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In this paper was considered a parallel implementation of the Thomas algorithm for the 2D heat
equation. MPI was chosen as the technology for parallelization. The numerical solution of the two-
dimensional heat conduction problem was solved using the two step iteration process of alternating
direction implicit method (ADI). The Thomas algorithm is simple to implement a sequential pro-
gram, but difficult to parallelize due to dependent data transfers. When applying this method to
solve the 2D heat equation, there is a need to implement Thomas algorithm along each direc-
tion x-axis and y-axis. It was implemented the parallelization of this problem using the Yanenko
method using 1D and 2D data decomposition. In particular, in 2D data decomposition, the Ya-
nenko method was used along each x-axis and y-axis direction. In the article the speedup and
efficiency of parallel programs using 1D and 2D data decomposition were shown in the form of
tables and graphs. The presented algorithm was tested on a cluster of the computing center of
Novosibirsk State University for a different number of points in the computational domain (from
512x512 to 4096x4096). The obtained test results are presented and analyzed, on the basis of which
the features of the used decompositions are described.
Key words: high-performance computing, Thomas algorithm, Yanenko method, parallel comput-
ing, ADI method, MPI.

2D жылуөткiзгiштiк теңдеуi үшiн қуалау әдiсiн паралельдi жүзеге асыру
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Бұл жұмыста 2D жылуөткiзгiштiк теңдеуiн қуалау әдiсiмен параллельдi есептеудi жүзеге
асыру қарастырылған. Параллельдеу технологиясы ретiнде MPI хат жiберу интерфейсi
қолданылды. Жылуөткiзгiштiктiң екi өлшемдi есебiнiң сандық шешiмi ADI әдiсi арқылы
шешiлдi. Бұл әдiс тiзбектi бағдарламаны iске асыруда қарапайым болып табылады,
алайда деректердi жiберудiң тәуелдi болуына байланысты параллельдеу қиын болып
табылады. Осы әдiстi қолдану кезiнде 2D жылуөткiзгiштiк теңдеуiн шешу үшiн x және y
ось бағыттары бойынша қуалауды орындау қажеттiлiгi туындайды. Зерттеу жұмысында
таңдалған мысал есеп үшiн Яненко әдiсiн қолдануда деректердi 1D және 2D декомпозициялау
арқылы параллельденуiне сипаттама берiлген. Атап айтқанда, 2D декомпозициясы кезiнде,
қуалаудың әрбiр x және y ось бағыты бойынша Яненко әдiсi қолданылды. Мақалада 1D және
2D декомпозициялары бойынша параллельдi алгоритмдердiң үдеуi және тиiмдiлiгi кестелер
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мен графиктер түрiнде көрсетiлген. Ұсынылған алгоритм Новосибирск Мемлекеттiк
Университетiнiң есептеу орталығының кластерiнде есептеу облысының әртүрлi нүктелерi
үшiн (512x512-ден 4096x4096-ға дейiн) сыналды. Тестiлеу нәтижелерi алынған және
талдау жасалынған, сонымен қатар пайдаланылған декомпозициялардың ерекшелiктерi
сипатталған.
Түйiн сөздер: жоғары өнiмдi есептеулер, қуалау әдiсi, Яненко әдiсi, параллельдi есептеулер,
ADI әдiсi, MPI.
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В данной работе была рассмотрена параллельная реализация метода прогонки для
2D уравнения теплопроводности. В качестве технологии для распараллеливания был
выбран интерфейс передачи сообщения MPI. Численное решение двумерной задачи
теплопроводности был решен с помощью метода продольно-поперечной прогонки. Метод
прогонки является простым в реализации последовательной программы, но сложно
распараллеливаемым из-за зависимых пересылок данных. При применении данного метода
для решения 2D уравнения теплопроводности возникает потребность реализации прогонки
вдоль каждого направления х и y оси. В работе приведена описания распараллеливания
данной задачи с помощью метода Яненко при использований 1D и 2D декомпозиции
данных. В частности, при 2D декомпозиции, вдоль каждого направления прогонки был
использован метод Яненко. В статье в виде таблиц и графиков показаны ускорения
и эффективность параллельных программ при использовании 1D и 2D декомпозиции
данных. Представленный алгоритм протестирован на кластере вычислительного центра
Новосибирского Государственного Университета для различного количества точек расчетной
области (от 512x512 до 4096x4096). Полученные результаты тестирования представлены и
проанализированы, на основании чего описаны особенности использованных декомпозиций.
Ключевые слова: высокопроизводительные вычисления, метод прогонки, метод Яненко,
параллельные вычисления, метод ADI, MPI.

