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STUDY OF FORCED VIBRATIONS TRANSITION PROCESSES OF
VIBRATION PROTECTION DEVICES WITH ROLLING-CONTACT

BEARINGS

Many seismic isolation and vibration protection devices use asan essential element the various
types of rolling-contact bearings. The rolling-contact bearing is used for creation of moving base
of body protected against vibration. The most dynamic disturbances acting in the constructions
and structures have highly complex and irregular nature.
This article considers the oscillation of a solid body on kinematic foundations, the main elements
of which are rolling bearers bounded by the high order surfaces of rotation at horizontal dis-
placement of the foundation. It is ascertained that the equations of motion are highly nonlinear
differential equations. Stationary and transitional modes of the oscillatory process of the system
have been investigated. It is determined that several stationary regimes of the oscillatory process
exist. Equations of motion have been investigated also by quantitative methods.
In this paper the cumulative curves in the phase plane are plotted, a qualitative analysis for sin-
gular points and study of them for stability is performed. In the Hayashi plane a cumulative curve
of body protected against vibration forms a closed path which does not tend to the stability of
singular point. This means that the vibration amplitude of body protected against vibration is not
remain constant in steady-state, but changes periodically.
Key words: protection against vibration,rolling-contact bearing, nonlinear vibrations, cumulative
curves, singular point.
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Теңселмелi тiрекке орналастырылған дiрiлденқорғау қондырғысының мәжбүр

тербелiсiнiң өтпелi процесстерiн зерттеу

Көптеген дiрiденқорғау және сейсмоқорғау қондырғыларында негiзгi элемент ретiнде
әртүрлi түрдегi теңселмелi тiректер қолданады.Теңселмелi тiрек дiрiлден қорғалатын денеге
қозғалмалы табан жасау үшiн қолданылады. Ғиаратарға және құрылғыларға әсер ететiн
динамикалық ұйытқытулардың көпшiлiгi өте күрделi және жүйесiз сипаттарда болады.
Берiлген мақалада, табаны горизонталь бағытта орын ауыстырған жағыдайдағы, негiзгi
элементi жоғары дәрежелi айналу беттерiмен шектелген теңселмелi тiрек болатын
кинематикалық табанға орнатылған қатты дененiң тербелiсi қарастырылады.Қозғалыс
теңдеуi айтарлықтай сызықты емес дифференциальдық теңдеу болады. Жүйенiң тебелмелi
процессiнiң стационарлы және өтпелi режимдерi зерттелдi. Тербелмелi процесстердiң
бiрнеше режимдерi бар екендiгi тағайындалды. Қозғалыс теңдеуi сандық әдiс арқылы да
зерттелдi.
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Бұл жұмыста, фазалық жазықтықта интегральдық қисықтар ұрғызылған, ерекше
нүктелерге сапалы талдаулар жасалынып және оларды орнықтылыққа зерттеген. Хаяси
жазықтығында дiрiлден қорғалатын дененiң интегральдық қисығы тұйық траектория
жасайды және ол орнықты ерекше нүктеге ұмтылмайды. Бұл дiрiлденқорғалатын дененiң
тербелiсiнiң, орныққан режимдегi амплитудасының тұрақты болмайтындығының,оның
периодты өзгеретiндiгiн бiлдiредi.
Түйiн сөздер: дiрiлденқарғайтын қондырғы, теңселмелi тiрек, сызықты емес тербелiстер,
интегральдық қисықтар, ерекше нүктелер.
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Исследование переходных процессов вынужденных колебаний виброзащитных устройств

на опорах качения

Во многих виброзащитных и сейсмозащитных устройствах, в качестве основного элемента
используется опора качения различного вида. Опора качения применяется для создания
подвижного основания виброзащищаемого тела. Большинство данимических возмушений,
действующих в сооружениях и конструкциях, носит весьма сложный и нерегулярный
характер.
В данной статье рассматриваются колебания твердого тела на кинематических основаниях,
основными элементами которых являются подвижные опоры, ограниченные поверхностями
вращения высокого порядка при горизонтальном смещении основания. Установлено, что
уравнения движения являются сильно нелинейными дифференциальными уравнениями.
Исследованы стационарные и переходные режимы колебательного процесса системы.
Установлено, что существует несколько стационарных режимов колебательного процесса.
Уравнения движения были исследованы также количественными методами.
В данной работе, построено интегральные кривые на фазовой плоскости, проведено
качественное анализ на особые точки и исследовано их на устойчивость. На плоскости
Хаяси интегральная кривая виброзащищаемого тела образует замкнутую траекторию,
которая не стремится к устойчивой особой точке. Это означает, что амплитуда колебания
виброзащищаемого тела в установивщемся режиме не остается постоянной, а периодически
меняются.

