic viscosity coefficient, νm
is the magnetic viscosity coefficient, ρ is the density of electrically conducting incompressible
fluid, and τui j, τ

H
i j is the subgrid-scale tensors responsible for small-scale structures to be

modeled.
To model a subgrid-scale tensor, a viscosity model is presented as τuij = −2νT S̄ij, where

νT = (CS∆)2
(
2S̄ijS̄ij

) 1
2 is the turbulent viscosity, S̄ij = (∂ūi/∂xj + ∂ūj/∂xi)/2 is the defor-

mation velocity tensor value. To model a magnetic subgrid-scale tensor, a viscosity model is
used: τHij = −2ηtJ̄ij, where ηt = (DS∆)2

(
J̄ijJ̄ij

) 1
2 is the turbulent magnetic diffusion, the co-

efficients CS, DS are calculated for each defined time layer, and J̄ij = (∂H̄i/∂xj−∂H̄j/∂xi)/2
is the magnetic rotation tensor reviewed by [23].

Periodic boundary conditions are selected at all borders of the reviewed area of the velocity
components and the magnetic field strength.

The initial values for each velocity component and strength are defined in the form of a
function that depends on the wave numbers in the phase space:

ui (ki, 0) = k
b−2
2

i e−
b
4( ki

kmax
)
2

; Hi (ki, 0) = k
b−2
2

i e−
b
4( ki

kmax
)
2

,

where ūi is the one-dimensional velocity spectrum, i = 1 refers to the longitudinal spectrum,
i = 2 and i = 3 refer to the transverse spectrum, H̄i is the one-dimensional magnetic field
strength spectrum, m is the spectrum power, and k1, k2, k3 are the wave numbers.
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For this problem we selected a variational parameter b and the wave number kmax, which
determine the type of turbulence. In figure 1 the parameter b varies when kmax = 10. For
modeling homogeneous MHD turbulence can be set parameters kmax and b, which correspond
to the experimental data [20].

Figure 1: The equation of initial level turbulence, depending on the fixed wave number and
the variational parameter b: 1) b = 2; 2) b = 4; 3) b = 6; 4) b = 8.

3.2 Numerical method

To solve the problem of homogeneous incompressible MHD turbulence, a scheme of splitting
by physical parameters is used:

I. (u⃗∗ − u⃗n)/∆t = − (u⃗n∇) u⃗∗ + A
(
H⃗n∇

)
H⃗n + (1/Re) (∆u⃗∗) −∇τu,

II. ∆p = ∇u⃗∗/∆t,

III. (u⃗n+1 − u⃗∗)/∆t = −∇p.

IV.
(
H⃗n+1 − H⃗n

)/
∆t = −rot(u⃗n+1 × H⃗n+1) + (1/Rem)∆H⃗n+1 −∇τH.
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During the first stage„ the Navier-Stokes equation is solved without the pressure consid-
eration. for motion is solved, without taking pressure into account. For approximation of the
convective and diffusion terms of the intermediate velocity field a finite-difference method
in combination with cyclic penta-diagonal matrix is used [4] ,[18], which allowed to increase
the order of accuracy in space. The intermediate velocity field is solved by using the Adams-
Bashforth scheme in combination with a five-point sweep method. The numerical algorithm
for the solution of incompressible MHD turbulence without taking into account large eddy
simulation is considered at [1]. Let’s consider the velocity component u1 in the horizontal
direction at the spatial location (i + 1/2, j, k):

∂u1

∂t
+

∂(u1u1)

∂x1

+
∂(u1u2)

∂x2

+
∂(u1u3)

∂x3

= A

(
∂(H1H1)

∂x1

+
∂(H1H2)

∂x2

+
∂(H1H3)

∂x3

)
+

+
1

Re

(
∂2u1

∂x2
1

+
∂2u1

∂x2
2

+
∂2u1

∂x2
3

)
−
(
∂τu11
∂x1

+
∂τu12
∂x2

+
∂τu13
∂x3

)
(2)

When using the explicit Adams-Bachfort scheme for convective terms and the implicit
Crank-Nicholson scheme for viscous terms, equation (2) takes the form:

û1
n+1
i+ 1

2
,j,k

− u1
n
i+ 1

2
,j,k

= −3∆t

2
[hx]ni+ 1

2
,j,k +

∆t

2
[hx]n−1

i+ 1
2
,j,k

+
∆t

2
[ax]ni+ 1

2
,j,k +

+
∆t

2

1

Re
·

[(
∂2û1

∂x2
1

)n+1

i+ 1
2
,j,k

+

(
∂2û1

∂x2
2

)n+1

i+ 1
2
,j,k

+

(
∂2û1

∂x2
3

)n+1

i+ 1
2
,j,k

]
+

+
3∆t

2
[bx]ni+ 1

2
,j,k −

∆t

2
[bx]n−1

i+ 1
2
,j,k

− 3∆t

2
[τx]ni+ 1

2
,j,k +

∆t

2
[τx]n−1

i+ 1
2
,j,k

,

(3)

where

[hx]ni+ 1
2
,j,k =

(
∂u1u1

∂x1

)n

i+ 1
2
,j,k

+

(
∂u1u2

∂x2

)n

i+ 1
2
,j,k

+

(
∂u1u3

∂x3

)n

i+ 1
2
,j,k

,

[ax]ni+ 1
2
jk =

1

Re
·

[(
∂2u1

∂x2
1

)n

i+ 1
2
,j,k

+

(
∂2u1

∂x2
2

)n

i+ 1
2
,j,k

+

(
∂2u1

∂x2
3

)n

i+ 1
2
,j,k

]

[bx]ni+ 1
2
jk = A ·

[(
∂(H1H1)

∂x1

)n

i+ 1
2
,j,k

+

(
∂(H1H2)

∂x2

)n

i+ 1
2
,j,k

+

(
∂(H1H3)

∂x3

)n

i+ 1
2
,j,k

]