1 Introduction

Currently, modeling of processes using the numerical solution of differential equations is
finding wider application in various branches of science. Since, the development of computer
technology and numerical methods contributes to the solution of such equations. The most
common methods reduce a differential problem to a system of linear algebraic equations
(SLAE). There are various Thomas algorithm types such as direct sweep, inverse sweep and
two-sided sweep to solve SLAE systems.

The Thomas algorithm is a direct method and attracts with its ease of implementation in a
sequential solution. The appearance and development of computing systems using multi-core
processors and graphics accelerators, actualizes the task of parallelizing Thomas algorithm.

In this paper was described the numerical solution of the heat equation and parallelization
of this problem for 1D and 2D decomposition using the Yanenko method, at the second stage
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of which the Thomas algorithm was used. The features of their implementation for working
on a computer system with parallel processes are also given.

2 Literature review

Currently, many problems describing physical processes are reduced to the need for a numer-
ical solution of systems of linear algebraic equations (SLAE). There are many works on the
solvability and convergence of difference schemes, among which the work [1] can be noted.
Methods such as the Thomas algorithm and the cyclic reduction method are used to find
solutions to such SLAEs. The cyclic reduction method is more difficult to implement, but it
is less affected, compared to Thomas algorithm, by rounding errors [2].

There are currently many articles on this subject. Among them, the following works can
be distinguished: in [3, 4], a combination of parallel cyclic reduction [5] and the Thomas
algorithm was proposed to ensure parallelism and computational complexity. In [6], a com-
putational solver based on the SPIKE algorithm [7, 8] was proposed. In [9], parallel algorithms
were formulated and analyzed for solving SLAEs using the counter-running method. Also,
the method proposed by N.N. Yanenko [10], which allows to reduce the original system with
a large number of unknowns to a system with the number of unknowns equal to the number
of processors. Such a system, consisting of parametric boundary processor points, is solved
by the Thomas algorithm. It is also possible to apply such methods as the counter-sweep
method, the parallel-cyclic reduction method. Also known is the parallel pipeline method
[11, 12] for solving many three-diagonal systems.

In [13, 14, 15] was shown the application of the cyclic reduction method for implementation
on a computer system with graphic accelerators, and in [16] was considered a solver based
on PCR. A hybrid method was developed in [17], which includes the Thomas algorithm and
parallel cyclic reduction. In [18], two-level parallelization of the Thomas algorithm (on shared
memory using OpenMP and on distributed memory using MPI) was considered to solve three-
diagonal systems that arise when modeling two-dimensional and three-dimensional physical
processes. Another option for parallelizing the Thomas algorithm is the dichotomy method
proposed by Terekhov [19]. The essence of the method is to divide the original area in half
at each step. For the two-dimensional and three-dimensional cases, a parallel matrix sweep
algorithm is used [20]. A parallel version of the alternating direction method is also known
[21]. In [22], a parallelization method for the Thomas algorithm on hybrid computers using
accelerators was considered. And also, in this work, the Yanenko method, the parallel pipeline
method, and various methods for the second stage of the Yanenko method are described
in detail. In [23], a comparison of the parallel pipeline method and the Yanenko method
was shown, at the second stage of which the Thomas algorithm was used, the results of
parallelization efficiency are also presented.

3 Materials and methods

3.1 Parallelization of Thomas algorithm

The parallelization of Thomas algorithm which was proposed by N. Yanenko called parametric
sweep method. The parametric sweep method of N. Yanenko was implemented by distributing
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a system of grid equations where at the boundary of processor elements are distinguished
so-called parametric unknowns [10]. Consider a system of linear equations of the following
form:

aixi−1 + bixi + cixi+1 = di, i = 1, ..., n− 1,

b0x0 + c0x1 = d0, anxn−1 + bnxn = dn.
(1)

Let each processor have the same number of points m=N/size, where N is the number of
unknowns and size is the number of processors. Thus, only part of the equations of system
(1) with numbers from (j-1)*m+1 to j*m, where j is the processor number, will be located
on the processor with number j. Denote xj∗m by zj and we will look for a solution to system
(1) in the following form:

x(j−1)∗m+i = uizj−1 + vizj + wi, j = 1, ..., size (2)

where u,v,w are solutions of the following systems:

aiui−1 + biui + ciui+1 = 0, u(j−1)∗m = 1, uj∗m = 0;

aivi−1 + bivi + civi+1 = 0, v(j−1)∗m = 0, vj∗m = 1;

aiwi−1 + biwi + ciwi+1 = di, w(j−1)∗m = 0, wj∗m = 0;

j = 1, ..., size, i = (j − 1) ∗m+ 1, ..., j ∗m− 1.

