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In this survey, necessary and sufficient conditions for the oscillation of all solutions of delay
difference equations with one or several constant arguments, in terms of the characteristic equation,
are presented. Explicit necessary and sufficient conditions (in terms of the constant coefficient and
constant argument only) are also presented in the case of one constant argument. In the case of
several arguments explicit but sufficient conditions only are given. In this case the results are also
extended to equations with variable coefficients.
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В этом обзоре представлены необходимые и достаточные условия для колебания всех
решений дифференциальных уравнений с запаздыванием с одной или несколькими
постоянными аргументами, в терминах характеристического уравнения. Явные необходимые
и достаточные условия (в терминах постоянного коэффициента и одного постоянного
аргумент) также представлены в случае одного постоянного аргумент. В случае нескольких
аргументов даются явные, но только достаточные условия. В этом случае результаты также
распространяются на уравнения с переменными коэффициентами.
Ключевые слова: Колебание, запаздывание, разностные уравнения.

1 Introduction

Consider the first-order linear difference equation with several delay arguments of the form

∆x(n) +
m∑
i=1

pix(n− ki) = 0, n ≥ 0, (1)

and the special case (m = 1) of the above equation

∆x(n) + px(n− k) = 0, n ≥ 0, (2)

where ∆ denotes the forward difference operator, i.e. ∆x(n) = x(n + 1) − x(n), and for
1 ≤ i ≤ m, ki are nonnegative integers and piare real numbers.

By a solution of the difference equation (1), we mean a sequence of real numbers
{x(n)}∞n=−ki

which satisfies (1) for all n ≥ 0. (Analogously for Eq. (2)).
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A solution {x(n)}∞n=−ki
of the difference equation (1) is said to beoscillatory, if the terms of

the sequence {x(n)}∞n=−ki
are neither eventually positive nor eventually negative. Otherwise,

the solution {x(n)}∞n=−ki
is said to be nonoscillatory. (Analogously for Eq.(2)).

In the last few decades, the oscillatory behavior of the solutions to difference equations
has been extensively studied. See, for example, [4−8, 11-13,17,19−25] and the references
cited therein. For the general theory of difference equations the reader is referred to the
monographs [1,2,9,16].

2 Necessary and sufficient conditions

In this section we present necessary and sufficient conditions under which all solutions of the
equations under consideration oscillate.

Consider the linear delay difference equation (1) with constant coefficients. In the following
theorem a necessary and sufficient condition for the oscillation of all solutions of (1) in terms
of the characteristic equation associated with (1) is given.

Theorem 1. ([9]) Consider the difference equation

∆x(n) +
m∑
i=1

pix(n− ki) = 0, n ≥ 0, (1)

where the coefficients pi are real numbers and the delays ki are non-negative integers. Then
all solutions of (1) oscillate if and only if its characteristic equation

λ− 1 +
m∑
i=1

piλ
−ki = 0 (3)

has no positive roots.
In the special case of Eq.(2), we have the following theorem.
Theorem 2.([9]) Consider the difference equation with one constant coefficient and one

constant delay
∆x(n) + px(n− k) = 0, n ≥ 0, (2)

where p is a real number and k is a non-negative integer. Then the following statements are
equivalent.

(i) All solutions of Eq.(2) oscillate.
(ii) The characteristic equation

λ− 1 + pλ−k = 0 (4)

has no positive roots.

3 Explicit Oscillation Conditions

In this section we present explicit (in terms of the coefficients and the arguments only)
oscillation conditions. In the case of equations with one delay an explicit necessary and
sufficient condition is also presented.
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3.0.1 Difference equations with constant coefficients

Theorem 3. ([9])Consider the difference equation with several constant coefficients and
retarded arguments

∆x(n) +
m∑
i=1

pix(n− ki) = 0, n ≥ 0, (1)

where pi, are positive constants and ki are non-negative integers for i = 1, 2, ...,m. Then the
following condition

m∑
i=1

pi(ki + 1) >

(
ki

ki + 1

)ki

(5)

implies that all solutions of Eq.(1).
For the delay differential equation

x′(t) +
m∑
i=1

pix(t− τi) = 0 (1)′

where pi, τi are positive constants for i = 1, 2, ...,m, it is known [15,3,10,18] that every
solution oscillates if

m∑
i=1

piτi >
1

e
. (5)′

Observe that(
ki

ki + 1

)ki

=

(
1

1 + 1
ki

)ki

↓ 1

e
as ki → ∞,

and therefore condition (5) can be interpreted as the discrete analogue of (5)′.
Remark 1. ([9]) It is noteworthy to observe that when m = 1, that is, in the case of a

difference equation with one delay argument, condition (5) reduces to

p(k + 1) >

(
k

k + 1

)k

(6)

which is a necessary and sufficient condition for all solutions of the delay difference equation

∆x(n) + px(n− k) = 0, n ≥ 0, (2)

to be oscillatory.
We present the proof of this fact.
Proof. The characteristic equation associated with Eq.(2) is

F (λ) = λ− 1 + pλ−k = 0.

