116 Kenzhebek Y.G. et al.

IRSTT 519.687.1

Development of a hybrid parallel algorithm (MPI + OpenMP) for solving the
Poisson equation

Kenzhebek Y.G., Al-Farabi Kazakh National University
Almaty, Kazakhstan, E-mail: kenzhebekyerzhan@gmail.com
Baryssova S.B., Al-Farabi Kazakh National University
Almaty, Kazakhstan, E-mail: sandugash.baryssova@gmail.com
Imankulov T.S.; Al-Farabi Kazakh National University
Almaty, Kazakhstan, E-mail: imankulov_ts@Qmail.ru

This article presents the development of a hybrid parallel algorithm for solving the Dirichlet prob-
lem for the two-dimensional Poisson equation. MPI and OpenMP were chosen as the technology for
parallelization. For the numerical sequential solution of the Poisson equation, an explicit “cross”
scheme was used (the Jacobi iterative method). A parallel algorithm was implemented by the
method of decomposition of regions, namely, one-dimensional decomposition. In the article in the
form of tables and graphs shows the acceleration and efficiency of parallel algorithms using MPI
and OpenMP technologies separately and were compared with the acceleration and efficiency of
the MPI + OpenMP hybrid algorithm. Also, the choice of the hybrid program architecture is justi-
fied and the distribution of data between processes is explained. The results show the effectiveness
of using a hybrid algorithm for solving such problems and show the acceleration of time by 1.5-2
times. The presented algorithm was tested on a cluster of the computing center of the Novosibirsk
State University for a different number of points in the computational domain (from 64x64 to
1024x1024). The results of the presented work can be applied to the simulation of problems of
hydrodynamics, ecology, aerodynamics, the spread of chemical reagents, the propagation of heat
and other physical processes.

Keywords: high-performance computing, hybrid technologies, parallel computing, MPI, OpenMP.

MPI xone OpenMP Texnosorusisiapsl Heriziume Ilyaccon TeHaeyiH mrelnryre apHaJiFaH rubpu
napaJIesib/i aJropuTM Kypy
Kemxebexk E.T., On-®apabu arciagarsl Kazak YITThIK YHUBEPCUATETI
Amvarer k., Kazakcran, E-mail: kenzhebekyerzhan@gmail.com
Baproicosa C.B., Os-Qapabu areiagarel Kazak ¥YaTThIK YHUBEPCUTET]
Aumvarsr K., Kazakcran, E-mail: sandugash.baryssova@gmail.com
Nmankysios T.C., Oun-Papabu areiagarsl Kazak ¥YJITTHIK, YHUBEPCUTETI
Anmarer k., Kazakcran, E-mail: imankulov_ts@mail.ru

byn makamazma exi esmempi Ilyaccon rempeyi ymmin Jlupuxse Mmocesecin Imernnyre apHajraH
rubpuATI MapasuIesibii aJropuTM YCbIHBLIFaH. [lapasiesnsiey TexHoJorusickl peringe MPI »kone
OpenMP ramnanger. [lyaccon TeHaeyiniH caHIbIK KY€/l MerriMi YITiH aflKbIH «KPEeCT» CXeMAaChI
KoJaHbLIIb(SIko6u urepanusiibik oici). Iapasuiesbai ajropuT™M OGJIBICTHL JIEKOMIIO3UIUSLIAY
omici OoibIHITA Ky3ere achIpbLIAbl. Makagaga TapasiiesbIi aJrOPUTMIEPIiH, YIAeyl KoHe
THiMIiTiri KecTesmep MeH TrpadurTep TYpiHIAE KOpCETIIreH KoHe THOPHWIATI aJrOPpUTMHIH
yaeyl »koHe THIMILIrIMEeH cajbicThipyaap Kypriziial. Conpaii-ak, rubdpuaTi Oarmapiama
apXUTEKTYPaChlH TaHjay cebebl »KoHe IPOoIecapaJsblK, JePEeKTEPIiH, YJIeCTipiiyl TyCiHmipiiesd.
AJtbiHFaH HOTUIKEJIED, TUOPUITI AJITOPUTMJI OCHIFAH YKCAC ecernTepie KOJJIAHY THIMJI eKeHiH
JKOHEe YaKBITTBIH Kemesmerinyi 1,5-2 ece aprarsiabi kepceremai. By amropurm HoBocubupck
MemitekeTTiK YHUBEPCUTETIHIH €CenTeyill OpPTAJBIFBIHBIH, KJIACTEPIH/E ecerTey OOJIBICHIHBIH
oprypai Hykresepinge (64x64-ten 1024x1024-re geiiin) ceamgpl. ZKacasraH KyMBICTBIH,
HOTUKEJIEPIH TUJIPOTUHAMUKAHBIH, SKOJOTUAHBIH, a3POJIMHAMUKAHBIH, XUMUSIBIK, PEATCHTTEPIiH,
TapaJlybIHbIH, 2KbLIy Me€H 0acKa Jda (QU3KNKAJIBIK YP/IICTEPiH TapajyblHBIH MOCEeJeIepiH
MOJIEJIBIEYTE KOJIIAHYFa OOJIAIbI.