[τx]ni+ 1
2
jk =

(
∂τu11
∂x1

)n

i+ 1
2
,j,k

+

(
∂τu12
∂x2

)n

i+ 1
2
,j,k

+

(
∂τu13
∂x3

)n

i+ 1
2
,j,k

Discretization of convective terms look as [12]:

ISSN 1563–0285 Journal of Mathematics, Mechanics, Computer Science №3(99) 2018



HFD method for large eddy simulation . . . 59

(
∂u1u1

∂x1

)∣∣∣∣
i+ 1

2
,j,k

=
−(u2

1)i+2,j,k + 27(u2
1)i+1,j,k − 27(u2

1)i,j,k + (u2
1)i−1,j,k

24∆x1

;(
∂u1u2

∂x2

)∣∣∣∣
i+ 1

2
,j,k

=
(u1u2)i+ 1

2
,j− 3

2
,k − 27(u1u2)i+ 1

2
,j− 1

2
,k

24∆x2

+

+
27(u1u2)i+ 1

2
,j+ 1

2
,k − (u1u2)i+ 1

2
,j+ 3

2
,k

24∆x2

;(
∂u1u3

∂x3

)∣∣∣∣
i+ 1

2
,j,k

=
(u1u3)i+ 1

2
,j,k− 3

2
− 27(u1u3)i+ 1

2
,j,k− 1

2

24∆x3

+

+
27(u1u3)i+ 1

2
,j,k+ 1

2
− (u1u3)i+ 1

2
,j,k+ 3

2

24∆x3

;

Discretization of diffusion terms look as:(
∂2u1

∂x2
1

)∣∣∣∣
i+ 1

2
,j,k

=
−(u1)i+ 5

2
,j,k + 16(u1)i+ 3

2
,j,k − 30(u1)i+ 1

2
,j,k

12∆x2
1

+

+
16(u1)i− 1

2
,j,k − (u1)i− 3

2
,j,k

12∆x2
1

;(
∂2u1

∂x2
2

)∣∣∣∣
i+ 1

2
,j,k

=
−(u1)i+ 1

2
,j+2,k + 16(u1)i+ 1

2
,j+1,k − 30(u1)i+ 1

2
,j,k

12∆x2
2

+

+
16(u1)i+ 1

2
,j−1,k − (u1)i+ 1

2
,j−2,k

12∆x2
2

;(
∂2u1

∂x2
3

)∣∣∣∣
i+ 1

2
,j,k

=
−(u1)i+ 1

2
,j,k+2 + 16(u1)i+ 1

2
,j,k+1 − 30(u1)i+ 1

2
,j,k

12∆x2
3

+

+
16(u1)i+ 1

2
,j,k−1 − (u1)i+ 1

2
,j,k−2

12∆x2
3

;

where

(u1u1)i,j,k =

(−u1i+ 3
2
,j,k + 9u1i+ 1

2
,j,k + 9u1i− 1

2
,j,k − u1i− 3

2
,j,k

16

)2

;

(u1u2)i+ 1
2
,j+ 1

2
,k =

(−u1i+ 1
2
,j+2,k + 9u1i+ 1

2
,j+1,k + 9u1i+ 1

2
,j,k − u1i+ 1

2
,j−1,k

16

)
·

·

(
−u2i+2,j+ 1

2
,k + 9u2i+1,j+ 1

2
,k + 9u2i, j + 1

2
, k − u2i−1,j+ 1

2
,k

16

)
;

(u1u3)i+ 1
2
,j,k+ 1

2
=

(−u1i+ 1
2
,j,k+2 + 9u1i+ 1

2
,j,k+1 + 9u1i+ 1

2
,j,k − u1i+ 1

2
,j,k−1

16

)
·

·
(−u3i+2,j,k+ 1

2
+ 9u3i+1,j,k+ 1

2
+ 9u3i,j,k+ 1

2
− u3i−1,j,k+ 1

2

16

)
;
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Discretization of magnetic field terms look as:

(
∂(H1H1)

∂x1

)∣∣∣∣
i+ 1

2
,j,k

=
−(H2

1 )i+2,j,k + 27(H2
1 )i+1,j,k

24∆x1

+

+
−27(H2

1 )i,j,k + (H2
1 )i−1,j,k

24∆x1

;(
∂(H1H2)

∂x1

)∣∣∣∣
i+ 1

2
,j,k

=
(H1H2)i+ 1

2
,j− 3

2
,k − 27(H1H2)i+ 1

2
,j− 1

2
,k

24∆x2

+

+
27(H1H2)i+ 1

2
,j+ 1

2
,k − (H1H2)i+ 1

2
,j+ 3

2
,k

24∆x2

;(
∂(H1H3)

∂x3

)∣∣∣∣
i+ 1

2
,j,k

=
(H1H3)i+ 1

2
,j,k− 3

2
− 27(H1H3)i+ 1

2
,j,k− 1

2

24∆x3

+

+
27(H1H3)i+ 1

2
,j,k+ 1

2
− (H1H3)i+ 1

2
,j,k+ 3

2

24∆x3

;

The viscosity model and the subgrid-scale tensor are, respectively,

τu11 = −2νT · S11, S11 =
1

2

(
∂u1

∂x1

+
∂u1

∂x1

)
= 0,

τu12 = −2νT · S12, S12 =
1

2

(
∂u1

∂x2

+
∂u2

∂x1

)
,

τu13 = −2νT · S13, S13 =
1

2

(
∂u1

∂x3

+
∂u3

∂x1

)
,

Discretization of the strength tensor terms look as:

(
∂(−τu11)

∂x1

)∣∣∣∣
i+ 1

2
,j,k

=
∂

∂x1

(2νT · S11) =
2

∆x1

[
(νT )i+ 1

2
,j,k ·

[
(u1)i+1,j,k − (u1)i,j,k

∆x1

]
+

+ (νT )i− 1
2
,j,k ·

[
(u1)i,j,k − (u1)i−1,j,k

∆x1

]]
= 0,
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(
∂(−τu12)