It is easy to compute the critical points of F (λ) and evaluate the extreme values. The first
derivative F ′(λ) = 1− pkλ−k−1 and the only critical point of F (λ) in (0,∞) is λ0 = (pk)

1
k+1 .

The second derivative

F ′′(λ) = pk(k + 1)λ−(k+1) > 0 for λ > 0.
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Therefore at the critical point λ0 the function F (λ) has a minimum value

F (λ0) = λ0 − 1 + pλ−k
0 = λ0

[
1− 1

λ0

+
1

k

]
= λ0

[
k + 1

k
− 1

λ0

]
.

The minimum value F (λ0) would be positive if and only if λ0 > k
k+1

that is, if and only if
pk = λk+1

0 >
(

k
k+1

)k+1 if and only if

p(k + 1) >

(
k

k + 1

)k

which completes the proof.
It is also known [14,9] that

pτ >
1

e
(6)′

is a necessary and sufficient condition for all solutions of the delay differential equation

x′(t) + px(t− τ) = 0, p, τ > 0, (2)′

to be oscillatory. As before, observe that(
k

k + 1

)k

=

(
1

1 + 1
k

)k

↓ 1

e
as k → ∞,

and therefore condition (6) can be interpreted as the discrete analogue of (6)′.

3.0.2 Difference equations with one variable coefficient

Here we present explicit oscillation conditions for difference equations with one variable co-
efficient.

Consider the difference equation

∆x(n) + p(n)x(n− k) = 0, n ≥ 0, (7)

where {p(n)}∞n=0 is a nonnegative sequence of reals and k is a nonnegative integer.
In 1981, Domshlak [7] considered the case where k = 1. In 1989, Erbe and Zhang [8]

proved that all solutions of (7) oscillate if

β := lim inf
n→∞

p(n) > 0 and lim sup
n→∞

p(n) > 1− β (8)

or

lim inf
n→∞

p(n) >
kk

(k + 1)k+1
(9)

or

A := lim sup
n→∞

n∑
i=n−k

p(i) > 1. (10)
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while Ladas, Philos and Sficas [13] improved the above condition (9) as follows

α := lim inf
n→∞

n−1∑
i=n−k

p(i) >

(
k

k + 1

)k+1

. (11)

Note that this condition is sharp in the sense that the fraction on the right hand side can
not be improved, since when p(n) is a constant, say p(n) = p, then this condition reduces to

p >
kk

(k + 1)k+1
,

which is a necessary and sufficient condition for the oscillation of all solutions to Eq.(2).
Moreover, concerning the constant kk

(k+1)k+1 in (9), it should be emphasized that, as it is
shown in [8], if

sup p(n) <
kk

(k + 1)k+1
, (N1)

then (7) has a nonoscillatory solution.
In 1990, Ladas [12] conjectured that Eq. (7) has a nonoscillatory solution if

1

k

n−1∑
i=n−k

p(i) ≤ kk

(k + 1)k+1

holds eventually. However this conjecture is not correct and a counter-example was given in
1994 by Yu, Zhang and Wang [25]. Moreover, in 1999 Tang and Yu [23], using a different
technique, showed that Eq.(7) has a nonoscillatory solution if the so-called "corrected Ladas
conjecture"

n∑
i=n−k

p(i) ≤
(

k

k + 1

)k+1

for all large n, (N2)

is satisfied.
In 2017 Karpuz [11] studied this problem and derived the following conditions. If

lim inf
n→∞

inf
λ≥1

[
1n

λi=n−k

[1 + λp(i)]

]
> 1,

then every solution of Eq.(7) oscillates, while if there exists λ0 ≥ 1 such that

1n

λ0i=n−k

[1 + λ0p(i)] ≤ 1 for all large n,

then Eq.(7) has a nonoscillatory solution. From the above conditions, using the Arithmetic-
Geometric mean, it follows that if

n∑
i=n−k

p(i) ≤
(

k

k + 1

)k

for all large n, (N3)
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then all solutions of Eq. (17) oscillate. That is, Karpuz [11] replaced condition (N2) by (N3),
which is a weaker condition.

It is interesting to establish sufficient conditions for the oscillation of all solutions to
Eq.(7) when both (10) and (11) are not satisfied.