Tyiiin ce3mep: Korapbl OHIMII ecenTeysep, THOPU TEXHOJIOTUIIAD, HMapasIe/ibIl ecenTeyaep,

MPI, OpenMP.

ISSN 1563-0285 Journal of Mathematics, Mechanics and Computer Science Ne3(99) 2018

Development of a hybrid parallel algorithm (MPI + OpenMP) ... 117

Paspaborka ruGpuasoro napasuienbuoro aiaropurma (MPI4+OpenMP) nis peruenust
ypaBHeHnus Ilyaccona

Kemxkebex E.T'., Kazaxckuit HAIIMOHAJIBHBIN YHUBEPCUTET UMeHn aab-Papadu
Aymvarer, Kaszaxcran, E-mail: kenzhebekyerzhan.com

Bapricopa C.B., Ka3zaxckuii HalimoHaJIbHBIN yHUBEPCUTET UMeHHU ajib-Papabu

Ammarer, Kazaxcran, E-mail: sandugash.baryssova@gmail.com

Nwmankynos T.C., Kazaxckuit HAIlMOHAJIBHBINA YHUBEPCUTET UMEHU aJib-Papabu

Anvarer, Kazaxcran, E-mail: imankulov_ts@mail.ru

B nmannoit cratbe mpejcTaBiaeHa pa3pabOTKa THOPUIHOTO TAPAIETHHOTO AJTOPUTMA JIJIs
pemenns 3aja4uu Jlupuxie jjsi 1ByMepHOro ypapHenus Ilyaccona. B kayecTBe TexHOJOrUU J1Jist
pacnapaJuienuBanust 6but BoiOpansl MPI m OpenMP. [Insa guciaeHHOTO IOC/IEI0BATEILHOIO
peltenusi ypaBHeHus IlyaccoHa HCHOJIB30BAJIACH SIBHAs CXEMa <«KPeCT» (MTEPAIMOHHBIA MeTO.I
$kob6u). [TapasuienbHblil aaropuTM ObLI PEATM30BAaH METOIOM JIEKOMIO3uIpeli obacreil, & MMEHHO
OJIHOMEpHAas JeKoMIo3uiius. B crarbe B Buzge Ta0daul[u rpadUKOB IIOKA3AHbI YCKOPEHUS U
3¢ HEKTUBHOCTH TapaJIIeJIbHBIX AJOPUTMOB IIpHU wuciojb3oBanun rTexaosoruii MPI u Open-
MP mo otmenpHOCTM U OBLIN CpaBHEHBI C YCKOpeHHeM U 3(M(OEKTUBHOCTHIO TUOPUIHOIO
agropurma MPI + OpenMP. Tak ke, 060cHOBaH BBIOOp apXUTEKTYpPbI THOPUIHON MIPOrpaMMBbI
U OOBbSICHEHBI PACIPEIETEHUS MTaHHBIX MEXKIy Iporeccamu. llosiyueHHbIe PE3yIbTATHI TOBOPSIT
00 3(MDEKTUBHOCTH WCIOJH30BAHUS THOPUIHOTO AJTOPUTMA JJIsi PENIeHus TOI0OHBIX 3a/1at
7 TIOKA3bIBAIOT yCKOpeHme BpemeHu B 1,5-2 paza. IIpencraBiieHHBIH aJropuTM IPOTECTHPOBAH
Ha KJIaCTepe BBIYUCIUTEIbHOrO IeHTpa Hosocubupckoro locymapcrBeHHOro YHUBEPCUTETA JIJIsT
Pa3JIMYHOIO KOJMYECTBA TOYEK pacdernoil obgactu (ot 64x64 mo 1024x1024). Pesysbrars
[IPEJICTABJICHHON PAbOTHl MOXKHO IPUMEHUTb [JIsi MOJEIUPOBAHUS 337ad THUIPOINHAMUKH,
9KOJIOTUW, ad9POJNHAMHUKH, PACIPOCTPAHEHNE XUMHUIECKAX PEAreHTOB, PACIPOCTPAHEHUE TEIlIa U

