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RESEARCH OF THE STRESS STATE OF AN ELEMENT OF A
THICK-WALL PIPELINE UNDER CONDITIONS OF POWER AND

CORROSION EFFECT

The stress state of an element of a thick-walled pipeline is studied under conditions of power and
corrosion effect in the statement of plane deformation. The material of the element under the
influence of external loads goes into an elastic-plastic state. The corrosive effect of the pumped
medium leads to softening of the material in the plastic zone. This softening of the material is taken
into account by a special inhomogeneity function in the Tresca-Saint-Venant plasticity condition.
The elastic-plastic problem in the axisymmetric setting (uniform pressure) and non-axisymmetric
setting (non-uniform external pressure along the contour) is considered. The problem is solved by
the method of sharing static and physical equations for the considered elastoplastic material and
the perturbation method in the theory of an elastoplastic body. An assessment of the strength and
bearing capacity of a thick-walled element under corrosive force effect is given.
Key words: thick-wall element, elastoplastic state, corrosion damage to the material, plastic
inhomogeneity, softening function.
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Қалың қабырғалы құбыр элементiнiң күштiк және коррозиялық әсер ету
жағдайларында кернеулi күйiн зерттеу

Жазық деформация қойылымында күштiк және коррозиялық әсер ету жағдайларында
қалың қабырғалы құбыр элементiнiң кернеулi күйi зерттелдi. Сыртқы жүктемелердiң
әсерiнен элемент материалы серпiмдi-иiлгiш күйге өтедi. Айдалатын ортаның коррозиялық
әсерi иiлгiш аймақта материалдың жұмсаруына әкеледi. Материалдың жұмсаруы Треск-
Сен-Венанның иiлгiштiк шартында бiртексiздiктiң арнайы функциясымен ескерiледi.
Осесимметриялы қойылымда (бiрқалыпты қысым) және симметриялы емес қойылымда
(контуры бойынша бiрқалыпты емес сыртқы қысым) серпiмдi иiлгiш есеп қарастырылды.
Есеп қарастырылып отырған серпiмдi иiлгiш материал үшiн статикалық және физикалық
теңдеулердi бiрлесiп пайдалану әдiсiмен және серпiмдi иiлгiш дене теориясында ұйытқулар
әдiсiмен шешiлдi. Коррозиялық-күштiк әсер ету жағдайында қалың қабырғалы элементтiң
берiктiгi мен көтергiштiк қабiлеттiлiгiне баға берiлдi.
Түйiн сөздер: қалың қабырғалы элемент, серпiмдi иiлгiш күй, материалдың коррозиялық
зақымдануы, иiлгiштiк бiртексiздiк, берiктендiру функциясы.
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Исследовано напряженное состояние элемента толстостенного трубопровода в условиях
силового и коррозионного воздействия в постановке плоской деформации. Материал
элемента под действием внешних нагрузок переходит в упругопластическое состояние.
Коррозионное воздействие перекачиваемой среды приводит к разупрочнению материала
в пластической зоне. Это разупрочнение материала учитывается специальной
функцией неоднородности в условии пластичности Треска-Сен-Венана. Рассмотрена
упругопластическая задача в осесимметричной постановке (равномерное давление) и
неосесимметричной постановке (неравномерное по контуру наружное давление). Задача
решена методом совместного использования статических и физических уравнений для
рассматриваемого упругопластического материала и методом возмущений в теории
упругопластического тела. Дана оценка прочности и несущей способности толстостенного
элемента при коррозионно-силовом воздействии.

Ключевые слова: толстостенный элемент, упругопластическое состояние, коррозионные
повреждения материала, пластическая неоднородность, функция разупрочнения.