∂x2

)∣∣∣∣
i+ 1

2
,j,k

=
∂

∂x2

(2νT · S12) =

=
2

2 · ∆x2

[
(νT )i,j+ 1

2
,k ·
[

(u1)i,j+1,k − (u1)i,j,k
∆x2

−
(u2)i+1,j,k − (u2)i,j,k

∆x1

]
+

+ (νT )i,j− 1
2
,k ·
[

(u1)i,j,k − (u1)i,j−1,k

∆x2

−
(u2)i,j,k − (u2)i−1,j,k

∆x1

]]
,

(
∂(−τu13)

∂x3

)∣∣∣∣
i+ 1

2
,j,k

=
∂

∂x3

(2νT · S13) =

=
2

2 · ∆x3

[
(νT )i,j,k+ 1

2
·
[

(u1)i,j,k+1 − (u1)i,j,k
∆x3

−
(u3)i+1,j,k − (u3)i,j,k

∆x1

]
+

+ (νT )i,j,k− 1
2
·
[

(u1)i,j,k − (u1)i,j,k−1

∆x3

−
(u3)i,j,k − (u3)i−1,j,k

∆x1

]]
,

Then the left hand side of equation (3) is denoted by q
i+ 1

2
jk

q
i+ 1

2
jk

≡ û1
n+1
i+ 1

2
,j,k

− u1
n
i+ 1

2
,j,k

. (4)

We find û1
n+1
i+ 1

2
jk

from equation (4)

û1
n+1
i+ 1

2
,j,k

= q
i+ 1

2
jk

+ u1
n
i+ 1

2
,j,k

.

Replacing all û1
n+1
i+ 1

2
,j,k

from the equations (3) we obtain

q
i+ 1

2
jk
− ∆t

2
· 1

Re
·
(
∂2q

∂x2
1

)
i+ 1

2
,j,k

− ∆t

2
· 1

Re
·
(
∂2q

∂x2
2

)
i+ 1

2
,j,k

− ∆t

2
· 1

Re
·
(
∂2q

∂x2
3

)
i+ 1

2
,j,k

=

= −3∆t

2
[hx]ni+ 1

2
,j,k +

∆t

2
[hx]n−1

i+ 1
2
,j,k

+ ∆t [ax]ni+ 1
2
,j,k +

+
3∆t

2
[bx]ni+ 1

2
,j,k −

∆t

2
[bx]n−1

i+ 1
2
,j,k

− 3∆t

2
[τx]ni+ 1

2
,j,k +

∆t

2
[τx]n−1

i+ 1
2
,j,k

,

(5)

We can re-write equation (5) as[
1 − ∆t

2
· 1

Re
· ∂2

∂x2
1

− ∆t

2
· 1

Re
· ∂2

∂x2
2

− ∆t

2
· 1

Re
· ∂2

∂x2
3

]
q
i+ 1

2
jk

= d
i+ 1

2
,j,k

, (6)
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where

d
i+ 1

2
jk

= −3∆t

2
[hx]ni+ 1

2
,j,k +

∆t

2
[hx]n−1

i+ 1
2
,j,k

+ ∆t [ax]ni+ 1
2
,j,k +

+
3∆t

2
[bx]ni+ 1

2
,j,k −

∆t

2
[bx]n−1

i+ 1
2
,j,k

− 3∆t

2
[τx]ni+ 1

2
,j,k +

∆t

2
[τx]n−1

i+ 1
2
,j,k

,

Assuming that equation (6) has the second-order accuracy in time, we may solve the
following equation instead:

[
1 − ∆t

2
· 1

Re

∂2

∂x2
1

] [
1 − ∆t

2

1

Re
· ∂2

∂x2
2

] [
1 − ∆t

2
· 1

Re

∂2

∂x2
3

]
q∗
i+ 1

2
,j,k

= d
i+ 1

2
,j,k

. (7)

We can show that Equation (7) is an O(∆t4) approximation to equation (6) [13].
Equation (7) is a factorization approximation to equation (6), which allows each spatial

direction to be treated sequentially. If we denote the solution to Equation (7) as q∗
i+ 1

2
jk

, by
expanding Equation (7), subtracting equation (6) from it, and noting that qi+ 1

2
jk ∼ O (∆t2),

we obtain
(
q∗
i+ 1

2
jk
− qi+ 1

2
jk

)
∼ O (∆t4). Therefore, Equation (7) is actually an order O (∆t4)

approximation to equation (6), rather than an order O (∆t3) approximation as stated in [13]
without proof. Since the difference between q∗

i+ 1
2
jk

and qi+ 1
2
jk is of higher order, we shall

return to the same notation and just use qi+ 1
2
jk.

To determine q
i+ 1

2
jk

, equation (7) is solved in 3 stages in sequence as follows:

[
1 − ∆t

2
· 1

Re
· ∂2

∂x2
1

]
A

i+ 1
2
,j,k

= d
i+ 1

2
,j,k

; (8)

[
1 − ∆t

2
· 1

Re
· ∂2

∂x2
2

]
B

i+ 1
2
,j,k

= A
i+ 1

2
,j,k

; (9)

[
1 − ∆t

2
· 1

Re
· ∂2

∂x2
3

]
q
i+ 1

2
,j,k

= B
i+ 1

2
jk
. (10)

At the first stage, A
i+ 1

2
,j,k

is sought in the coordinate direction x1:

[
1 − ∆t

2
· 1

Re
· ∂2

∂x2
1

]
A

i+ 1
2
,j,k

= d
i+ 1

2
,j,k

,

A
i+ 1

2
,j,k

− ∆t

2
· 1

Re
·
(
∂2A

∂x2
1

)
i+ 1

2
,j,k

= d
i+ 1

2
,j,k

,
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A
i+ 1

2
,j,k

− ∆t

2

1

Re

−A
i+ 5

2
,j,k

+ 16A
i+ 3

2
,j,k

− 30A
i+ 1

2
,j,k

12∆x2
1

+

+
16A

i− 1
2
,j,k

− A
i− 3

2
,j,k

12∆x2
1

= d
i+ 1

2
,j,k

, (11)

s1Ai+ 5
2
,j,k

− 16s1Ai+ 3
2
,j,k

+ (1 + 30s1)Ai+ 1
2
,j,k

−

− 16s1Ai− 1
2
,j,k

+ s1Ai− 3
2
,j,k

= d
i+ 1

2
,j,k

, (12)

where s1 = ∆t
24·Re·∆x2

1
.