Apyrux U3MIECKUX IIPOIECCOB.
KiroyeBble cjoBa: BBICOKOIPOU3BOAUTEIbHBIE BBIUNCIEHUS, T'HOPUIHBIE TEXHOJIOTHH,

napaJsuieabable Boraucienusi, MPI, OpenMP.

1 Introduction

Currently, parallel programming and high-performance computing systems are relevant in
various fields of science and technology. High-performance computing uses parallel technolo-
gies, such as MPI, OpenMP and CUDA. The greatest productivity can be achieved by cre-
ating hybrids of the above technologies. The most high-performance, under a certain range
of tasks, will be the merging of CUDA, MPI and OpenMP technologies into a single whole.
Therefore, at present the development of hybrid parallel programs is very relevant.

The most complex of the parallel types are hybrid tasks. Particular interest to them is
the trend towards the use of multi-core architectures and SMP-clusters for high-performance
computing. One of the most effective programming approaches for such clusters is the hybrid,
based on the combined use of MPI and OpenMP. The hybrid approach assumes that the
algorithm is split into parallel processes, each of which is itself multi-threaded. Thus, there
are two levels of parallelism: parallelism between MPI processes and parallelism within the
MPI process at the thread level [1].

2 Literature review

There are many works devoted to the research of the MPI / OpenMP approach [2-4]. As
practice shows [5-7|, by consolidating MPI processes and reducing their number, a hybrid

Bectauk KazHY. Cepusa maremaruka, Mexanuka, uagopmaruk Ne3(99) 2018

118 Kenzhebek Y.G. et al.

model can eliminate a number of MPI deficiencies, such as large overhead for message trans-
mission and poor scalability with an increase in the number of processes [8]. However, the
performance of a hybrid technology depends very much on the mode of its launch and exe-
cution, which determines the ratio of MPI processes and OpenMP threads on one computing
node [9]. Chan and Yang [10] argue that MPI can be more favorable with the scalability of
clusters. However, OpenMP can favor the speed of shared memory. In addition, the appli-
cation performance can be affected by the type of problem that is being solved and its size.
They show that the effect of MPI communication is the main weakness of this programming
model. And finally, they conclude that OpenMP prevails over MPI especially with using a
multi-core processor.

It is well known that the implementation of MPI for algorithms in which data is naturally
distributed across processes demonstrates very high efficiency (almost linear scaling in time
from the number of MPI processes). As it was shown, for example, in [11], in order to achieve
comparable performance on one compute node in the case of OpenMP implementation, it is
required to implement OpenMP using the concept on which MPI technology is based, but
taking into account the presence of shared memory on the node.

Hybrid parallel programming enables to explore the best that is offered by distribut-
ed and shared architecture in HPC [12]. Hybrid programming models can match better
the architecture characteristics of an SMP cluster, and that would replace message passing
communication with synchronized thread-level memory access [13-15]. However, the hybrid
programming model can not be regarded as the ideal for all codes [16, 17].

3 Materials and methods

3.1 Purpose of the work and formulation of the problem

The purpose of this work was the creation of a hybrid program that solves the two-dimensional

Poisson equation using Jacobi’s iterative method in the C ++ programming language using
MPI and OpenMP technologies.
The two-dimensional Poisson equation of the form:

0%u N 0%u

oz Oy?

Where x, y are the coordinates; u (x, y) is the desired function; f (x, y) is a continuous
function on a rectangular domain with Dirichlet boundary conditions.

