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Comparing different degrees of nonlinearity for inverse problem for parabolic
equation

In this work we consider one dimensional nonlinear parabolic equation with unknown function on
the right side of space variable. As an additional information we are given a function which describes
a solution on the left side and thus the problem is overdefined on the left side. The problem is
solved by gradient method. The main target is to understand an influence of the nonlinearity degree
of the equation on convergence of the numerical algorithm. For that we take different degrees of
nonlinear term in the equation, construct a numerical solution and give the results in graphical
form. Also we enlarge a time interval and consider a convergence of the algorithm. Some negative
effects can be avoided by enlarging the time interval. We give all formulae to solve a direct problem
and adjoint problem, give references where to find how to obtain a gradient for the functional given
on nonlinear parabolic equation. We also describe the step-by-step algorithm of the solution of
the problem. Higher degrees of the nonlinearity make the numerical solution less accurate, but at
the same time it makes the functional properties of the equation much better. Influence of these
two aspects is considered in the work. Also some comments are given on some moments for the
numerical algorithm, such as choosing a constant coefficient in gradient method.

Key words: optimization, control, nonlinear parabolic equation, Gateaux derivative,
approximation, gradient.

1. Takenos
CpaBHeHHne pa3HBIX CTeleHell HeJMHEHMHOCTH N OOpaTHBIX 3aJa4 NapabdoJnm4ecKoro
yYPaBHEHUS

B rannoit pabore paccMarpuBaeTcs OTHOMEPHOE HeJuHEHHOe mapaboaIndecKoe ypaBHEHHE ¢ Hen3-
BECTHOU (DYHKITHeH Ha TpaBoil rpanure. B kadecTBe 1OMOIHUTENIBHON WHMOPMAITHN 33aHO0 TTOBE-
nenvie (QYHKITAN HA JIEBOH TPAHUIE W TEM CAMBIM 33294 ITePeOnpeIeieHa Ha JTeBOH rpanure. 3a1a-
93 PEeIaercs TPaIueHTHBIM MeTonoM. (OCHOBHASA I€/Tb — BBIABUTH BJNUSHUE CTEINEHU HEJIUHEHHOTO
9JIEHA, HA CXOAUMOCTD UHMCJIEHHOTO aJrOpuTMa. Iy 3TOro BEIOMPAIOTCs PA3INIHBIE CTEIEHN HEJIn-
HEHHOCTH, CTPOUTCS JYUCACHHOE PEIICHWE W Pe3YJIbTAThI MPEICTABIAIOTCI B rpadudeckoM BUE.
Takxke paccMaTpUBAETCs CXOAUMOCTD AJITOPUTMA Ha 00JIee MPOTIYKEHHBIX BPDEMEHHBIX TPOMEXKYT-
kax. OKa3bpIBaeTCst, HEKOTOPObIE HETATUBHBIE 3(D(MEKTHI, BIUSIONNE HA YUCIEHHOE DEIleHne, CTJia-
JKUBAIOTCS 110 MEPe yBEJINYeHns NHTEpBaJia Bpemenu. B pabore npuBonsaTcs: pacueTHbie (hoOpMyIIbI
JJIs peTeHns IPAMON W CONMPSIKEeHHON 33/1atu, JA€TCA CChIJIKA HA CTAThU, TAe MOXKHO ITOCMOTPETh
BBIBOJI, TPaAneHTa (DYHKIIMOHAA I HETMHEHHOTO Mapaboandeckoro ypasHenusi. Il pusemen Takxke
IOJTHBII [OIIArOBbII aJrOpuTM pernenns 3a1ax4du. [IoBbIleHne crenenn HeJIMHEHHOCTH Y PABHEHHUST C
OJHO CTOPOHBI IPUBOAUT K YXYAIIEHUIO TOYHOCTH YUCIEHHOTO aJrOPUTMa, HO C APYTroil CTOPOHBI
yaydrinaer (pyHKIIMOHAIbHBIE CBOMCTBA ypaBHeHus. Biausuue stux apyx 3¢ dexToB uccienyercs B
JaHHOIT paboTe, JAIOTCA TaKKe KOMEHTAPHUU W MO APYTUM ACIEKTaM, BBI3BIBAIOIMINM TPYIHOCTHA B
YHUCJIEHHOM AJITOPUTME, HAIIPUMEP, BHIOOP KO3 duiimenTa npu rpaJueHTe B IPaIneHTHOM METOIE.
KutoueBbie cjoBa: onTuMu3aliys, yIIpaBIeHNe, HeTHHEHHOe mapaboIntieckoe ypaBHEeHNE, TPOU3-
BomHast ['aro, mpubanKeHve, TPAIUEHT.
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. ITakenos
ITapabosaasbIK TeHJeyi Kepi ecenTepiHiH apTypJl J9peXKeili ChI3BIKThI €eMECTIriH caIbICThIPY