This equation (12) is solved by the cyclic penta-diagonal matrix method, which yields
A

i+ 1
2
jk

.
The same procedure is repeated next for the x2 directions in the second stage, namely,

B
i+ 1

2
jk

is obtained by solving equation (9), with the solution from the first stage as the
coefficient on the right hand and the coefficient s1 in the penta-diagonal matrix replaced by
s2 = ∆t

24·Re·∆x2
2
. Finally, in the third stage, q

i+ 1
2
jk

is solved through the similar penta-diagonal
system shown in equation (10).

Once we have determined the value of q
i+ 1

2
,j,k

, we find û1
n+1
i+ 1

2
,j,k

û1
n+1
i+ 1

2
,j,k

= q
i+ 1

2
,j,k

+ u1
n
i+ 1

2
,j,k

.

The velocity components û2
n+1
i,j+ 1

2
,k

and û3
n+1
i,j,k+ 1

2

are solved in a similar manner.

3.3 Algorithm of solving the Poisson equation

In the second step, the pressure Poisson equation is solved, which ensures that the continuity
equation is satisfied. The Poisson equation is transformed from the physical space into the
spectral space by using a Fourier transform. The resulting intermediate velocity field does
not satisfy the continuity equation. The final velocity field is obtained by adding to the
intermediate field the term corresponding to the pressure gradient:

un+1
1 = û1

n+1 − ∆t
∂p

∂x1

;

un+1
2 = û2

n+1 − ∆t
∂p

∂x2

;

un+1
3 = û3

n+1 − ∆t
∂p

∂x3

.

Substituting the continuity equation, we obtain the Poisson equation for the pressure
field:
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∂2p

∂x2
1

+
∂2p

∂x2
2

+
∂2p

∂x2
3

= ∆t

(
∂ûn+1

1

∂x1

+
∂ûn+1

2

∂x2

+
∂ûn+1

3

∂x3

)
≡ Fi,j,k,

where Fi,j,k denotes the known right hand side of the Poisson equation, with each term
approximated by an order O(∆x4) finite-difference approximation. For example, the first
term in Fi,j,k is approximated as

∆t
∂ûn+1

1

∂x1

∣∣∣∣
i+ 1

2
,j,k

= ∆t
û1

n+1
i− 3

2
,j,k

− 8û1
n+1
i− 1

2
,j,k

+ 8û1
n+1
i+ 3

2
,j,k

− û1
n+1
i+ 5

2
,j,k

12∆x1

.

To be consistent with the spatial accuracy in the first step, the left hand side of the above
Poisson equation is discretized using 5-point scheme of O(∆x4) accuracy, as follows:

[
−Pi+2,j,k + 16Pi+1,j,k − 30Pi,j,k + 16Pi−1,j,k − Pi−2,j,k

12∆x2
1

]
+

+

[
−Pi,j+2,k + 16Pi,j+1,k − 30Pi,j,k + 16Pi,j−1,k − Pi,j−2,k

12∆x2
2

]
+

+

[
−Pi,j,k+2 + 16Pi,j,k+1 − 30Pi,j,k + 16Pi,j,k−1 − Pi,j,k−2

12∆x2
3

]
= Fi,j,k. (13)

Now we apply the three dimensional Fourier transform

Pi,j,k =
1

N

N1−1∑
m=0

N2−1∑
n=0

N3−1∑
s=0

V im
1 V jn

2 V sk
3 · p̂m,n,s;

Fi,j,k =
1

N

N1−1∑
m=0

N2−1∑
n=0

N3−1∑
s=0

V im
1 V jn

2 V sk
3 · f̂m,n,s.

(14)

The inverse transforms are:

p̂m,n,s =
1

N

N1−1∑
i=0

N2−1∑
j=0

N3−1∑
k=0

V −im
1 V −jn

2 V −sk
3 · Pi,j,k;

f̂m,n,s =
1

N

N1−1∑
i=0

N2−1∑
j=0

N3−1∑
k=0

V −im
1 V −jn

2 V −sk
3 · Fi,j,k.

(15)

where N = N1 ·N2 ·N3, V1 = e
ι
(

2π
N1

)
, V2 = e

ι
(

2π
N2

)
, and V3 = e

ι
(

2π
N3

)
.

Substituting equation (15) into equation (14), we obtain quickly the solution for the
pressure field in the spectral space as

p̂m,n,s =
12f̂m,n,s

Q1 + Q2 + Q3

(16)

ISSN 1563–0285 Journal of Mathematics, Mechanics, Computer Science №3(99) 2018



HFD method for large eddy simulation . . . 65

where

Q1 =
1

∆x2
1

[
−2 cos

(
4πm

N1

)
+ 32 cos

(
2πm

N1

)
− 30

]
,

Q2 =
1

∆x2
2

[
−2 cos

(
4πn

N2

)
+ 32 cos

(
2πn

N2

)
− 30

]
,

Q3 =
1

∆x2
3

[
−2 cos

(
4πs

N3

)
+ 32 cos

(
2πs

N3

)
− 30

]
.

An inverse Fourier transform is then performed to obtain the pressure Pi,j,k in the physical
space. The obtained pressure field is then used at the third step to determine the final velocity
field.