= —f(z,y) (1)

fley) =201 —x)+2y(1-y) (2)
The Dirichlet boundary conditions for the problem under consideration are:

u(0,y) = 0;

u(l,y) = 0; (3)

u(z,0) = 0;

u(x,1)=0;

ISSN 1563-0285 Journal of Mathematics, Mechanics and Computer Science Ne3(99) 2018

Development of a hybrid parallel algorithm (MPI + OpenMP) ... 119

3.2 Methods of solution

The most common approach for the numerical solution of differential equations is the method
of finite differences. Following this method, the solution domain is represented as a discrete
set of points [18|. For sampling internal grid points, a five-point pattern is used, thus using
the Jacobi method to perform iterations, the equation takes the following form:

U/Z_‘;l — O 25 (u?‘i'l,] + U?_L j + uz j+1 + 'U/Z j—l + h2fl]) (4)

Here, u*! is a new layer of Jacobi iterations, and u? ;is the previous iteration layer. As

Z? J
shown in Figure 1, to calculate the value of each point of the new layer uZJrjl,

. . . : n n n n
values of four neighboring points of the previous layer u,; ;, wi ;, w11, uf ;4.

we need the

Figure 1: Jacobi method

3.3 Parallelizing a task in MPI

The first thing to solve when parallelizing such tasks is the way to share data between compute
nodes. In the problem under consideration for solving the Poisson equation, a tape scheme
was used to separate the data. With this division of data, the computing area can be broken
down into several horizontal bands. For each process that performs processing of any band,
the boundary lines of the previous and next bands were duplicated. The resulting enlarged
bands are shown in Figure 2 with dashed frames. Calculations in each band are performed
independently of each other and before each new iteration of Jacobi it is necessary to update
the duplicated boundary lines.

The exchange of boundary lines between processes consists of two data transfers. First,
each process passes its lower boundary to the next process and receives the upper boundary
of the line of this process. In the second case, the transfer of boundary lines is performed in
the opposite direction, that is, each process passes its upper boundary line to the previous
process and receives the lower boundary line from that process. For this operation, combined
reception and transmission of MPI SendRecv messages was used.

3.4 Parallelizing a task in OpenMP

When organizing the problem in question using OpenMP (Open Multi-Processing) technolo-
gy, the compiler directives were added to the sequential program code. Within this technology,
these directives are used to allocate several parallel areas in which processing is performed

Bectauk KazHY. Cepusa maremaruka, Mexanuka, uagopmaruk Ne3(99) 2018

120 Kenzhebek Y.G. et al.

[
o o o o o LK o
: ;
N] - = - .« = O 0 1| - .- = @ . = :
e e e (U'U- - 8 O Ir:"—"-'—.—':—‘-".———."-'-—'Ir:
| 1
o e e o--#ﬂ-. « 8 O : ! O 8 & ® ® 8 = 8 © : :
-1 1 G+ [|
¢ @ @ ® & s s @8 © 1 l'lo @ =@ = = ®» = ® © 1
i+ e n
C ® e e 8 ® ® 8 O e @ ® e« ® 9 0 e < ::
C @ @ e ® e s @® O : : L e * o 8 8 e ::
"« 8 8 8 s s 2 E L e & 8 s 8 e :
o = ' 5 ° o !
1

| :

Figure 3: Exchange of boundary lines between processes

using threads. The processors used are multi-core, in order to optimally load all the kernels,
there should be several parallel threads in the program. The number of threads that are
specified in the program should not exceed the number of cores [19].

3.5 Hybrid method MPI + OpenMP

After creating parallel MPI and OpenMP algorithms, a hybrid method MPI + OpenMP was
developed for parallel computation. When creating a hybrid program, a suitable architec-
ture was considered to solve the problem under consideration and the advantages of each
technology were taken into account.

MPI technology is used to parallelize a task between SMP nodes for processes, which al-
lows using address spaces and processor computing resources. When performing calculations,
each node does not take advantage of the shared memory between the cores, so OpenMP
technology is used to parallelize the cores of each of these SMP nodes. MPI was run in a
clustered configuration that uses the computational resources of several processors and runs
several separate MPI processes on each used node [20].