Bys xKyMmbIcTa OH Kak IeKapachbiHaa Oericis GyHKIUIChl 6ap CBI3BIKTHI eMec Oip esmeM i ma-
paboNasIbIK, TEHIeyl KAPACTRIPhLIAALI. KOCKIMITIA MOJIIMET DETIHJIE COJ YKAK ITeKAPACHIHAA (DyHK-
IUAHLIH KacueTi Oepinren. COHABIKTAH Ja €Cell COJI YKaK IMeKapachIHIa ecesi aHbIKTaJraH. FKcem
TPAINEHT DAICIMEH IIBIFAPBLIALbl. ZKyMBICTBIH HEri3ri MAaKCATBI — TEHIEY/IIH CHI3BIKTHI €MEeC My-
LIECIHIH, CAHIBIK AJIPOPUTMIHIH 2KMHAKTAJLYbIHA 9cepiH aHbIKTay. COHIBIKTAH /13 9PTYPJI JAoperKeti
CHI3LIKTHI eMECTIKTEePl KAPaCTHIPHIIAIHI, CAHIBIK, IMeNiMIePl aJbIHaIbI YKoHe HOTHKeIepl rpaduk
Typinzae keaTipiseni. COHBIMEH KAaTap aJTOPUTMHIH KUHAKTHLIBIFBI VJIKEH YAKBIT APAIbIFBIH/IA Ka-
PACTBIPBLIAILI. OUTCE 1€, CAHIBIK IIENTiMiHe ocep eTeTin Kenbip KoJaiich3 adexrisepi, yakpr
MHTEPBAJIBIH VAKEATY apKbLIbl XKAKCAPTHLIAAbI. 2K YMBICTa Typa »K9HE TYHiHAec ecenrepim Ime-
mymi ecentey opMyIaaapbl KEATipimeai, ChI3BIKTHI eMec mapaboIablK TeHaeyl YImH QyHKIO-
HAJT TPAJUEHTIH ecerrTeyre apHaraH MakaJaaapra ciaremenep Oepimeni. Ecenti merrymin TOMBIK,
KaJaM CaMbIHFBI AMropuTMi Kearipiarer. ChI3BLIKTHI eMeCTir Japerkeci apTKaH CaiibiH, Oip Karbl-
HaH, CAHIBIK AJTOPUTMHIH TOJIIIMH TOMEHIETE I, aJ eKIiHI YKAFbIHAH, TEeHAeYAH (DYHKIHOHA-
JBIK KacheTiH KakcapTaabl.Ockl eki 3 deKTiIepait bIKIAIbl OChI )KYMbBICTa, 3ePTTEiHe Il KoHe
Je 6acka CaHIBIK, AJTOPUTMIHIH, KBIMBIHABLIBIFBL TYPAJIbI 2KAFIAMIaPTa TiKip alThLIa bl, MBICAJIBI,
rpaaneHT Jaicinaeri rpajanenT KoM DUIHMEHTIH TaHaay.

Tyitiu ce3mep: THIMALTIK, BaCKAPY, CHI3BIKTHI eMeC TapaboIaIbiK TeH1eyi, ['aTo TYBIHIBICH, XKy bI-
KTay, TPAJIUEHT.

Introduction

Problems of optimal control and inverse problems for systems described by linear equations
of parabolic type are very well known. [5], [7], [8], [9], [10]. Transition to nonlinear case
give rise to considerable difficulties when proving a solvability of optimization problem,
deriving conditions of optimality and also numerical methods for their resolution. Due to
the impossibility to verify a convexity of the functional, some properties such as uniqueness
of the solution, sufficiency of optimality conditions and convergence of iterational methods
cannot be investigated. Among the nonlinear problems of the indicated class, problems with
exponential nonlinearity have substantial difficulties. Some results in this area one can find
in works [6], [11], [12]. But these works are only theoretical. The purpose of this paper
is to analyze some algorithmic features of the given optimization problem, in particular,
influence of nonlinearity degree and size of time horizon on the effectiveness of numerical
algorithm. There were no such researches for indicated type of problems. The least question
was considered in author’s works for linear systems. [1], |2].

Linear parabolic equation on a fixed time horizon is a very well observed problem even if
unknown function is in a boundary condition. We consider a problem for nonlinear parabolic
equation in one dimension with time horizons which are small and large as well. Mathematical
statement looks as following:

ou(t,z) = O%u(t,z) — ult,)|u(t,z)|P + f(t,z), 0<t<T, 0<xz<]l, (1)
u(0,z) = p(x), 0<x <1, (2)
O,u(t,0) =0b(t), 0<t<T, (3)
deu(t,1)=y(t), 0<t<T, (4)
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Function y(t) is unknown and must be determined. For that purposes we use an additional
information u(t,0) = a(t). We transform this problem to optimization problem which requires
to minimize a functional

T

I(y) = / (u(t,0;y) — a(t))Zdt — min

0

If the functional gets its minimum value then (¢, 0) is the most close to a(t) and additional
information is fulfilled. The most commonly used method for solving such problems is gradient
method. For that, we construct a sequence

Ynr1(t) = Ya(t) — anl’ (ya(t)), ()
where a;, > 0. Here the value of I'(y,(t)) is given by the following
Teopema 1 Gateaur derivative of the functional I at the point y is determined by the formula
I'(y(t)) = (1. ),

where Y(t, x) is the solution of the adjoint problem:

onp(t, x) + 0%(t,x) — (p+ D|ult, 2)|Pp(t,x) =0, 0<t<T, 0 <z <1, (6)
W(T,2) =0, 0<z<1, (7)
oWt 1)=0, 0<t<T, (8)
By 0(t,0) = —2(u(t,0;y) —a(t)), 0<t<T, (9)

where 0 <t <T,0<z <1.