Ключевые слова: виброзащитные устройства, опора качения, нелинейные колбания,
интегральные кривые, особая точка.

1 Introduction

The tasks considered in this work have arisen from the problems of earthquake-resistant
constructing.

The essence of the matter is that the protection of building structures from the destructive
forces of nature, appeared in earthquakes, is carried out almost exclusively by strengthening
the structures nowadays. The taken measures, although they provide the seismic resistance of
the facilities under construction to a certain extent, lead to a rise in the cost of construction
in seismically active areas, depending on the seismic zone score. Therefore, along with further
improvement of measures to increase the seismic resistance of building structures, clarifying
the parameters of seismic effects and the values of the calculated seismic loads, the search
for new effective methods of seismic protection is of great relevance.

First of all, these searches are carried out by developing new structures and their elements
that ensure reliability and high economic efficiency of construction in seismic areas.
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The use of devices called seismic insulating foundations involves the counteraction of
building structures to seismic forces not by improving the strength properties of structures,
but, as it is done in a wide variety of vibration protection systems, by reducing the seismic
load on the protected objects. This is quite new for the earthquake-resistant constructing.

In work [1] we gave a review, a classification and the comparison of the devices designed
to reduce the seismic load on buildings and which are the integral part of their foundations.
Two classes of seismic isolating devices have been identified, which are the example of the
direct transfer of vibro-isolation principles to constructing.

These are foundations with elastic support elements and dynamic dampers of seismic
vibrations. Two classes of shock absorbers of a different kind have been established:

1. Foundations with servomechanisms, which include rigid supports with an indifferent
or even unstable equilibrium position (balls, rollers, vertically arranged spars, etc.) and
servomechanisms that return the building to its equilibrium position; at the same time, a
compromise solution is often given, combining rolling or sliding bearings and elastic shock
absorbers that replace servomechanisms;

2. Kinematic foundations, in which, as in foundations with servomechanisms, the seismic
isolation is carried out not due to the elasticity of the shock absorber, but using supports
of a special geometric shape; a building, a structure installed on such supports, has a stable
equilibrium position, when removed from that position it oscillates with a frequency that
depends [1,2] mainly on the geometric dimensions of the supports and the acceleration of
gravity (for this reason, such devices are called kinematic [2] and [3] gravitational seismic
isolation systems);

3. The most acceptable and promising from an engineering point of view, as noted in [1, 3],
is the newest class of seismic isolating devices — a class of supporting kinematic foundations
that favorably differ from other types of seismic shock absorbers in cost-effectiveness and
simplicity of technical solution.

The kinematic supports developed in connection with the requests of earthquake-resistant
constructions can be used as shock absorbers in vibro-isolation systems of various machines
and equipment, and as elements of devicesas well.

This article [19, 20] considers the oscillation of a solid body on kinematic foundations,
the main elements of which are rolling bearers bounded by high-order surfaces of rotation
at horizontal displacement of the foundation. Equations of motion of the vibro-protected
body have been obtained. Stationary and transitional modes of the oscillatory process of the
system have been investigated.

The work contains geometrical analysis of non-linear vibrations of vibro-protective sys-
tems on rolling bearers bearing elements of which are restricted by high order spherical
surfaces in transition regime.

2 Literature review

Rolling bodies of various types are applied as the main element in many vibro-protective and
seismo-protective devices.

The work [4] contains systematic depiction of non-linear systems analysis method, de-
scribed by differential equations of second rate. This work contains also topological and
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graphical methods, applicable for calculation of autonomic and, especially, non-autonomic
systems.