The distribution of data between the processes was carried out using MPI, and parallel

ISSN 1563-0285 Journal of Mathematics, Mechanics and Computer Science Ne3(99) 2018

Development of a hybrid parallel algorithm (MPI + OpenMP) ... 121

calculation of data within each of the processes was handled by OMP threads.

The architecture used is shown in Figure 4. This architecture has several modes for work-
ing with MPI processes and OpenMP threads. In a hybrid technology, the multiplication of
MPI processes and threads specified in the program should correspond to the total number
of cores used in the computer system. This is used to correctly load all the kernels. If you
exceed a certain number of threads assigned to each MPI process, this can lead to a collision
of threads between them. Thus, this will lead to an increase in the execution time of the
work.

As shown in Figure 4, for example, if we have two nodes with eight cores on each, the
multiplication of the processes and threads used should not exceed 16. This will ensure the
balancing of work between processes and threads.

4 MPI processes 16 MPI processes
16 MPI processes 4 threads / process 1 thread / process

HeEsfTesH HEE[REH F |

8 MPI processes 2 MPI processes
2 threads / process 8 threads / process

I_ _| I— || —‘ MPI process on the core

| | Master thread of MPI process

I_] _| l_ _| Threads of MPI process

Figure 4: The architecture of the hybrid program MPI + OpenMP

4 Results and discussion

All parallel programs were tested on the Novosibirsk State University (NSU) cluster, which
had 2 nodes available. Each node has two 4-core Intel (R) Xeon processor (R) CPU E5-2603
v2 1.80GHz. The tables show the averaged values of time based on several measurements.

Bectauk KazHY. Cepusa maremaruka, Mexanuka, uagopmaruk Ne3(99) 2018

122 Kenzhebek Y.G. et al.

Table 1. Time of parallel program execution using MPI technologies(p-process)

. . The execution time of the
o The execution time of the
Grid size sequential program. sec MPI parallel program, sec
’ p=2|p=4|p=8|p=16
64x64 0,11 0,099 | 0,092 | 0,1 0,13
128x128 1,41 0,9 0,59 0,49 | 0,52
256x256 17,08 9,12 5,1 3,81 2,88
512x512 176.6 90,3 47.3 28,82 | 191,2
1024x1024 | 1549,3 781,74 | 335,7 | 191,2 | 135.2
14

Intel(R) Xeon(R) CPU E5-2603v2 1.8
12 2 Inlndac

10 /K

g / X ——64x64
/ / —m—128x128

° //// —h—256x256

4

——512x512
2 - ~ a— = ——1024x1024
—- < —

1 2 4 8 16
Number of processes, P

Speed-up, S

Figure 5: Speed-up of parallel version of the MPI program

1,4
Intel(R) Xeon(R) CPU E5-2603 v2 1.80G
1,2 2 nodes
m 1 T T
= —o— 64x64
2 0,8 \s*
5 \ \\ —-— 128128
S 0,6
E \ \\\x —#—256x256
0,4 \\ ‘.\"l e 512%512
0,2 \\,.. —4—1024x1024
0
1 2 4 8 16
Number of processes, P

Figure 6: The efficiency of parallel version of the MPI program

ISSN 1563-0285 Journal of Mathematics, Mechanics and Computer Science Ne3(99) 2018

Development of a hybrid parallel algorithm (MPI + OpenMP) ... 123

Table 2. Time of execution of the parallel program using OpenMP technologies (thread)

)) The execution time of the
S The execution time of the
Grid size sequential program,sec(thread—1) OpenMP parallel program, sec
4 program, o thread=2 | thread=4 | thread=8
64x64 0,08 0,06 0,04 0,05
128x128 1,03 0,55 0,34 0,26
256x256 12,25 6,2 3,4 1,9
512x512 320,6 187.4 95,5 708,3
1024x1024 | 2317,3 1381,3 708,3 406,3
! Intel(R) Xeon(R) CPU E5-2603
6 1 IIUdC ZA(
5 e
‘;. 4 / —— 64x64
= —- 128x128
L]
;,1’ 3 —h— 256x256
2 — —512x512
1 ——1024x1024
0
1 2 4 8
Number of threads, thread