(3)

The solutions of these three systems (3) can be found by Thomas algorithm, and indepen-
dently on each processor. We will call this stage of solving this problem - the stage of finding
pre-solutions. In the equations with numbers j*m from system (1), we substitute combina-
tions (2) instead of x. Thus, we obtain a system of three-diagonal equations for finding zj
having the following form:

Ajzj−1 +Bjzj + Cjzj+1 = Dj, j = 1, ..., size− 1 (4)

with coefficients:

B0 = b0 + c0u1, C0 = c0v1, D0 = d0 − c0w1,

Aj = aj∗muj∗m−1, Bj = aj∗mvj∗m−1 + bj∗m + cj∗muj∗m+1, Cj = cj∗mvj∗m+1,

Dj = dj∗m − aj∗mwj∗m−1 − cj∗mwj∗m+1, j = 1, ..., size− 1,

Asize = asize∗musize∗m−1, Bsize = bsize ∗m+ asize∗mvsize∗m−1,

Dsize = dsize∗m − asize∗mwsize∗m−1.

We will call this stage the stage of finding boundary processor solutions. The dimension
of this system of equations is equal to the number of processors [15].

After finding the boundary-processor solutions, we restore the final solution by the formula
(2).

The Yanenko method consists of three stages: 1) finding the pre-solutions of u, v, w, 2)
finding the boundary-processor solutions of zj, 3) restoring the solutions of xj.

This computational algorithm has a high degree of parallelism, since the first and third
stages are performed in parallel on each processor, but the system solution for parametric
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unknowns (4) is performed sequentially by only one processor and requires communication
between MPI processes.

In this paper, the Thomas algorithm was used to solve the second stage of the Yanenko
method, which is consisting of boundary processor points. The formulas for the Thomas
algorithm are shown as follows:

α0 = −c0
b0
, β0 =

d0
b0

αi = − ci
bi + αiαi−1

, βi =
di − αiβi−1

bi + αiαi−1

, i = 1, ..., size− 1,

xsize =
dsize − αsizeβsize−1

bsize + αsizeαsize−1

, xi = αixi+1 + βi, i = size− 1, ..., 0.

3.2 Implementation of parallelization of the Thomas algorithm

The implementation on distributed memory computing system was performed using the MPI
standard. As we know, when solving two-dimensional problems using the method of ADI,
many systems of three-diagonal equations will be arise. It is used the Yanenko method to
solve such systems, and at the second stage of which the Thomas algorithm was used. This
task was performed with one-dimensional and two-dimensional data decomposition.

When using one-dimensional decomposition, the grid area is divided into horizontal stripes
(Figure 1).

Figure 1: One-dimensional decomposition

The implementation of the ADI method consists of two steps of iteration process. The
Thomas algorithm was used along each x-axis and y-axis. In Figure 1, the first step of iteration
process is indicated in red color, and the second step of iteration process is indicated in blue
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color. In the first step, the method is performed for each row independently on each MPI
process. Therefore, when using the Thomas algorithm at the first step, the boundary data
exchange between MPI processes are not required. However, at the second step, because of
the data decomposition between MPI processes it is used Yanenko method.

An example of decomposition along each direct sweep is shown in Figure 2. The boundary
processor parametric unknowns, which are determined in the second stage of the Yanenko
method, are indicated in green [24].

Figure 2: An example of decomposition between three MPI processes

The second stage of the Yanenko method requires additional MPI communication. In
order to complete the second stage, the boundary elements of the pre-solutions u,v,w were
collected from each MPI process using the MPI_Gather function. After sequentially finding
the boundary-processor solutions on the root process using the Thomas algorithm, we broad-
cast the data using the MPI_Bcast function. Then, each process having its own parametric
boundary unknowns and elements of the pre-solutions u,v,w and calculate final solutions by
equation (2) independently in parallel.

In a distributed memory computing system using two-dimensional data decomposition,
the grid area is divided into blocks (Figure 3). For this, we have constructed a two-dimensional
MPI Cartesian topology.

In Figure 3, the first step is indicated in red color, and the second step is indicated in blue
color. At the first and second step, where it is necessary to solve the three-diagonal equations
along the grid lines i and j, it is used the Yanenko method. That means the Yanenko method
was used along each x-axis and y-axis direction of the Thomas algorithm. When using two-
dimensional data decomposition, GridSize is the number of data blocks along each x-axis and
y-axis direction.

