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In this work, a high-performance application for visualization of large-size grid models (about a
million cells) with using of Vulkan technologies was developed. Vulkan is a new software interface
(API) which controls the graphic processor (GPU). Vulkan became a low-level API, thanks to which
the entire GPU capability was used, such as memory and synchronization control, error checking,
creation of commands performed by graphic processor, etc. Thus it shows high performance with
less load on the CPU. For the operation of the application without interruption, double buffering
of vertex buffer and multi-threading of the processor was used. The results of each 100th iteration
of the Jacobi method for solving the Poisson’s equation, namely data of each iteration, were taken
for the 2D and 3D model visualization. Using of the above given methods, grid model examples
are given. As a result of this work, a prototype of a visualizer was developed and presented, and it
can be used for any results of numerical mathematical modeling on structured and unstructured
3D grids.
Key words: Vulkan, 2D, 3D, computer graphics, visualization, double buffering, grid model,
multithreading.

Использование технологии Vulkan для 3D-визуализаций больших вычислительных
данных, изменяющихся со временем
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В данной работе было разработано высокопроизводительное приложение для визуализации
сеточных моделей больших размеров (около млн. ячеек), с использованием технологий
Vulkan. Vulkan – это новый программный интерфейс (API) управляющий графическим
процессором (GPU). Vulkan является низкоуровневым API, благодоря чему была
использована вся возможность графического процессора такие как: управление памятью
и синхронизацией, проверки на ошибки, создание команд выполняемых графическим
процессором и т.д. Таким образом, показывает высокую производительность при меньшей
нагрузке на центральный процессор. Для работы приложения без прерывания была
использована двойная буферизация буфера вершин и многопоточность процессора. Для
визуализаций 2D и 3D модели были взяты результаты каждой сотой итерации метода
Якоби для решения уравнения Пуассона. Используя вышеуказанные методы, приведены
примеры сеточной модели. В результате данной работы был разработан и представлен
прототип визуализатора, которую можно использовать для любых результатов численного
математического моделирования на структуированных и неструктурированных 3D сетках.
Ключевые слова: Vulkan, 2D, 3D, компьютерная графика, визуализация, двойная
буферизация, сеточная модель, многопоточность.
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Уақыт өте келе, үлкен есептелетiн деректердi 3D визуализациялау үшiн Vulkan
технологиясын пайдалану
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Бұл жұмыста Vulkan технологияларын қолдану арқылы үлкен өлшемдi тор модельдерiн
(миллионға жуық ұяшық) визуализациялау үшiн жоғары өнiмдi бағдарлама жасалды.
Вулкан – графикалық процессорды (GPU) басқаратын жаңа бағдарламалық интерфейс
(API). Вулкан – төменгi деңгейлi API, соның арқасында графикалық процессордың
бүкiл мүмкiндiктерi пайдаланылды, мысалы, жады мен синхрондау, қателердi тексеру,
графикалық процессорлармен орындалатын командаларды құру және т.б. Осылайша,
орталық процессордың аз жүктеу кезiнде жоғары өнiмдiлiктi көрсетедi. Бағдарламаның
үздiксiз жұмыс iстеуi үшiн төбелер буферiнiң қос буферлеуiн және процессордың көп
ағындылығы қолданылды. 2D және 3D модельдерiн визуализациялау үшiн Пуассон
теңдеуiн шешу үшiн Якоби әдiсiнiң нәтижелерi, яғни әрбiр 100-шi итерацияның деректерi
алынған. Жоғарыда келтiрiлген әдiстердi қолдану арқылы торлық моделiнiң мысалдары
келтiрiлген. Осы жұмыстың нәтижесiнде визуализатордың прототипi әзiрленiп ұсынылды,
оны құрылымдық және құрылымдық емес 3D торларында сандық математикалық
модельдеудiң кез келген нәтижесiне қолдануға болады.
Түйiн сөздер: Vulkan, 2D, 3D, компьютерлiк графика, визуализация, қос буферлеу, торлы
модель, көп ағындылық.

1 Introduction

Vulkan is an API for graphics and computing devices. Like an OpenGL, Vulkan allows to
display real-time 3D graphics with high performance, as well as a higher pproductivity and
a lower load on CPU. Vulkan technology was based on AMD Mantle technology. Compared
with OpenGL technology, Vulkan is a low-level API and generally has similar capabilities.
This allows to use all the features of GPU for computing, to get low-level access to GPU and
control its functioning.

Unlike from OpenGL, Vulkan shaders are represented by a binary intermediate represen-
tation of SPIR-V programs. SPIR-V is the only supported shader language for the Vulkan.
It is adopted at the level of API and used for creation of conveyors designed to control the
device and for the performance of work of application.