1 Introduction

According the normative documents [1, 2] in engineering practice, when calculating, as a rule,
elastically deformable elements of pipelines are considered. At the same time, with an increase
in external loads, the material of a thick-walled element passes into an elastoplastic state.
Most pipelines are operated with prolonged exposure under increased loads in aggressive work
environments. The corrosive effect of an aggressive pumped medium leads to damage and
microcracking of the material during operation. In the plastic zone, as a result of corrosion-
force action, a softening of the element occurs, which leads to a significant decrease in its
strength and bearing capacity. The danger of exposure to aggressive media on the material
working under load is due to the fact that in such cases the pipelines fail in a very short
time, sometimes even with accidents. In this regard, this work is devoted to the study of
the stress-strain state, strength and load-bearing capacity of the elastic-plastic element of
a thick-walled pipeline under conditions of force and corrosion, which leads to the material
softening in the plastic zone.

2 State of the problem

The effect of large loads and aggressive working environments (containing hydrogen sulfide,
mercaptans), penetrating into the volume of structural elements, leads to their damage [3, 4].
The effect on the strength of the material of an individual crack or the final system of cracks in
the framework of the linear theory of elasticity is the subject of linear fracture mechanics [5].
Nonlinear fracture mechanics [6] involves the analysis of the criteria and properties of material
ductility in the vicinity of the tip of a single crack. Corrosion damage to the contact zone of
the element material under high stress and corrosive environment leads to the appearance of
many defects and microcracks, the account of the overall impact of which is not possible in the
framework of fracture mechanics. Mathematical models and criteria describing the occurrence
and development of scattered microdamages are formulated mainly within the framework
of continuum mechanics [7]. Different types of corrosion affect on different parameters of
metal structures. For example, the general mechanochemical continuous corrosion of metals
leads to a loss of weight and volume of the material without significant loss of its strength
[8]. The calculation of the decrease in the wall thickness of a pipeline subject to general
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mechanochemical corrosion in the framework of the linear theory of elasticity is given in [9].
Moreover, the process of metal loss is significantly extended over time. In case of intergranular
and transcrystalline corrosion, on the contrary, the mechanical properties of the metal change
practically without loss of its weight [8]. The combined action of corrosion and static tensile
stresses leads to a gradual decrease in the resistance to plastic deformation and a decrease in
the plasticity limit in ductile metals, carbon and low alloy steels, and various alloys [10]. The
decrease in the mechanical properties of the material during loading due to the accumulation
of damage and defects can be taken into account in the framework of the plasticity theory
of inhomogeneous bodies [11, 12, 13]. In [11, 12, 13], to take into account the accumulation
of damage to the material, it was proposed to introduce a special softening function (radial
inhomogeneity of strength characteristics) in the criteria used for plasticity of the material for
axisymmetric and some plane problems. In [14], modified plasticity criteria were used, which
can take into account the accumulation of material damage in the case of more complex
boundary conditions under which plastic inhomogeneity should change in accordance with
the change in the elastoplastic boundary. In this paper, this is exactly the approach taken.

3 Solution of the problem

3.1 Basic assumptions and relationships

The element of a thick-walled extended pipeline is in flat deformation conditions. Consider
the cross section of a pipeline with an internal circuit a0 + f1(r, θ) and an external circuit
1 + f2(r, θ) in the polar coordinate system r, θ. The material of the pipeline is considered
perfectly elastic-plastic.

The equations of equilibrium of the pipeline have the form:

∂σr

∂r
+

1

r

∂τrθ
∂θ

+
σr − σθ

r
= 0,

∂τrθ
∂r

+
1

r

∂σθ

∂θ
+ 2

τrθ
r

= 0. (1)

Here are σr, σθ, τrθ the components of the stress tensor. In the elastic region, Hooke’s law
is valid for a homogeneous, isotropic linearly elastic material:

εij =
1

E
((1 + µ)σij − µδijσkk). (2)

Where σij and εij are the components of the stress and strain tensors, E – is the elastic
modulus, µ – is the Poisson’s ratio, δij – is the Kronecker symbol.