In the work [5] the author focuses attention on decision of tasks on determination of orders
of initial conditions, leading to various stable stationary decisions. In the work [6] the author
considers problems of self-oscillations of various mechanical systems, particularly, examines
in detail self-oscillations of rotors.

The work [7] studies the features of vibrational motion of an orthogonal mechanism with
disturbances, such as restricted power in the presence of a fixed load on the horizontal link.
Dynamic and mathematical models were prepared, and the operating conditions’ fields of
existence for the vibration mechanism in terms of the driving power were defined.

This paper [8] presents results of modelling of vibrations of rigid rotor caused by the
degradation of hydrodynamic bearings. Model is composed applying equations of nonlinear
hydrodynamic forces and measured parameters of a real rotary machine.

In order to study the resonance of a rotating circular plate under static loads in magnetic
field, in the work [9] the nonlinear vibration equation about the spinning circular plate is
derived according to Hamilton principle. The algebraic expression of the initial deflection
and the magneto elastic forced disturbance differential equation are obtained through the
application of Galerkin integral method.

This paper [10] presents a new semi analytical approach for geometrically nonlinear vi-
bration analysis of Euler-Bernoulli beams with different boundary conditions. The method
makes use of Linstedt-Poincar’e perturbation technique to transform the nonlinear governing
equations into a linear differential equation system, whose solutions are then sought through
the use of differential quadrature approximation in space domain and an analytical series
expansion in time domain.

In the work [11] a systematic method is developed for the dynamic analysis of the struc-
tures with sliding isolation which is a highly non-linear dynamic problem. According to the
proposed method, a unified motion equation can be adapted for both stick and slip modes
of the system. Unlike the traditional methods by which the integration interval has to be
chopped into infinitesimal pieces during the transition of sliding and non-sliding modes, the
integration interval remains constant throughout the whole process of the dynamic analysis
by the proposed method so that accuracy and efficiency in the analysis of the non-linear
system can be enhanced to a large extent.

The paper [12] features a survey of some recent developments in asymptotic techniques,
which are valid not only for weakly nonlinear equations, but also for strongly ones. Further,
the obtained approximate analytical solutions are valid for the whole solution domain. The
limitations of traditional perturbation methods are illustrated, various modified perturbation
techniques are proposed, and some mathematical tools such as variational theory, homotopy
technology, and iteration technique are introduced to over-come the shortcomings.

The effects of neglecting small harmonic terms on estimation of dynamical stability of the
steady state solution determined in the frequency domain are considered in the paper[13].
For that purpose, a simple single-degree- of-freedom piecewise linear system excited by a
harmonic excitation is analyzed. In the time domain, steady state solutions are obtained by
using the method of piecing the exact solutions (MPES) and in the frequency domain, by
the incremental harmonic balance method(IHBM). The stability of the solutions obtained in
the frequency domain by IHBM is determined by using Floquet-Liapounov theorem and by
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digital simulation of the corresponding perturbed motion.
In the paper[14 ]the nonlinear response of a base-excited slender beam carrying an at-

tached mass is investigated with 1:3:9 internal resonances for principal and combination
parametric resonances.

3 Material and methods

3.1 Equations of the motion

Let us consider the principle of work of the kinematic foundation of moving supporting
elements, which is a rolling bearing with bounded surfaces of rotation of a high (n) order
(Fig.1).

On the Figure 1, the object I is a rolling bearing with bounded (top and bottom) surfaces
of rotation, expressed by formulas

y1 = a1x
n
1 , y2 = a2x

m
1 (1)

and having a common axis of symmetry; but objects 2 and 3 are stationary base (foundation)
and inner coat of the vibro-protected body.

Equations (1) are referred to the coordinate system associated with the rolling bearings
(See Fig.1). The curvature radius of the vertices of these surfaces at n,m > 2 tends to infinity,
i.e. there is straightening of the bearing surfaces. Let us denote the horizontal offset of the
bases as x̃0(t). As x̃(t) we denote a displacement of the upper body, supporting on the rolling
bearing.