This paper proposes a real-time visualization of large grid models with using of Vulkan
technologies on the typical personal computers equipped with a discrete graphic card. To
store and update data, double buffering of vertex buffers and multithreading C ++ 11 was
used. The proposed approach to the visualization of the grid model optimizes the speed of
drawing. The paper also presents the visualization of a numerical algorithm for solving the
Poisson algorithm 2D with a size of 1000×1000 (106 cells) and 3D with a size of 33×33×11.

Let’s note that the presented application can be used for any results of numerical math-
ematical modeling on structured and unstructured 3D grids.
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2 Literature review

Currently, the OpenGL Shader Language (GLSL) became the main part of programming with
the using of OpenGL library [1–3]. With help of GLSL, you can use the power of graphics
processor for display and computing. Based on GLSL, the RGL library was created, which
offers three-dimensional visualization in real time [4,5]. At work [6,7], the capabilities of the
graphics processor and the shader language of the OpenGL library were used, and the results
of numerical mathematical modeling were visualized.

Recently, Vulkan technology is gaining great popularity in the field of visualization [8].
Vulkan is a cross-platform graphical and computing API developed by the Kronos Group
consortium [9]. Vulkan is an OpenGL recipient, but it differs very much. The main difference
is that to make the OpenGL driver, is the responsibility of the programmer [10,11]. Another
difference between Vulkan technology and OpenGL is the shader language. Vulkan supports
the only shader language SPIR-V [12]. In the literatures [13–15], you can get acquainted with
the specifications of the Vulkan technology.

At work [16], languages and libraries for multi-threaded programming are described, also,
how to develop programming skills, and various testing and debugging methods developed
for multi-threaded programs over the past 20 years are described and demonstrated.

3 Materials and methods

The purpose of this work was to develop a high-performance application for visualizing of
results of numerical mathematical modeling,by the using of Vulkan technology.

In older APIs such as OpenGL, the driver controls synchronization and memory, checks
for errors during the running of the application. This is convenient for programmers, but it
takes CPU time. In the Vulkan, all responsibilities are transferred to the programmer, i.e.
almost all status tracing, memory and synchronization management [13].

3.1 Coordinate systems

Vulkan works with segments and triangles, representing their vertexes as points in three-
dimensional space. They are called vertices and are shown in Figure 1 [3].

For beginning 50× 50 sizes grid was created and filled with random colors. Each square
of the grid consists of two triangles, which set by the coordinates [7]. In the functions of
initVertices(), the vector was filled in, which contains the coordinates and color of each
vertex of the triangle.

3.2 Memory and resources

Almost for all computing systems, including Vulkan, memory is extremely important. There
are two basic types of memory in Vulkan: CPU memory (host memory) and GPU memory
(device memory). When creating a new object in Vulkan, you will need memory to store
data. The regular CPU memory is used for it.

Vulkan works with data, and data is stored in resources. There are two basic types of
resources in Vulkan: buffers and images [10]. A buffer is a simple linear piece of memory that
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Figure 1: Coordinate system of vertices

Figure 2: CPU and GPU memory

can be used for various purposes. They are used to store linear structured and unstructured
data, which can be in format or simply be bytes in memory.

3.3 Device memory management

When Vulkan works with data, this data should be stored in device memory (device memory).
In Figure 2, the GPU and CPU memory circuit, each with its own memory [10].

3.4 Device memory allocation

Device memory allocation is represented as a VkDeviceMemory object created with the help
of vkAllocateMemory() functions, the prototype of which is shown below [10,11,14]:

VkResult vkAllocateMemory (
VkDevice device,
const VkMemoryAllocateInfo* pAllocateInfo,
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const VkAllocationCallbacks* pAllocator,
VkDeviceMemory* pMemory
);
After allocating the memory of the device, it can be used to store data. Thus, vertexBuffer

called buffer was created and used to store the vertex data. After all works we get the following
Figure 3:

Figure 3: Grid with size of 50× 50

When visualizing in real time, new data will come in, and this is the color data of each
cell. Since the coordinates and color of the cells are recorded in one buffer, the coordinates
will be overwritten, and this is the waste of a precious time of CPU. To solve this problem,
a separate buffer was created for these colors. As a result, we get two buffers: posBuffer - for
storing coordinate data and colBuffer - for storing color data. The program will work in real
time, which means data will be flowing continuously. Let’s create a new colBuffer1 buffer to
store the new data.

3.5 Buffer update

To update the data inside the buffer, the vkCmdUpdateBuffer function was used [15].
vkCmdUpdateBuffer() copies data directly from CPU memory to buffer memory. Data is
collected from the CPU memory when calling, and upon returning from vkCmdUpdateBuffer
(), one can free up this memory or write new data to it.