As a condition for the transition of the material into a plastic state, we accept the Tresca-
Saint-Venant condition, which is widely used in the calculation of plastic deformable metal
structures

(σθ − σr)
2 + 4τ 2rθ = 4K2

∗ (3)

where K∗ is adhesion coefficient.
The material strength parameter K∗ in condition (2) characterizes the plastic inhomogene-

ity formed as a result of varying degrees of damage to the material due to the force-corrosion
effect and distributed over the thickness of the plastic zone, similar to the outline of its
boundary. At the boundary of the plastic zone, the value K∗ is constant: K∗ = K1. The value
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K∗ is a special softening function, depending on the coordinates r, θ and loading parameters
r0, δ [14]:

K∗ = K∗(r, r0, θ, δ) (4)

Here r0, δ – is the axisymmetric and nonaxisymmetric loading parameters: r0 = r0(P0, P1 +
P2), δ = δ(P1 − P2).

The problem is solved by the method of joint use of static and physical equations for
the considered elastoplastic material. In the non-axisymmetric formulation, the perturbation
method is applied [15]. The solution is searched for in the form of series by degrees of a small
parameter, which is the parameter δ

σij =
ν∑
0

δνσ
(ν)
ij = σ0

ij +
ν∑
1

δνσ
(ν)
ij , K∗ =

ν∑
0

δνK(ν)
∗ = K0

∗ +
ν∑
1

δνK(ν)
∗ ,

rs =
ν∑
0

δνrν = r0 +
ν∑
1

δνrν ,

(5)

where rs is the desired elastoplastic boundary.
Linearizing equations (1), (3) and introducing, according to (1), the stress function F =

F (r, θ)

σ(ν)
r =

1

r

∂F (ν)

∂r
+

1

r2
∂2F (ν)

∂θ2
, σ

(ν)
θ =

∂2F (ν)

∂r2
, τ

(ν)
rθ = − ∂

∂r

(
1

r

∂F (ν)

∂θ

)
, ν = 0, 1, 2, . . . (6)

we obtain in the plastic zone an inhomogeneous partial differential equation for the function
F (ν)(r, θ) :

r2
∂2F (ν)

∂r2
− r

∂F (ν)

∂r
− ∂2F (ν)

∂θ2
= r2f (ν)(r, θ), ν ≥ 0 (7)

where f (ν) is the right side of the corresponding linearized relation:

f 0 = 2K0
∗ , f (I) = 2K(I)

∗ , f (II) = − 1

K0

(τ
(I)
rθ )2 + 2K(II)

∗ .

The solution of equation (7) F (ν) is determined taking into account static or geometric
boundary conditions.

In the elastic region, the stress function Φ(r, θ) satisfies the biharmonic equation (∇2 is
the Laplace operator)

∇2∇2Φ = 0. (8)

The solution of equation (8) with r, mθ can be represented as

Φm = (C1r
m + C2r

−m + C3r
m+2 + C4φm(r)) cosmθ, m = 0, 1, 2, . . . , (9)

where φm(r) = rm ln r at m = 0, 1; φm(r) = r−m+2 at m ≥ 2. Constants C1 − C4 are found
from the boundary conditions.
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Figure 1: Design scheme for a thick-walled pipe element in an axisymmetric setting

3.2 Thick-walled element in an axisymmetric setting

First, find the axisymmetric state of the pipeline element. The axisymmetric problem for a
thick-walled element is known in elasticity theory as the Lame problem. Assuming in the
initial equations τ 0rθ = 0, ∂σ0

ij/∂θ = 0, ∂K0
∗/∂θ = 0, δ = 0 we obtain the Lame problem in

the accepted formulation (Fig. 1).
The axisymmetric boundary conditions on the internal and external contour of a0 and 1

and the conjugation conditions on the contour of r0 have the form (square (round) brackets
at the indices mean belonging to the plastic (elastic) zon

σ0
[r] = P0 at r = a0; σ0

(r) = P at r = 1;[
σ0
r

]
=
[
σ0
θ

]
= 0 at r = r0,

(10)

Here big
[
. . .
]

brackets means a jump of a given value when crossing through the specifical
boundary.