Figure 1: Scheme of rolling bearingswith higher ordersurfaces

The equation (2) can be reduced to an equation in dimensionless form [19]:

ẍ+ Φ(x− x0)− x = −x0(t), (2)

where

Φ(x− x0) = Nn(x− x0)

1

n− 1 , (3)
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Nn =
1

n−1
√
nH

(
1

n−1
√
a1

+
1

n−1
√
a2

). (4)

3.2 Periodic solutions and their stability

Let us study the vibrations of a body at harmonic horizontal displacement of the lower base

x0(t) = Q sin pt, (5)

where Q and p – dimensionless amplitude and frequency of perturbations.
Assuming that in the case of harmonic oscillations, a component of the fundamental

frequency, having period 2π/p, dominates over the higher harmonics. Periodic solution and
first derivative of the equation (5) can be approximately represented as,

x = a sin pt+ b cos pt, ẋ = ap cos pt− bp sin pt, (6)

Let us suppose that the amplitudes a and b are functions of time and slowly vary depending
on t.

For the nonlinear term of the equation (2), Fourier series expansion looks as:

Φ(x−x0) = NnC

1

n− 1 sin

1

n− 1 (pt+γ) =
∞∑
k=1

B2k−1 sin(2k−1)pt+D2k−1 cos(2k−1)pt, (7)

where

C =
√
(a−Q)2 + b2, tgγ =

b

a−Q
, B2k−1 = NnK2k−1

(a−Q)

[(a−Q)2 + b2]

n− 2

2(n− 1) ,

D2k−1 = NnK2k−1
b

[(a−Q)2 + b2]

n− 2

2(n− 1)

, K2k−1 =
√
L2

2k−1 +M2
2k−1,

(8)

L2k−1 =
1

π

2π∫
0

sin

1

n− 1 ψ sin(2k−1)ψdψ, M2k−1 =
1

π

2π∫
0

sin

1

n− 1 ψ cos(2k−1)ψdψ, ψ = pt+γ.

Substituting (6), (7) to (2) and equating to zero the individual coefficients of the terms,
containing sin pt and cos pt, we have

da

dt
=

1

p

(p2 + 1)−NnK1
1

[(a−Q)2 + b2]

n− 2

2(n− 1)

 b = X(a, b),
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db

dt
= −1

p


(p2 + 1)−NnK1

1

[(a−Q)2 + b2]

n− 2

2(n− 1)

 (a−Q) + p2Q

 = Y (a, b). (9)

Let us consider the steady state, when amplitudes a(t) and b(t) in (6) are constant, i.e.

da

dt
= X(a, b) = 0,

db

dt
= Y (a, b) = 0. (10)

In light of these conditions, from equations (9) we can get that the set amplitude a0 = A,
b0 = 0 of the periodic solution x(t) is determined by the formula

A =
1

p2 + 1

NnK1(A−Q)

1

n− 1 +Q

 . (11)

Let us derive the conditions for the stability of periodic solutions. We will consider small
deviations ξ and η from the amplitudes a0 and b0 and will find out, when these deviations
(with increasing time) are close to zero.

From equation (9) we get

dξ

dt
= α1ξ + α2η,

dη

dt
= β1ξ + β2η,

(12)

Where

α1 =
(n− 2)

(n− 1)

1

p

W0

C2
0

(a0 −Q)b0,

α2 =
1

p

{
(p2 + 1)−W0 +

(n− 2)

(n− 1)

W0

C2
0

b20

}
,

β1 =
1

p

{
−(p2 + 1) +W0 − (

n− 2

n− 1
)
W0

C2
0

(a0 −Q)2
}
,

β2 = −1

p

{
(
n− 2

n− 1
)
W0

C2
0

(a0 −Q)b0

}
,

(13)

where

W0 =
NnK1

C

n− 2

n− 1
0

, C0 = A−Q.
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The characteristic equation of the system has the form:

λ2 − (α1 + β2)λ+ α1β2 − α2β1 = 0. (14)

The stability condition is given by Routh-Hurwitz criteria, i.e.

α1 + β2 = 0, (α1 = 0, β2 = 0).