At the third stage, it is assumed that the transfer is carried out only by the pressure
gradient, where the final velocity field is recalculated.(

u⃗n+1 − u⃗∗)/∆t = −∇p.

3.4 Algorithm for solving the equation of the magnetic field strength

Let us review equation (1) for the first component of the magnetic field strength in the
horizontal direction at the spatial location (i + 1/2, j, k):

∂H1

∂t
+

∂

∂x2

(u2H1 −H2u1) +
∂

∂x3

(u3H1 −H3u1)−

− 1

Rem

[
∂2H1

∂x2
1

+
∂2H1

∂x2
2

+
∂2H1

∂x2
3

]
= −

(
∂τH11
∂x1

+
∂τH12
∂x2

+
∂τH13
∂x3

)
.

(17)

The strength of the magnetic field is found using the explicit Adams-Bachfort scheme
for magnetic convective terms and the implicit Crank-Nicholson scheme for viscous terms,
equation (17) takes the form:

Ĥ1

n+1

i+ 1
2
,j,k −H1

n
i+ 1

2
,j,k

= −3∆t

2
[Hx]ni+ 1

2
,j,k +

∆t

2
[Hx]n−1

i+ 1
2
,j,k

+
∆t

2
[aHx]ni+ 1

2
,j,k +

+
∆t

2

1

Re
·

(∂2Ĥ1

∂x2
1

)n+1

i+ 1
2
,j,k

+

(
∂2Ĥ1

∂x2
2

)n+1

i+ 1
2
,j,k

+

(
∂2Ĥ1

∂x2
3

)n+1

i+ 1
2
,j,k

−

−3∆t

2
[τHx]ni+ 1

2
,j,k +

∆t

2
[τHx]n−1

i+ 1
2
,j,k

,

(18)

where

[Hx]ni+ 1
2
,j,k =

[
∂

∂x2

(u2H1 −H2u1)

]n
i+ 1

2
,j,k

+

[
∂

∂x3

(u3H1 −H3u1)

]n
i+ 1

2
,j,k

[aHx]ni+ 1
2
jk =

1

Rem
·

[(
∂2H1

∂x2
1

)n

i+ 1
2
,j,k

+

(
∂2H1

∂x2
2

)n

i+ 1
2
,j,k

+

(
∂2H1

∂x2
3

)n

i+ 1
2
,j,k

]
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[τHx]ni+ 1
2
jk =

(
∂τu11
∂x1

)n

i+ 1
2
,j,k

+

(
∂τu12
∂x2

)n

i+ 1
2
,j,k

+

(
∂τu13
∂x3

)n

i+ 1
2
,j,k

Discretization of magnetic convective terms look as:

(
∂u2H1

∂x2

)∣∣∣∣
i+ 1

2
,j,k

=
(u2H1)i+ 1

2
,j− 3

2
,k − 27(u2H1)i+ 1

2
,j− 1

2
,k

24∆x2

+

+
27(u2H1)i+ 1

2
,j+ 1

2
,k − (u2H1)i+ 1

2
,j+ 3

2
,k

24∆x2

;(
∂H2u1

∂x2

)∣∣∣∣
i+ 1

2
,j,k

=
(H2u1)i+ 1

2
,j− 3

2
,k − 27(H2u1)i+ 1

2
,j− 1

2
,k

24∆x2

+

+
27(H2u1)i+ 1

2
,j+ 1

2
,k − (H2u1)i+ 1

2
,j+ 3

2
,k

24∆x2

;(
∂H3u1

∂x3

)∣∣∣∣
i+ 1

2
,j,k

=
(H3u1)i+ 1

2
,j,k− 3

2
− 27(H3u1)i+ 1

2
,j,k− 1

2

24∆x3

+

+
27(H3u1)i+ 1

2
,j,k+ 1

2
− (H3u1)i+ 1

2
,j,k+ 3

2

24∆x3

;(
∂u3H1

∂x3

)∣∣∣∣
i+ 1

2
,j,k

=
(u3H1)i+ 1

2
,j,k− 3

2
− 27(u3H1)i+ 1

2
,j,k− 1

2

24∆x3

+

+
27(u3H1)i+ 1

2
,j,k+ 1

2
− (u3H1)i+ 1

2
,j,k+ 3

2

24∆x3

;

Discretization of magnetic diffusion terms look as:(
∂2H1

∂x2
1

)∣∣∣∣
i+ 1

2
,j,k

=
−(H1)i+ 5

2
,j,k + 16(H1)i+ 3

2
,j,k − 30(H1)i+ 1

2
,j,k

12∆x2
1

+

+
16(H1)i− 1

2
,j,k − (H1)i− 3

2
,j,k

12∆x2
1

;(
∂2H1

∂x2
2

)∣∣∣∣
i+ 1

2
,j,k

=
−(H1)i+ 1

2
,j+2,k + 16(H1)i+ 1

2
,j+1,k − 30(H1)i+ 1

2
,j,k

12∆x2
2

+

+
16(H1)i+ 1

2
,j−1,k − (H1)i+ 1

2
,j−2,k

12∆x2
2

;(
∂2H1

∂x2
3

)∣∣∣∣
i+ 1

2
,j,k

=
−(H1)i+ 1

2
,j,k+2 + 16(H1)i+ 1

2
,j,k+1 − 30(H1)i+ 1

2
,j,k

12∆x2
3

+

+
16(H1)i+ 1

2
,j,k−1 − (H1)i+ 1

2
,j,k−2

12∆x2
3

,
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where

(u2H1)i+ 1
2
,j+ 1

2
,k =

(−u2i+2,j+ 1
2
,k + 9u2i+1,j+ 1

2
,k + 9u2i,j+ 1

2
,k − u2i−1,j+ 1

2
,k

16

)
·

·

(
−H1i+ 1

2
,j+2,k + 9H1i+ 1

2
,j+1,k + 9H1i+ 1

2
,j,k −H1i+ 1

2
,j−1,k

16

)
;