In the axisymmetric (zero) state of a thick-walled element, the softening function in the
plastic zone K0

∗ depends on the current radius r and the boundary radius r0

K0
∗ = K∗(r, r0) = (K0 −K1)f(r, r0) +K1 (11)

Where K0 and K1 is the value of the strength of the material on the inner contour of the
element and on the elastic-plastic radius r0, f(r, r0) – some core with properties f(a0, 1) = 1,
f(r0, r0) = 0. Such properties of the core allow us to describe the decrease in the value H0

∗
not only by the radius, but also depending on the position of the boundary radius r0. As a
core f(r, r0), one can take the core [12], which well describes the softening of the material

during loading (Fig. 2). It has the form f(r, r0) =
an0 (r

n
0 − rn)

rn(1− an0 )
(n – nonlinearity parameter).

Using equilibrium equations (1), plasticity condition (3), and also axisymmetric boundary
conditions and conjugation conditions (10) we find all stress components and the radius of
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Figure 2: Decrease in the strength parameter K0
∗ depending on the position of the elastoplastic

radius r0 according to the presented softening function K∗(r, r0)

the plastic zone r0.

σ0
[r] = P0 + 2

r0∫
a0

r−1K0
∗dr, σ0

[θ] = σ0
[r] + 2K0

∗ , τ 0[rθ] = 0 (12)

σ0
(r)

σ0
(θ)

}
= P +K1r

2
0

(
1∓ 1

r2

)
, τ 0(rθ) = 0

The radius r0 is implicitly determined from the equation

P0 − P + 2

r0∫
a0

r−1K0
∗dr +K1(1− r20) = 0 (13)

In the absence of corrosion damage, the parameter K0
∗ = K1 and radius of the plastic

zone r0 are found from the equation

P0 − P + 2K1

(
ln

(
r0
a0

)
+

1

2

(
1− r20

))
= 0 (14)

Numerical calculations were performed using formulas (11) – (14) with the following data:
µ = 0, 34; E = 110GPa; ∆P = P − P0; E = 3667K1. According to numerical results, the
presence of corrosion damage affects the elastic-plastic state of the thick-walled element.
The greatest interest is the relationship ∆P = ∆P (r0) between value of uniform pressure
∆P and the radius of the plastic zone r0 (Fig. 3). This dependence is determined by the
thickness parameter a0 and the softening parameters of the material n, γ = K0/K1. From
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Figure 3: The relationship between the value of uniform pressure ∆P and the radius of the
plastic zone r0 for various thickness parameters and softening parameters of the material n,
γ = K0/K1

the calculations it follows that the presence of corrosion damage (γ < 1) leads to an increase
in radius r0. Moreover, all curves with γ < 1 have one maximum point with an abscissa
r0 = r∗, where a0 < r∗ < 1. In the absence of damage (γ = 1), the radius r∗ = 1. The
existence and uniqueness of maximum points follows analytically from the nonmonotonicity
and convexity of the function ∆P = ∆P (r0).

The maximum point characterizes the moment of loss of the bearing capacity of a thick-
walled element. Corresponding to the maximum point, pressure ∆P∗ (∆P∗ ≤ ∆P ) and radius
r∗ (r∗ ≤ 1) are limiting for the destruction of a thick-walled element. The value r∗ depends
significantly on the thickness parameter a0 : in a thinner element, it is located closer to the
inner surface (Fig. 3). The obtained results can serve as an explanation of the phenomenon
of premature failure of structural elements with corrosion damage.