α1β2 − α2β1 > 0

to [
(p2 + 1)−W0

] [
(p2 + 1)− W0

n− 1

]
> 0. (15)

The singular point, i.e. steady system state, is a center.
The boundary of unstable periodic solutions of equations (9) is determined by the curves.

p2 =W0 − 1, p2 =
W0

n− 1
− 1 (16)

and stability areas are determined by the following inequalities [19]

p2 − (W0 − 1) > 0, p2 − (
W0

n− 1
− 1) > 0,

p2 − (W0 − 1) < 0, p2 − (
W0

n− 1
− 1) < 0.

(17)

4 Simulation Results:Geometric analysis of the integral curves

From equation (9), we have

Y (a, b)da−X(a, b)db = 0. (18)

As due to equations (9)
∂X

∂a
+
∂Y

∂b
= 0, the equation (9) becomes integrable, and its

complete integral has the form

−(p2 + 1)
C2

2
+

2(n− 1)

n
NnK1C

n

n− 1 − p2Qa = E, (19)

where E – constant of integration. In order to examine the integral curves in the neighborhood
of a singular point, we move the origin of coordinates to this particular point a0, b0 introducing
new variables ξ and η, namely:

a = a0 + ξ, b = b0 + η.
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Then the basic system of equations (9) takes the form,

dξ

dt
= α1ξ + α2η + (

n− 2

n− 1
)
1

p

[
1

2
b0ξ

2 + (a0 −Q)ξη +
3

2
b0η

2 +
1

2
ξ2η +

1

2
η3
]
W0

C2
0

,

dη

dt
= β1ξ + β2η + (

n− 2

n− 1
)
1

p

[
3

2
(a0 −Q)ξ2 + b0ξη +

1

2
(a0 −Q)η2 +

1

2
ξη2 +

1

2
ξ3
]
W0

C2
0

,

(20)

where the following relations are used

W = W0 − (
n− 2

n− 1
)
W0

C2
0

[
(a0 −Q)ξ +

1

2
ξ2 + b0η +

1

2
η2
]
, W =

NnK1

C

n− 2

n− 1

, W0 =
NnK1

C

n− 2

n− 1
0

Taking into account that b0 = 0due to the equation (9), we get

dξ

dt
= ᾱ2η + (

n− 2

n− 1
)
1

p

NnK1

(a0 −Q)

3n− 4

n− 1

[
(a0 −Q)ξη +

1

2
ξ2η +

1

2
η3
]
,

dη

dt
= β̄1ξ + (

n− 2

n− 1
)
1

p

NnK1

(a0 −Q)

3n− 4

n− 1

[
3

2
(a0 −Q)ξ2 +

1

2
(a0 −Q)η2 +

1

2
ξη2 +

1

2
ξ3
]
,

(21)

where

ᾱ2 =
1

p

(p2 + 1)− NnK1

(a0 −Q)

n− 2

n− 1

 , β̄1 =
1

p

−(p2 + 1)− NnK1

(n− 1)(a0 −Q)

n− 2

n− 1

 .
Equations (21) are integrated. As a result of integration we obtain

β̄1ξ
2 − ᾱ2η

2 + (
n− 2

n− 1
)
1

p

NnK1

(a0 −Q)

3n− 4

n− 1

[
(a0 −Q)ξ3 +

1

4
(ξ4 − η4)

]
= F, (22)

where F – constant of integration.
In order to classify the type of singular points, we calculate the roots of the characteristic

equation (14):

λ1,2 =
α1 + β2 ±

√
(α1 − β2)2 + 4α2β1

2
,

where from
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λ1, λ2 = ±
√
α2β1, α1 + β2 = 0.

The dependence curve between Q and A0 is presented on Fig. 2. Let us divide the curve
into three parts 1, 2, 3 (as shown in Fig. 2): the boundaries of each part are determined by
the points D and B, for which,

A =
NnK1

p2 + 1
n−2

√
NnK1

p2 + 1
,

A =
[(n− 1)(p2 + 1)− 1]

(n− 1)(p2 + 1)p2
· n−2

√
NnK1

(n− 1)(p2 + 1)
.

These areas correspond to the following special terms:
1. Center (α2β1 < 0)
2. Saddle (α2β1 > 0)
3. Center (α2β1 < 0)
We shall consider the case when Q = 0.014081. Here there are three possible states of

equilibrium (Fig. 2); data for the respective singular points are shownin Table 1.