Figure 7: Speed-up of parallel version of the OpenMP program

1,2
1 -
w
4 0,8 \ —— 64x64
1 *]
3 06 ~y —B—128¢128
[*]
E= \\ —4—256x256
w 0.4
\ —<512x512
0,2
—t=—1024x1024
0
1 2 4 8
Number of threads, thread

Figure 8: The efficiency of parallel version of the OpenMP program

Bectauk KazHY. Cepusa maremaruka, Mexanuka, uagopmaruk Ne3(99) 2018

124 Kenzhebek Y.G. et al.

Table 3. The execution time of the hybrid parallel program using MPI and OpenMP
technologies (p-process, thread-thread)

) . The execution time of the hybrid
o The execution time of the
Grid size . parallel program MPI + OpenMP, sec
sequential program,sec

(p—1) p=2, p=4, p=38, p=16,

P thread=8 | thread=4 | thread=2 | thread=1
64x64 0,11 0,1 0,08 0,095 0,12
128x128 1,41 0,69 0,43 0,42 0,51
256x256 17,08 5,65 2,87 2,81 2,96
512x512 176,6 53,4 23,4 19,45 21,73
1024x1024 | 1549,3 406,8 150,6 127,1 132,17

Based on the obtained data, the average speed-up and efficiency of parallel programs MPI
and MPI + OpenMP (Hybrid) were calculated for solving the Poisson equation. The results
are shown in Figures 9 and 10.

14

)\
|

/// 7 —4—1024x1024{Hybrid)
—8—512x512(Hybrid)
1024x1024(MPI)

/ ——=512x512(MPI)
2

Speed-up, S

\
\

Number of processes, P

Figure 9: Speed-up for parallel versions of programs

On the efficiency figure of the parallel MPI program, it is noticeable that at the number of
1024x1024 points the efficiency at four processes becomes higher than one. The main reason
for this is the total cache size available for the parallel program. With a large number of
processors (or cores), one has access to more cache memory. At some point, most of the data
fits into the cache memory, which greatly speeds up the calculation. Another way to take
this into account is that the more processors are used, the less data that each gets until this
part can fit inside the cache of a separate processor. For example, in our case, the cache
memory of the Intel (R) Xeon processor (R) CPU E5-2603 has 10 MB of capacity. And in
the Poisson problem under consideration there are 3 quantities of the double type. Therefore,
when executing the program on one processor, the data did not fit into the cache memory. And

ISSN 1563-0285 Journal of Mathematics, Mechanics and Computer Science Ne3(99) 2018

Development of a hybrid parallel algorithm (MPI + OpenMP) ... 125

2,5 A

A/._ —&— 1024x1024(Hybrid)
1,5
\\\ —B—512x512(Hybrid)
1 1024x1024(MPI)
SN \
\ ——512x512(MPI)
0.5

1 2 4 g 16
Number of processes, P

Efficiency, E

Figure 10: The efficiency of parallel versions of programs

when the program used all the processors in the computer system, each processor had a piece
of data that was placed in the cache memory, thereby ensuring speed-up of the calculation.
The resulting superlinear acceleration using hybrid technology MPI + OpenMP is ex-
plained by the fact that MPI processes and threads use all the performance of the cores
of the computer system. Because the threads assigned to each MPI process effectively use
the computing resources of several computers. This hybrid program uses MPI technology to
distribute data between processes, and OpenMP separates the iterations of the loop between
threads of the program. This ensured the acceleration of work on each compute node.

5 Conclusion

This work was devoted to the development of a hybrid program using MPI and OpenMP
technologies. Hybrid implementation of the program is more efficient when working with a
large number of nodes and using multi-core processors, because this hybrid technology has
the ability to use the cores of several computing nodes. The hybrid program MPI + OpenMP
for solving the Poisson equation accelerated the performance of the work by 1.5-2 times in
comparison with the MPI program.

References

[1] Gorobets A.V., Sukov S.A., Zheleznyakov A.O. Rasshirenie dvukhurovnevogo rasparallelivaniya MPI+OpenMP posred-
stvom OpenCL dlya gazodinamicheskikh raschetov na geteregennykh sistemakh [Expansion of two-level parallelization of
MPI + OpenMP by means of OpenCL for gas-dynamic calculations on heterogeneous systems|. Vestnik YuUrGU, no. 9
(2009): 76-86.