We denote the relationship between external loads P, P0 and radius r0 as g(P, P0, r0) = 0.
Then the existence of a maximum point on the interval a0 < r0 < 1 is expressed as an
additional equation ∂g(P, P0, r0)/∂r0 = 0, which has the form: K∗(a0, r0)−K1r

2
0 = 0.

The bearing capacity of a thick-walled element is determined as follows. From the two
transcendental equations g = 0, ∂g/∂r0 = 0, we first find the critical radius r∗, and then the
critical loads at which the thick-walled element is destroyed.

With the known softening parameters and given external loads, it is possible to establish
the optimal (minimum permissible) thickness parameter a0 for a thick-walled element of two
equations g = 0, ∂g/∂r0 = 0. Calculations show that the bearing capacity of the element is
significantly reduced in the presence of corrosion damage, for example, when the thickness
d = 1− a0 = 0, 4 is reduced by 12-15%. The bearing capacity of an element that allows only
elastic deformation is lower by 34-50% in comparison with elastoplastic elements. It follows
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from the calculations that the bearing capacity of the elements increases most effectively
when their thickness increases only to d = 0.4÷ 0.5.

3.3 Thick-walled element in a non-axisymmetric setting (outward pressure uneven in
contour)

Figure 4: Design scheme for a thick-walled pipe element in a non-axisymmetric setting

Consider an extended thick-walled element loaded with an external pressure that is not
uniform along the contour P (θ). The cross section of an element with an inner radius a0 and
an outer radius of 1 is in plane deformation (Fig. 4).

External pressure is elliptically distributed along the contour and can be written as

P (θ) = P [1− δ cos 2θ] (15)

where P = (Pmax+Pmin)/2 is the averaged uniform pressure, δ = (Pmax−Pmin)/(Pmax+Pmin)
– a parameter characterizing the deviation of external pressure from uniform.

The solution is sought in the form (5) at ν ≥ 0. The zero solution for ν = 0 was found
in the previous part of the paper. Find a solution at ν = 1. The function F (1) in (7) is
represented based on the static boundary conditions (15) on the outer contour of the element:
F (1) = R(r) cos 2θ.

Solving (7), we find the function F (I) in the plastic zone:

F (I) =

AiRi +Ri

r∫
a0

νi(r)

ν(r)
dr

 cos 2θ, i = 1, 2, (16)

where AiRi = A1R1 + A2R2 = r(A1 cos(
√
3 ln r) + A2 sin(

√
3 ln r), V (r) – is the Wronskian

of the solution system Ri, Vi(r) is the determinant obtained from the determinant V (r) by
replacing the i-th column with a column with a single nonzero element 2K(I)

∗ cos−1 2θ located
at its end.
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Using (6), (16) we find the stress components in the plastic zone. They must satisfy the
linearized boundary conditions on the inner contour

σ
(I)
[r] = 0, τ

(I)
[rθ] = 0 at r = a0. (17)

The components σ(I)
[r] , σ

(I)
[θ] , τ

(I)
[rθ] of the stress tensor in the elastic region of the cylinder are

determined from (6), (9). They satisfy the given static boundary conditions on the external
contour (15) and two linearized conditions of stress conjugation σr and τγθ on the boundary
of the plastic zone:

[σ
(I)
[r] ] = 0, [τ

(I)
[rθ]] = 0 at r = r0. (18)

As a result, we obtain the boundary-value problem for an elastic ring of radius r0 and 1
under the following boundary conditions:

σ
(I)
[r] = N1(r) cos 2θ, τ

(I)
[rθ] = N2(r) sin 2θ at r = r0,

σ
(I)
[r] = −P cos 2θ, τ

(I)
[rθ] = 0 at r = 1.

Solving this problem, we find the stress components in the elastic region.
The equation of the boundary of the plastic zone rs is sought in the form rs = r0 + δr1.