Table 1. – Singular points (Fig. 3)
Singular
point

A0 λ1, λ2 µ1, µ2 Classification

1 -0.055919 ±1.209i Center
2 0.045107 1.552 ∓1.139 Saddle
3 0.015344 ±18.965i Center

Directions of the integral curves at the singular points (node and saddle) can be found
by the following expression

µ1,2 =
−(α1 − β2)±

√
(α1 − β2)2 + 4α2β1
2α2

.

Integral curves of equation (9) can be easily obtained by using equation (19) for different
values of E. The results are shown in Fig. 3. We see that in a conservative system, each
integral curve forms a closed trajectory, which does not tend to a stable singular point.

This means that the amplitude and phase fluctuations angle in a steady state do not
remain constant, but vary periodically. Thus the phase fluctuations can outperform an ex-
ternal force and be behind it. If a closed trajectory does not cover the origin of coordinates,
so the angle of advance and the angle of retard are mutually compensated after passing the
representation point over a closed trajectory, and an oscillation will be synchronized with
an external force. On the other hand, if the origin of coordinates is located inside a closed
trajectory, so as a result of each cycle, there will be a phase difference of 2π radian, and
oscillation will not be synchronized with the external force.

a. The integral curves of the system, corresponding to the point D (Fig. 2).
Assuming that Q = 0 in equations (9), we have

db

da
= −a

b
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Figure 2: Amplitude response curve for harmonic vibration

or after integration
a2 + b2 = const.

Consequently, the integral curves form a family of concentric circles with a center at the
coordinate origin, so that the singular point (in this case - the origin of coordinates) is a
center.

Figure 3: Cumulative curves for harmonic vibration

Period T , necessary in order to the representation points a(t) and b(t) make one revolution
along a closed trajectory, is defined by the expression.

T =

∮
ds√

X2(a, b) + Y 2(a, b)
=

∮
pds

[p2 − (W − 1)]A
=

2πp

p2 − (W − 1)
,

ds =
√
(da)2 + (db)2, W =

NnK1

A

n− 2

n− 1

.
(23)

Now let us suppose, that the initial condition is given by the point a(0), b(0) located on a
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circle of radius A = (
NnK1

p2 + 1
)

n− 1

n− 2 ; then the period T will be equal to infinity. As can be

seen from the equations (9), the representation point a(t), b(t) in this case remains in its
initial position. This means that the oscillation frequency coincides with the frequency of the
external forces. Then from equations (9) we can see that the representation point a(t), b(t)

is moving circumferentially in the counterclockwise direction when A > (
NnK1

p2 + 1
)

n− 1

n− 2 , and

in the clockwise direction – when A < (
NnK1

p2 + 1
)

n− 1

n− 2 .

In the first case, the oscillation frequency is higher than the external force; in the second
case, the pattern will be reversed. So we can conclude, that the oscillation frequency varies
depending on A and coincides with the frequency of an external force only in the case where

A = (
NnK1

p2 + 1
)

n− 1

n− 2 .

b. The integral curves of the system, corresponding to the point B (Fig. 2)
In this case, from equations (11), we obtain

Q =
(n− 1)(p2 + 1)

p2

[
NnK1

(n− 1)(p2 + 1)

]n− 1

n− 2
, b0 = 0,

a0 = A =
n(p2 + 1)− 1

p2
·
[

NnK1

(n− 1)(p2 + 1)

]n− 1

n− 2
.

(24)

Let us investigate nature of the singular point B. From (21) we have

ᾱ2 = −(n− 2)
p2 + 1

p
, β̄1 = 0,

Where from λ1 = λ2 = 0. Then equation (21) takes the form

dξ

dt
= −γη + C1(C0ξη +

1

2
ξ2η +

1

2
η3),

dη

dt
=

1

2
C1(3C0ξ

2 + C0η
2 + ξη2 + ξ3),

(25)

Where

γ = (n− 2)
p2 + 1

p
, C1 =

1

p
(
n− 2

n− 1
)
[(n− 1)(p2 + 1)]

3n− 4

n− 2

(NnK1)2
,

C0 =

[
NnK1

(n− 1)(p2 + 1)

]
.