(H2u1)i+ 1
2
,j+ 1

2
,k =

(
−H2i+2,j+ 1

2
,k + 9H2i+1,j+ 1

2
,k + 9H2i,j+ 1

2
,k −H2i−1,j+ 1

2
,k

16

)
·

·
(−u1i+ 1

2
,j+2,k + 9u1i+ 1

2
,j+1,k + 9u1i+ 1

2
,j,k − u1i+ 1

2
,j−1,k

16

)
;

(u3H1)i+ 1
2
,j,k+ 1

2
=

(−u3i+2,j,k+ 1
2

+ 9u3i+1,j,k+ 1
2

+ 9u3i,j,k+ 1
2
− u3i−1,j,k+ 1

2

16

)
·

·

(
−H1i+ 1

2
,j,k+2 + 9H1i+ 1

2
,j,k+1 + 9H1i+ 1

2
,j,k −H1i+ 1

2
,j,k−1

16

)
;

(H3u1)i+ 1
2
,j,k+ 1

2
=

(
−H3i+2,j,k+ 1

2
+ 9H3i+1,j,k+ 1

2
+ 9H3i,j,k+ 1

2
−H3i−1,j,k+ 1

2

16

)
·

·
(−u1i+ 1

2
,j,k+2 + 9u1i+ 1

2
,j,k+1 + 9u1i+ 1

2
,j,k − u1i+ 1

2
,j,k−1

16

)
;

The viscosity model and the magnetic rotation tensor are, respectively,

τH11 = −2ηt · J11, J11 =
1

2

(
∂H1

∂x1

− ∂H1

∂x1

)
= 0,

τH12 = −2ηt · J12, J12 =
1

2

(
∂H1

∂x2

− ∂H2

∂x1

)
,

τH13 = −2ηt · J13, J13 =
1

2

(
∂H1

∂x3

− ∂H3

∂x1

)
,

The discretization of the magnetic rotation tensor terms look as:

∂

∂x1

(
−τH11

)
= 0,

∂
∂x2

(
−τH12

)
= ∂

∂x2
(2ηt · J12) =

= 2
2·∆x2

[
(ηt)i,j+ 1

2
,k ·
[
(H1)i,j+1,k−(H1)i,j,k

∆x2
− (H2)i+1,j,k−(H2)i,j,k

∆x1

]
−

− (ηt)i,j− 1
2
,k ·
[
(H1)i,j,k−(H1)i,j−1,k

∆x2
− (H2)i,j,k−(H2)i−1,j,k

∆x1

]]
,
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∂
∂x3

(
−τH13

)
= ∂

∂x3
(2ηt · J13) =

= 2
2·∆x3

[
(ηt)i,j,k+ 1

2
·
[
(H1)i,j,k+1−(H1)i,j,k

∆x3
− (H3)i+1,j,k−(H3)i,j,k

∆x1

]
−

− (ηt)i,j,k− 1
2
·
[
(H1)i,j,k−(H1)i,j,k−1

∆x3
− (H3)i,j,k−(H3)i−1,j,k

∆x1

]]
,

The equation is solved by he similar penta-diagonal system shown in section II and is
found to be (H1)

n+ 1
3

i,j,k .

(H1)
n+ 2

3
i,j,k , (H1)

n+1
i,j,k components of the magnetic field strength are defined in a similar way.

Thus, all the components of the magnetic field strength determined this way.

3.5 Definition of homogeneous MHD turbulence characteristics

To identify turbulent characteristics in the physical space, it is necessary to average different
values in volume. The averaged values will be used to find the turbulent characteristics. The
procedure for calculating the turbulent characteristics is similar to the one specified in papers
by [17] and [3]. The value averaged along the entire calculated area is calculated by the
following formula:

⟨ui⟩ =
1

N1N2N3

N1∑
n=1

N2∑
m=1

N3∑
q=1

(ūi)n,m,q.

⟨Hi⟩ =
1

N1N2N3

N1∑
n=1

N2∑
m=1

N3∑
q=1

(
H̄i

)
n,m,q

⟨
u2
1

⟩
= ⟨u1(x, y, z, t) · u1(x, y, z, t)⟩ ,

⟨
u2
2

⟩
= ⟨u2(x, y, z, t) · u2(x, y, z, t)⟩ ,

⟨
u2
3

⟩
= ⟨u3(x, y, z, t) · u3(x, y, z, t)⟩ .

The microscale length is determined by the following ratio:

λf =

{
2

−f ′′ (0)

}1/2
, λg =

{
2

g′′ (0)

}1/2
.
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The integral scale is expressed as

Λf (t) =

∫  L/2

0

f (r, t) dr, Λg(t) =

∫  L/2

0

g (r, t) dr.

The dissipation rate is calculated by the following formula:

ϵ =< 2vSijSij >= 2v

[⟨(
∂u1

∂x1

)2
⟩

+

⟨(
∂u2

∂x2

)2
⟩

+

⟨(
∂u3

∂x3

)2
⟩]

+

+ 2v

[
1

2

⟨(
∂u1

∂x2

+
∂u2

∂x1

)2
⟩

+
1

2

⟨(
∂u1

∂x3

+
∂u3

∂x1

)2
⟩

+
1

2

⟨(
∂u2

∂x3

+
∂u3

∂x2

)2
⟩]

The turbulent kinematic energy is found in the following way: The turbulent kinetic and
magnetic energy are, respectively,

Eku =
1

2

(
⟨u1⟩2 + ⟨u2⟩2 + ⟨u3⟩2

)
=

3

2

⟨
u2
1

⟩
,

Ekh =
1

2

(
⟨H1⟩2 + ⟨H2⟩2 + ⟨H3⟩2

)
=

3

2

⟨
H2

1

⟩
.