To determine the value of r1, we use the linearized conditions for the conjugation of the
components σθ and K∗ on r0 :[

σ
(I)
[θ] +

dσ0
θ

dr
r1

]
= 0,

[
K(I)

∗ +
dK0

∗
dr

r1

]
= 0 at r = r0, (19)

where will we get it

r1 = (σ
(I)
θ − σ

(I)
[θ] )/

(
dσ0

[θ]

dr
−

dσ0
(θ)

dr

)
, K(I)

∗ = −dK0
∗

dr
r1 at r = r0.

Then for r1 we will have r1 = φ(r0)r0 cos 2θ, where φ(r0) is a function of r0 :

φ(r0) =
X0

X1 +X2 + Z
, X0 = 4(1− r20 + r−2

0 − r40)
−P

N
,

N = 6− 4(r20 + r−2
0 ) + r40 + r−4

0 , A =
1

2
(12 + 12α2 − α2

2)
1/2,

X1 = (10− 4r20 − 4r−2
0 − r40 − r−4

0 + α1N)
K∗

N
×

×
[(√

3 cos(
√
3 ln r0) + sin(

√
3 ln r0)

)
B1 +

(
cos(

√
3 ln r0)−

√
3 sin(

√
3 ln r0)

)
B2

]
,

X2 = −2(4− 4r20 + r40 − r−4
0 )

K∗

N
× (sin(

√
3 ln r0)B1 + cos(

√
3 ln r0)B2),

Z = 4K1, K∗ = (K0 −K1)
an0

1− an0

n

r0
, B1 =

r0
2
sin(

√
3 ln r0 −

π

3
)− a0

2
sin(

√
3 ln r0 −

π

3
),
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B2 =
r0
2
cos(

√
3 ln r0 −

π

3
)− a0

2
cos(

√
3 ln r0 −

π

3
)

In the homogeneous case we have: X0 – the same thing, X1 = X2 = 0, H0
∗ = H1, H

(I)
∗ = 0

X1 = X2 = 0, K0
∗ = K1, K(I)

∗ = 0, Z = 4K1.

Moreover, the radius r0 corresponds to the homogeneous case.
The equation of the boundary of the plastic zone rs takes the form:

rs = r0(1 + δφ(r0) cos 2θ).

The solution exists under the condition r0(1− δφ(r0)) ≥ a0.

The bearing capacity of a thick-walled element can be determined from the transcendental
equation

r∗ = r0(1 + δφ(r0)) (20)

First, from (20) we find the radius r0. Substituting the found radius r0 into equation
(13), we obtain critical loads at which the plastic zone reaches some "critical" points of the
thick-walled element.

In the absence of corrosion damage to the element, r∗ = 1 should be taken in equation
(20) and equation (14) should be used. The critical points in this case (marked with zeros in
Fig. 4) are on the external contour of the element in the directions of the minimum external
pressure Pmin. In the presence of corrosion damage to the element, the critical points (marked
with crosses in Fig. 4) are inside the element on circuit r∗ in the same directions. Reaching
these crosses with at least one point of the plastic zone will lead to the destruction of the
element. As can be seen from Figure 4, the plastic zone is elongated in the directions of
action of Pmin. Damage to the material leads to an increase in the size of the plastic zone.
The degree of damage to the material depends on the size of this zone. The element has the
greatest damage in the directions of action of Pmin. Therefore, the softening of the element
depends both on the size of the plastic zone and on the orientation of its boundary.

4 Conclusion

The stress-strain state of an elastoplastic element of a thick-walled pipeline is studied under
conditions of force and corrosion using a special softening function (plastic inhomogeneity)
in the plasticity condition of Tresca-Saint-Venant.

The elastoplastic problem for a thick-walled element in an axisymmetric formulation (with
uniform external and internal pressure) and non-axisymmetric formulation (with an external
pressure uneven in contour) is considered. The problems are solved by the method of sharing
static and physical equations and the perturbation method in the theory of an elastoplastic
body.

An assessment of the strength and bearing capacity of a thick-walled element under
corrosive force is given.
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