(26)
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Substituting dz = −γdt, we get

dξ

dz
= η − C1

γ
(C0ξη +

1

2
ξ2η +

1

2
η3),

dη

dz
= −C1

2γ
(3C0ξ

2 + C0η
2 + ξη2 + ξ3).

(27)

Integral curves in the plane ξ, η approach to the origin of coordinates, touching the straight
line η = 0. Applying the substitution η = x1ξ, we have

dξ

dz
= x1ξ −

C1C0

γ
x1ξ

2 − C1

2γ
x1ξ

3 − C1

2γ
x31ξ

3

dx1
dz

= −3C1C0

2γ
ξ − x21 −

C1

2γ
ξ2 +

C1C0

2γ
x21ξ +

C1

2γ
x41ξ

2

(28)

Now the integral curves in the plane ξx approach to the origin of coordinates, touching
the straight line ξ = 0. Next, using the substitution ξ = x1y1, equation (28) is reduced to the
form:

dy1
dz

=
3C1C0

2γ
y21 + 2x1y1 +

{
−C1

2γ
x1y

3
1 −

3C1C0

2γ
x21y

2
1 −

C1

2γ
x31y

3
1 −

C1

γ
x51y

3
1

}
dx1
dz

= −3C1C0

2γ
x1y1 − x21 +

C1

2γ

{
−x21y21 + C0x

3
1y1 + x61y

2
1

} (29)

Tangents to the integral curves at the coordinate origin on the plane x1, y1 are determined
by the Theorem of Bendixson [4]

x1y1(x1 +
C1C0

γ
y1) = 0 (30)

However, in the equation tangents x1 = 0, y1 = 0 degenerate at the coordinate origin of
the plane ξ, η, therefore, we consider only the integral curves, having at the coordinate origin

a tangent x1 +
C1C0

γ
y1 = 0. For this purpose, we apply the transformation

x1 = (x2 −
C1C0

γ
)y1

Then equation (29) takes the form

y1
dx2
dy2

=

−3C1C0

γ
x2 + 3x22 + y21φ(x2, y2)

C1C0

γ
− 2x2 + y21ψ(x2, y1)

(31)
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where φ(x2, y1) and ψ(x2, y1) are polynomials relatively x2 and y1. Equation (31) can be
presented as:

y1
dx2
dy1

= −6x2 +B(x2, y1) (32)

where B(x2, y1) consists of the terms of higher degree relatively x2 and y1. Bendixson inves-
tigated the differential equation of the form

x′′′
dy

dx
= ay + bx+B(x, y) (33)

and determined, that if a < 0, m – an odd number, then the origin of coordinates is a saddle
point.

For equation (32) we have m = 1 (odd number) and a = −b < 0 so, the singular point
(x2 = 0, y1 = 0) is a saddle; and the integral curves tend to it, having tangents x2 = 0, y1 = 0.
Thus, as a result of all the transformations we have

ξ = x1y1 = (x2 −
C1C0

γ
)y21, η = x1ξ = x21y1 = (

C1C0

γ
)2y31

As it was mentioned previously, tangent y1 = 0 in the plane ξ, η reduces to the origin of
coordinates; tangent x2 = 0 enters the curve

ξ = −C1C0

γ
y21, η = (

C1C0

γ
)2y31 (34)

and we can assume, that it represents the integral curves in the neighborhood of the origin
of the plane ξ, η.

Fig. 4 (in the corresponding coordinates) represents the tangent x2 = 0.

In conclusion we shall note, that this singular point is a saddle-node: as it can be seen
from the equations (25), the representation point ξ(t), η(t) with increasing time is moving
along the integral curve along the direction, indicated by arrows.

5 Conclusions

Peculiarities of integral curves of vibro-protective systems on rolling bearings in absence of
rolling friction are investigated. Special points of integral curves ar defined and it is ascer-
tained that special points are centre, saddle and centre. The special point D (in this case the
point of reference) is centre. Oscillation frequency (fig.8) changes depending on A and coin-

cides with frequency of external force frequency only in case, when A = (NnK1/p
2+1)

n− 1

n− 2 .
The special point B is regarded as sadle-knot.
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a) b)

c)

Figure 4: Integral curves in respective coordinates: a special point suits the point B in Fig. 2
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