3.3 Numerical experiments

As a test problem, the two-dimensional heat equation is written in the following form:

∂U

∂t
= α

(
∂2U

∂x2
+

∂2U

∂y2
+ f(x, y)

)
here
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Figure 3: Two-dimensional decomposition

α = 1, f(x, y) = −3.

Initial conditions:

U(x, y, 0) = x2 + y2

Border conditions:

U(0, y, t) = y2 + t

U(1, y, t) = 1 + y2 + t

U(x, 0, t) = x2 + t

U(x, 1, t) = 1 + x2 + t

4 Results and discussions

A two-dimensional heat equation testing was carried out with an implicit approximation
scheme, where 512, 1024, 2048, 4096 points were taken in each grid direction.

Testing was carried out on the computing cluster of Novosibirsk State University (NSU)
[25]. In each computing node there were 2 Intel Xeon CPU E5-2603 (4 computing cores in
each).

For software configuration, Intel C ++ Compiler 15.0.2 (optimization level –O3) was used.
The following Table 1,2 show averaged times based on several measurements.

Figures 4 and 6 show the speedup of parallel programs for 1D and 2D data decomposition
with different numbers of MPI processes. In these figures, we can see that in each process,
as the number of points in the problem increases, the speedup increases. However, for 1D
decomposition, when using 16 MPI processes, the speedup drops. This is because with an
increase in the number of processes, the necessary communication costs increase due to the
second stage of the Yanenko method. Therefore, for a 1D decomposition, the maximum of
the processes used was 16. And for 2D decomposition, the speedup increases up to 64 MPI
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Table 1: Parallel program runtime(sec) for 1D decomposition

Grid Size Number of processes
1 2 4 8 16

512x512 1,26 1,87 1,51 1,75 3,69
1024x1024 6,57 6,33 4,43 4,61 8,04
2048x2048 30,01 22,8 13,63 11,53 15,68
4096x4096 125,01 93,32 54,89 42,92 39,88

Table 2: Parallel program runtime(sec) for 2D decomposition

Grid Size Number of processes
1 4 8 16 32 64

512x512 1,26 1,09 0,78 0,61 0,56 1,12
1024x1024 6,57 3,99 2,64 1,61 1,36 2,27
2048x2048 30,01 16,2 10,26 5,83 3,87 4,93
4096x4096 125,01 65,7 40,9 20,8 12,87 10,7

processes. The reason is when applying 2D decomposition, the number of processes along
each grid direction of Thomas algorithm decreases.

Figures 5 and 7 show the efficiency of parallel programs for 1D and 2D data decomposi-
tion with different numbers of MPI processes. We may notice that as the number of processes
increases, the efficiency decreases. For 1D decomposition, good performance indicators are
shown using 2 and 4 MPI processes. For 2D data decomposition, with an increase in the
number of MPI processes, performance indicators are more stable than when using 1D de-
composition. Therefore, when using 2D data decomposition, the task was launched up to 64
processes, which gives an advantage for reduce the computation time. The efficiency of 2D
data decomposition with large grid size is more stable than 1D data decomposition. As we
increase MPI processes number for 1D data decomposition with large grid size, the execution
time of the second stage of the Yanenko method increases due to data exchanges between
processes. For instance, if we launch a task using 16 MPI processes for 1D decomposition,
in the second step of ADI, in the second stage of the Yanenko method, communication is
performed between all the given 16 MPI processes. And when using 2D decomposition for the
same task, communication occurs between 4 MPI processes along per computation direction
of Thomas algorithm.
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Figure 4: Speedup of a parallel program for 1D decomposition

Figure 5: Efficiency of a parallel program for 1D decomposition
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Figure 6: Speedup of a parallel program for 2D decomposition

Figure 7: Efficiency of a parallel program for 2D decomposition
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5 Conclusion

This paper is devoted to apply Yanenko method as the parallel implementation of the Thomas
algorithm for solving the 2D heat equation. The numerical solution of the 2D heat equation
was used two step iteration process of the ADI method. Described the parallelization of the
Thomas algorithm using 1D and 2D data decomposition. For chosen test task of 2D heat
equation for 1D and 2D data decomposition, the speedup and efficiency was compared and
analyzed in detail. In particular, in 2D decomposition, the Yanenko method was used along x-
axis and y-axis direction separately. Therefore, using this research experience, one can use the
Yanenko method as a parallel implementation of the Thomas algorithm to solve the 3D heat
equation using the three step iteration process of ADI method in 2D,3D data decomposition.
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