Velocity derivative skewness is defined in the following form:

S(t) =

⟨
1
3

[(
∂u1

∂x1

)3
+
(

∂u2

∂x2

)3
+
(

∂u3

∂x3

)3]⟩
(⟨

1
3

[(
∂u1

∂x1

)2
+
(

∂u2

∂x2

)2
+
(

∂u3

∂x3

)2]⟩)3/2

Flatness is defined in the following form:

F (t) =

⟨
1
3

[(
∂u1

∂x1

)4
+
(

∂u2

∂x2

)4
+
(

∂u3

∂x3

)4]⟩
(⟨

1
3

[(
∂u1

∂x1

)2
+
(

∂u2

∂x2

)2
+
(

∂u3

∂x3

)2]⟩)2

3.6 Analytical solution of the Taylor-Green vortex problem

For validation of the developed algorithm the classical problem of the 3-D Taylor and Green
vortex flow is considered without considering the magnetic field, and the simulated time-
dependent turbulence characteristics of this flow were found to be in excellent agreement
with the corresponding analytical solution valid for short times.

We duplicate the classical example proposed in [21] in order to validate the numerical
simulation of increasing order of accuracy in time and in space O(∆t2, h4), with efficient
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acceleration for sequential algorithm. Starting from a simple incompressible three-dimensional
initial condition of the form.


u1(x1, x2, x3, t = 0) = cos(ax1) sin(ax2) sin(ax3),

u2(x1, x2, x3, t = 0) = − sin(ax1) cos(ax2) sin(ax3),

u3(x1, x2, x3, t = 0) = 0.

(19)

and assuming periodic conditions in a cubic domain: 0 ≤ x1 ≤ 2π, 0 ≤ x2 ≤ 2π, 0 ≤ x3 ≤ 2π
with a = 1, the three-dimensional filtered Navier-Stokes equation


∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ
∂p
∂xi

+ 1
Re

∂2ui

∂xi∂xj
,

∂ui

∂xi
= 0.

(20)

can be solved analytically at small times, using perturbation expansion. In (1) all quantities
have been properly normalized by the initial maximum velocity magnitude U0 in the x1 or
x2 direction, and L/2π , where L is the physical domain size, ui -velocity at i = 1, 2, 3,
corresponding to x1, x2, x3 directions, Re = LU0/ν is the Reynolds number of flow, U0 - the
characteristic velocity, T = aU0t, a = 2π/L. The pressure p has been normalized by ρU2

0 .
Taylor and Green obtained a perturbation expansion of the velocity field, up to O(t5) . The
resulting average kinetic energy is:

Ek =
U2
0

8
u

′2 (21)

where

u
′2 = 1 − 6T

Re
+

18T 2

Re2
−
(

5

24
+

36

Re2

)
T 3

Re
+

(
5

2Re2
+

54

Re4

)
T 4−

−
(

5

44.12
+

367

24Re2
+

4.81

5Re4

)
T 5

Re
+

(
361

44.32
+

761

12Re2
+

324

5Re4

)
T 6

Re2
.

(22)

The dissipation rate is written in the following form:

W = µ
3U2

0a
2

4
W

′
(23)

where

W
′

= 1 − 6T

Re
+

(
5

48
+

18T 2

Re2

)
T 2 −

(
5

3
+

36

Re2

)
T 3

Re
+

+

(
50

99.64
+

1835

9.16Re2
+

54

Re4

)
T 4 −

(
361

44.32
+

761

12Re2
+

324

5Re4

)
T 5

Re
. (24)
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Simulation at different Reynolds numbers was compared with the analytical solution of
the Taylor-Green vortex problem from the point of view of: the average kinetic energy and
the average dissipation rate of the turbulent flow. Figure 2 compares the average turbulent
kinetic energy obtained in this paper with the analytical solution of the Taylor-Green vortex
problem for different Reynolds numbers. The results obtained by analytical solution of short-
time theory of TG, spectral methods at 2563 grid resolution and hybrid finite difference
method at 1283 grid resolution show a satisfactory agreement till T = 3 at Re = 100, and
till T = 4 at Re = 300 and Re = 600 for the average turbulent kinetic energy. The error
between analytical and numerical solutions for the average kinetic energy was defined as:
Error(Ek) = |EHFDM

k − ETG
k | = 10−4.

Figure 2: Comparative results of modeling the evolution of the average kinetic energy in
time, spectral and hybrid methods of modeling the Taylor-Green vortex of: TG short-time
theory at: 1) Re=100; 2)Re=300; 3)Re=600; Spectral method, 2563 at: 4)Re=100; 5)Re=300;
6)Re=600; HFD method at: 7)Re=100; 8)Re=300; 9)Re=600.

Figure 3 compares the results of average rate of dissipation of the turbulence decay with
respect to time of the numerical simulation, and the analytical solution of the Taylor-Green
vortex problem at different Reynolds number. It can be seen from Figure 3 that the short-
term theoretical results and numerical simulation results are in good agreement till T = 2.5
for Re = 100, and T = 2 for Re = 300;Re = 600. It is difficult to compare the analytical
solution with numerical simulation, since the analytical solution valid only for short-term
time, and the numerical solution can provide good results for long term, so it is worthwhile
to compare simulation results of spectral method and HFD method for long term. The rate of
dissipation increases sharply due to the formation of small-scale flow structures and reaches
a maximum at T = 3, for short time theory of TG at Re = 100, and at T = 4 for other
case, and then the rate of dissipation shows a decrease in the tendency for result of analytical
solution of TG at Re = 100 because of the decrease in the total Reynolds number of the
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stream. In the simulation results, the error between analytical and numerical solutions for
the average dissipation rate is: Error(ϵ) = |ϵHFDM − ϵTG| = 10−2.

Figure 3: Comparative results of modeling the evolution of the average rate of dissipation of
the decay of turbulence in time, the spectral and hybrid methods of modeling the Taylor-
Green vortexof: TG short-time theory at: 1) Re=100; 2)Re=300; 3)Re=600; Spectral method,
2563 at: 4)Re=100; 5)Re=300; 6)Re=600; HFD method at: 7)Re=100; 8)Re=300; 9)Re=600.