3.6 Double buffering of vertex buffer

Double buffering is a data preparation method that provides the ability of out-turn of the
finished result without interruption [6]. This method is commonly used when working with
frame buffer. This paper describes how to use a similar approach for buffering of color data
on a model of sheet.This method is as follows. A second buffer is created, and the data is
filled only on it. As soon as the reading process is completed, the buffers change places, and
data output will start from the second buffer, and new data will be filled into the first buffer.
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This is similar to double frame buffering and is used for vertex buffers. Figures 4 and 5 show
examples of drawing each buffer.

Figure 4: Drawing of the colBuffer Figure 5: Drawing of the colBuffer1

When reading and writing new data, the drawFrame() drawing function stops and the
program will not react until the data is initialized. Despite the fact that Vulkan processes on
the CPU and GPU occur asynchronously, interactive control of a model as the rotation and
transfer the model using the mouse and keyboard should be done on the CPU. If all actions
on the central processor will occur in the same thread, we will not be able to interact with
the three-dimensional model while writing to the buffer. For example, if we call the read and
write function every ten seconds, and this function will be executed in six seconds, as a result
we will get a program that does not respond at the time of initialization and only works for
the remaining time. A visual example is shown below in Figure 6.

Figure 6: Green - Drawing, gray - Copy (A-host to host, B - host to device)

In order the input data recorded without stopping the work of drawing, it must be per-
formed in parallel. For this we will use C ++ 11 multithreading [16]. Modern computers have
multi-core processors, in which multithreading is performed by the fact that several process-
es are executed on different cores. Using the multithreading feature, we pass the command
to read and fill the buffer into another thread, and it will be executed in parallel without
affecting into the drawing. That is, when the input data from the first buffer is displayed
on the screen, the second buffer will be updated in parallel. As soon as the second buffer is
ready, the buffers change places. A visual example is shown in Figure 7.

As you can see in Figure 6 and 7, initialization of data takes place in two stages: reading
and writing data into the system memory (Gray A), and copying from system memory to
GPU memory (Gray B). It takes longer time to initialize the reading and writing of new data
into the system memory, i.e. host to host.
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Figure 7: Green - Drawing, gray - Copy (A-host to host, B - host to device)

4 Results and discussion

To get the result, a personal computer (Core i7 3770 3.40 GHz, 8Gb DDR3) equipped with
a discrete graphics card (nVidia GeForce GTX650Ti, 1Gb GDDR5) was used. As an input
data, the results of each 100th iteration of the Jacobi method for solving the Poisson equation
[17,18] with a size of 1000× 1000 for 2D and 33× 33× 11 for 3D, the quantity of iterations
of 20,000 were taken. The Dirichlet boundary conditions for the problem under consideration
are: u(0, y) = 0, u(1, y) = 0, u(x, 0) = 0 u(x, 1) = 0. To visualize the three-dimensional
model was used fotmat GRDECL [19]. On Figure 8 the prototype of the application that
visualizes the result of the Poisson equation grid model is shown.

Measurements were made and the results presented in Table 1 were obtained.

Table 1. Results of measurement.
Dimension 2D,1000× 1000 3D, 33× 33× 11

Quantity of cells 106 11979
FPS (frames per second) 1750 4415

copy host to host, ms 8438 97
copy host to device, ms 14 0

When running the application for a grid model with the above mentioned dimensions, the
more time takes copying host to host, i.e. reading and writing data into the system memory,
which depends on computer resources: reading and writing speed of the hard disk, data
transfer speed via the Internet. Copying data from system memory to device memory depends
on the following GPU characteristics: memory bus, memory interface, memory transfer speed,
memory bandwidth, type of dedicated video memory. Characteristics of the graphics processor
on which the work was performed are shown in Table 2.

Table 2. Characteristics of the graphic card nVidia Geforce GTX650Ti.
Memory bus PCI Express x16 Gen3
Memory interface 128 bit
Memory data transfer rate 5400 MGhz
Memory bandwidth 86.40 GB/s
Type of dedicated video memory 1024 MB GDDR5

5 Conclusion

By using the Vulkan technology, a high-performance application was developed which visu-
alizes real-time grid models of numerical mathematical modeling. In order the application
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a) b)

c) d)

e) f)

Figure 8: Examples of visualizations of the grid model of the results of the Jacobi iterative method for
solving the Poisson equation: a) 2D model of the first iteration, b) 2D model of the latest iteration,
c) 3D model of the first iteration, d) 3D model of the latest iteration, e) 3D model with inactive
areas of the first iteration, f) 3D model with inactive areas of the latest iteration

worked without interruption, double buffering of vertex buffers and multithreading of C ++
11 was used. The double buffering method of vertex buffers used for color data buffering
on the model of oil reservoir. Such an approach to the visualization of the grid model opti-
mized the speed of the application. An application that visualizes 3D graphics in real time,
with high performance and lower CPU load, was introduced. For example, the results of the
Poisson equation 2D and 3D were taken. The ready application will be used for numerical
mathematical modeling results’ visualization.
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