Stavroulakis [20] established the following.
Theorem 4.([20]) Assume that

0 < α ≤
(

k

k + 1

)k+1

and
lim sup
n→∞

p(n) > 1− α2

4
, (12)

that all solutions of (7)oscillate.
Then, Stavroulakis [21] and Chatzarakis and Stavroulakis [5] improved the above result

as follows.
Theorem 5.([21,5]) Assume that 0 < α ≤

(
k

k+1

)k+1
.Then either one of the conditions

lim sup
n→∞

n−1∑
i=n−k

p(i) > 1− α2

4
, (13)

lim sup
n→∞

n−1∑
i=n−k

p(i) > 1− αk (14)

or

lim sup
n→∞

n−1∑
i=n−k

p(i) > 1− α2

2(2− α)
(15)

implies that all solutions of (7) oscillate.
Also Chen and Yu [6], following the above mentioned direction, derived the following

oscillation condition

A > 1− 1− α−
√
1− 2α− α2

2
. (16)

In 2000, Shen and Stavroulakis [19], using new techniques, improved the previous results
as follows.
Theorem 6. ([19]) Assume that 0 ≤ α ≤ kk+1/(k + 1)k+1 and that there exists an integer
l ≥ 1 such that

lim sup
n→∞


∑k

i=1 p(n− i) + [d(α)]−k
∏k

i=1

∑k
j=1 p(n− i+ j)+∑l−1

m=0[d(α/k)]
−(m+1)k

∑k
i=1

∏m+1
j=0 p(n− kj + i)

 > 1, (17)

where d(α) and d(α/k) are the greater real roots of the equations

dk+1 − dk + αk = 0
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and

dk+1 − dk + α/k = 0,

respectively. Then all solutions of (7) oscillate.
Notice that when k = 1, d(α) = d(α) = (1 +

√
1− 4α)/2 (see [19]), and so condition (C10)

reduces to

lim sup
n→∞

{
Cp(n) + p(n− 1) +

l−1∑
m=0

Cm+1

m+1∏
j=0

p(n− j − 1)

}
> 1, (18)

where C = 2/(1 +
√
1− 4α), α = lim infn→∞ pn. Therefore, from Theorem 6, we have the

following corollary.
Corollary 1. ([19]) Assume that 0 ≤ α ≤ 1/4 and that (18) holds. Then all solutions of the
equation

x(n+ 1)− x(n) + p(n)x(n− 1) = 0 (19)

oscillate.
A condition derived from (18), which can be easier verified, is given in the next corollary.

Corollary 2. ([19]) Assume that 0 ≤ α ≤ 1/4 and that

lim sup
n→∞

p(n) >

(
1 +

√
1− 4α

2

)2

. (20)

Then all solutions of (19) oscillate.
Remark 2. ([19]) Observe that when α = 1/4, condition (20) reduces to

lim sup
n→∞

p(n) > 1/4

which can not be improved in the sense that the lower bound 1/4 can not be replaced by
a smaller number. Indeed, by condition (N1) (Theorem 2.3 in [8]), we see that (19) has a
nonoscillatory solution if

sup p(n) < 1/4.

Note, however, that even in the critical state where

lim
n→∞

p(n) = 1/4,

(19) can be either oscillatory or nonoscillatory. For example, if p(n) = 1
4
+ c

n2 then (19) will
be oscillatory in case c > 1/4 and nonoscillatory in case c < 1/4 (the Kneser-like theorem,
[7]).
Example 1. ([19]) Consider the equation

x(n− 1)− x(n) +

(
1

4
+ a sin4 nπ

8

)
x(n− 1) = 0,
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where a > 0 is a constant. It is easy to see that

lim inf
n→∞

p(n) = lim inf
n→∞

(
1

4
+ a sin4 nπ

8

)
=

1

4
,

lim sup
n→∞

p(n) = lim sup
n→∞

(
1

4
+ a sin4 nπ

8

)
=

1

4
+ a.

Therefore, by Corollary 2, all solutions oscillate. However, none of the conditions (8)− (16)
is satisfied.

3.0.3 Difference equations with several variable coefficients

In this subsection we present explicit oscillation conditions for difference equations with
several variable coefficients and with several constant retarded arguments of the form

∆x(n) +
m∑
i=1

pi(n)x(n− ki) = 0, n ≥ 0, (21)

where {pi(n)}∞n=0, is a nonnegative sequence of real numbers and ki are non-negative integers
for i = 1, 2, ...,m.

In 1989, Erbe and Zhang [8], and Tang and Deng [22] derived the following oscillation
conditions for the difference equation (21)

m∑
i=1

(
lim inf
n→∞

pi(n)
) (ki + 1)

(ki)
ki

ki+1

> 1, (22)

lim inf
n→∞

m∑
i=1

(ki + 1)ki+1

kki
i

pi(n) > 1, (23)

respectively.
In 1999, Tang and Yu [23] replaced the coefficients with their arithmetic means and

improved (23) as follows

lim inf
n→∞

m∑
i=1

(
ki + 1

ki

)ki+1 n+ki∑
j=n+1

pi(j) > 1. (24)

while in 2001, Tang and Zhang [24] derived the following upper limit condition

lim sup
n→∞

m∑
i=1

n+ki∑
j=n

pi(j) > 1, (25)
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