Figure 4 shows that with the increase in the resolution of the computational grid, the
results of skewness of the turbulence of hybrid method tends gently to the exponential results
of the pseudospectral method for the computational grid 256x256x256.

Figure 5 shows the results of modeling the evolution of flatness, spectral and hybrid
methods for modeling the Taylor-Green vortex at Re = 300.

4 Results and discussion

Numerical model allows to describe the homogeneous magnetohydrodynamic turbulence de-
cay based on large eddy simulation. For this task, the kinematic viscosity ν = 10−4 was
taken constant and the magnetic viscosity were set in the range of νm = 10−3 ÷ 10−4. The
characteristic values of the velocity, length, magnetic field strength were taken equal to:
UCH = 1, LCH = 1, HCH = 1 respectively. Reynolds number is Re = 104, the magnetic
Reynolds number varied depending on the magnetic viscosity coefficient. The Alfven num-
ber characterizing the motion of conductive fluid for various numbers of magnetic Reynolds:
A = Ha2/Rem, where Hartmann number is Ha = 1. For the calculations used grid size
128x128x128. The time step was taken equal ∆τ = 0.001.

As result of simulation at different magnetic Reynolds numbers were obtained the follow-
ing turbulence characteristics: integral scale and Taylor scale.
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Figure 4: Comparison of the results of modeling the evolution of skewness, spectral and hy-
brid methods for modeling the Taylor-Green vortex of: TG short-time theory at: 1) Re=100;
2)Re=300; 3)Re=600; Spectral method, 2563 at: 4)Re=100; 5)Re=300; 6)Re=600; HFD
method at: 7)Re=100; 8)Re=300; 9)Re=600.

Figure 5: Comparison of the results of modeling the evolution of flatness, spectral and hybrid
methods for modeling the Taylor-Green vortex of: TG short-time theory at: 1) Re=100;
2)Re=300; 3)Re=600; Spectral method, 2563 at: 4)Re=100; 5)Re=300; 6)Re=600; HFD
method at: 7)Re=100; 8)Re=300; 9)Re=600.
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Figure 6: Change of the integral turbulence scale calculated at different magnetic Reynolds
numbers: 1) Rem = 103; 2) Rem = 2 · 103; 3) Rem = 5 · 103; 4) Rem = 104.

According to semi-empirical theory of turbulence integral scale should grow with time.
The results presented in Figure 6 illustrates the effect of magnetic viscosity on the internal
structure of the MHD turbulence. Variation of the coefficient of magnetic viscosity leads
to a proportional change in the integral scale. Figure 6 shows that the size of large eddies
rapidly increases at small number of magnetic Reynolds Rem = 103, than in the case, when
Rem = 104 which leads to fast energy dissipation.

Figure 7 shows the change in the micro scale - calculated at different numbers of magnetic
Reynolds 1)Rem = 103; 2)Rem = 2 · 103; 3)Rem = 5 · 103; 4)Rem = 104. Figure 7 shows the
change of the Taylor microscale at different magnetic Reynolds numbers. It can be seen that
in the case Rem = 103 when the magnetic viscosity coefficient is large then the dissipation
rate increases. In the case when the magnetic viscosity coefficient is smaller then the scale
gradually increases, and the small scale structure of the turbulence tends to slowly isotropy.
This also indicates that with small numbers Rem the decay of isotropic turbulence occurs
faster than in the case when Rem is high.

From the figures it is seen that in the case of high medium conductivity at Rem = 103

the frictional force increases and the flow rate is reduced faster than, at Rem = 104, that
corresponds to the low conductivity of the medium, in this version, the frictional force have
minimal impact on the flow velocity. Based on the study of the results determined that the
first part of the turbulent kinetic energy is used for turbulent mixing, the second part - at
creating magnetic field and the third part - on the forces of resistance between the components
of the velocity and magnetic tension.
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Figure 7: Change of Taylor-scale calculated at different magnetic Reynolds numbers: 1)Rem =
103; 2)Rem = 2 · 103; 3)Rem = 5 · 103; 4)Rem = 104.

5 Conclusion

Based on the method large-eddy simulation was produced the numerical modelling of influ-
ence magnetic viscosity to decay of magnetohydrodynamic turbulence, analyzing simulation
results it is possible to make the following conclusion: the magnetic viscosity of the flow has
a significant influence on the MHD turbulence. Obtained results allow sufficiently accurately
calculate the change characteristics of magnetohydrodynamic turbulence over time at differ-
ent magnetic Reynolds numbers. To simulate the turbulence energy degeneration, a numerical
algorithm for solving the unsteady three-dimensional Navier-Stokes equations based on the
hybrid method was developed. The numerical algorithm is a hybrid method combining fi-
nite difference and spectral methods. It is also computationally efficient. The finite-difference
method combined with the cyclic Penta-diagonal matrix for the solution of the Navier-Stokes
equations allowed to achieve the accuracy of the fourth order in space and the accuracy of
the second order in time. The spectral method for solving the Poisson equation has a high
computational efficiency by using a fast Fourier transform library.

To check the adequacy of the developed algorithm, the classical Taylor and green problem
with the same initial flow conditions, for modeling the degeneracy of the kinetic energy of the
flow and the time evolution of viscous dissipation is considered. Average normalized errors
between analytical and numerical solutions for mean kinetic energy and mean dissipation rate
were established as Error(Ek) = |EFDM

k − ETG
k | = 10−4, Error(ϵ) = |ϵFDM − ϵTG| = 10−2.

respectively. Thus, the results of numerical simulation of turbulence characteristics show very
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good agreements with the analytical solution. Thus, the numerical algorithm was developed
for solving unsteady three-dimensional magnetohydrodynamic equations, and makes it pos-
sible to simulate the MHD turbulence decay at different magnetic Reynolds numbers.
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