[2] Martin J., Chorley W., David W. "Performance analysis of a hybrid mpi/openmp application on multi-core clus-
ters."Journal of Computational Science, no. 1 (2010):168-174. doi.org/10.1016/j.jocs.2010.05.001.

[3] Adhianto L., Chapman B. "Performance modeling of communication and computation in hybrid mpi and openmp appli-
cations" (12th International Conference on, 2006).

Bectauk KazHY. Cepusa maremaruka, Mexanuka, uagopmaruk Ne3(99) 2018

126

Kenzhebek Y.G. et al.

(4]

(5]
(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

18]

[19]

20]

Jin H., Jespersen D., Mehrotra P. "High performance computing using MPI and OpenMP on multicore parallel sys-
tems."Parallel computing, no. 37 (2011): 562-575. doi.org/10.1016/j.parco.2011.02.002.

Makris I. "Mixed Mode Programming on Clustered SMP systems"(The University of Edinburgh, 2005).

Rane A., Stanzione D. "Experiences in tuning performance of hybrid MPI/OpenMP applications on quad-core sys-
tems."Proceedings 10th LCI International Conference on High-Performance Clustered Computing, (2009).

Rabenseifner R., Hager G., Jost G. "Hybrid MPI/OpenMP parallel programming on clusters of multi-core SMP
nodes" (proc. 17 Euromicro Internat. Conf. on Parallel, Distributed and Network-based Processing, Weimar (2009): 427—
436).

Rabenseifner R., Wellein G. "Communication and Optimization Aspects of Parallel Programming Models on Hybrid
Architectures."International Journal of High Performance Computing Applications 17 (2003): 49-62.

Kryukov A.P., Stepanova M.M. Effektivnyi zapusk gibridnykh parallel’'nykh zadach [Effective launch of hybrid parallel
tasks]. Vestnik YuUrGU, no. 3 (2013): 32-48.

Chan M.K., Yang L. "Comparative analysis of openmp and mpi on multi-core architecture."Proceedings of the 44th
Annual Simulation Symposium, 11 (2011).

Mitin I., Kalinkin A., Laevsky Y. "A parallel iterative solver for positive-definite systems with hybrid MPI-OpenMP paral-
lelization for multi-core clusters." Journal of Computer Science, no. 3 (2012): 463-468. doi.org/10.1016/j.jocs.2012.08.010.

Diaz J., Munoz-Caro C., Nino A. "A survey of parallel programming models and tools in the multi and many-core
era."Parallel and Distributed Systems, IEEE Transactions on, 23(8):1369-1386, 2012.

Drosinos N., Koziris N. "Performance comparison of pure mpi vs hybrid mpi-openmp parallelization models on smp
clusters."Proceedings of the 18th International, 15 (2004).

Chow E., Hysom D. "Assessing performance of hybrid mpi/openmp programs on smp clusters"(2001).

Hager G., Jost G., Rabenseifner R. "Communication characteristics and hybrid mpi/openmp parallel programming on
clusters of multi-core smp nodes."Proceedings of Cray User Group Conference, (2009).

Cappello F., Etiemble D. "Mpi versus mpi+openmp on the ibm sp for the nas benchmarks."(In Supercomputing,
ACM/IEEE 2000 Conference, 2000).

Smith L., Bull M. "Development of mixed mode mpi / openmp applications."Scientific Programming, 9 (2001): 83-98.

Ryndin E. A. Metody resheniya zadach matematicheskoi fiziki [Methods for solving problems of mathematical physics].
Taganrog: Izd-vo TRTU, 2003.

Antonov A. S. ParalleI'noe programmirovanie s ispol’zovaniem tekhnologii OpenMP [Parallel programming using OpenMP
technology|. Moscow : Izd-vo MGU, 20009.

Akhmed-Zaki D.Zh., Borisenko M.B. Razrabotka vysokoproizvoditel'nykh prilozhenii s ispol’zovaniem gibridnykh
tekhnologii parallel’'nykh vychislenii [Developing high-performance applications using hybrid parallel computing tech-
nologies|. Almaty: NII Institut KazNU (2013): 7.

ISSN 1563-0285 Journal of Mathematics, Mechanics and Computer Science Ne3(99) 2018