Proofs for linear and nonlinear case of Theorem 1 you can see in [1], [2]. Also see [4], [5] [6],
[7], [8] for more different situations.

Algorithm of solving a problem

The common scheme to solve the problem step by step.

1. Initialization of parameters: € is deviation of u(t, 0; y) from a(¢) by norm of H; 7 = i is

step by t; h = % is step by x; set up f(t,z), p(x), b(t), a(t); choose the initial approximation
Yo(1).

2. Solve direct problem (1) — (4).

3. Calculate the value of the functional I(y); if I(y) < € then algorithm breaks and results
are shown on the screen; if /(y) > ¢ then move on to the point 4.

4. Solve adjoint problem (6) — (9) and find I'(y) = ¥ (t, 1).

5. Choose « as a constant.

6. Construct next approximation y(t) by the formula:

yn-&-l(ﬂ = yn(t) - Of,ﬂﬂ(t, 1)’ 0<t<T. (10)
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Go to 2.

Approximation of the direct and adjoint problems. [2], [4]
1. Direct problem (1) — (4) can be approximated as:

1 2 1\ g 1 . 1. 3
ﬁu§f1—<ﬁ+;>u§+ ﬁugi1=—<ff+;uf—(“f) >,

j=0,1,....M—1, i=1,...,N —1, (11)
u) =, i=0,1,...,N, (12)
uh =, —bsh, j=MM-1,...,1,0, (13)
why = uly_ +yih, j=MM-—1,...,1,0. (14)

2. Adjoint problem ((6) — (9) can be approximated as:

1, 2 1\ ;1 . 1

i~ <ﬁ + ;)1/13- + i = —;¢f+la

j=M—-1,M-2..,10, i=1... N-1, (15)
M =0, i=0,1,...,N, (16)
lo=yd 40, j=MM-1,...1,0, (17)
Yl =+ 2h(ud — aj), j=M,M—1,...,1,0. (18)

3. Approximation of the functional. We approximate the value of the functional I(y) =

2
(u(t, 0;y) — a(t)) dt by the conventional "rectangles formula”:

Performing experiments

We use the developed numerical algorithm to solve the problem with the following set of
functions:

u(t,x) = " " is a solution of (1) — (4),

f(t, ) = elPrDE=1) _ 261 ig 3 free term of equation (1),

@(x) = e” is initial temperature,

b(t) = 2e7" is a left boundary condition,

a(t) = e~ is an additional information,

y(t) = e~ is an exact solution of the problem,

yo(t) = 2 is an initial approximation.

Different degrees of nonlinearity are considered with the p-values of {%, 2, 4}. We solve
the problem for all chosen values of p with 7" =1 and then with 7" = 10.
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In all cases we take M = 100 and N = 100 (number of steps by ¢ and x correspondingly)
until otherwise is given. The parameters as €, a as well as number of iterations and deviation
of the solution from the exact values by norm of the space H are given in subscriptions to
the figures.

Our goal is to analyze how different degrees of nonlinearity (the value of p is responsible
for that) affects to numerical algorithm. Here we have two opposite factors that influence on
the result.

First, we understand that the higher degrees of nonlinearity will affect negatively. Numerical
algorithm will have bigger errors and that’s why the obtained solution can be not so accurate.

Second, let consider the equation with odd degree of nonlinearity:

Ou(t, z) = Oppu(t, z) — (¢, z) + f(t, ).

Let’s multiply both sides of the equation by function wu(t,x) and after integration by the
whole region 0 <t <7, 0 < x <1 we get:

/ Ot 2)ult, z) — / Duti(t, T)ult, ) — / WL ) 4 / £t 2)ult, z).

Using integration by parts and rearranging dyu(t, x)u(t, z):

%/%ﬁ(t,x)—i—/@qu(t,x)—i-/u2m+2(t,l‘) = /f(t,a:)u(t,x)

The left hand side of the equation contains the norm of the function u and that’s why we
expect good properties of the equation.

1. First Experiment. The following three figures 1, 2, 3 represent numerical solutions
for different values of p and 7' = 1. You can see clearly how it affects on the solution. In all
situations the solution y(t) = ¢!~ is the same, but the function f(¢,z) = e+t _ 2ez-1
(free term) is different.

As you can see, the degree of nonlinearity is responsible for the accuracy of the solution
for the values of ¢ which are close to zero. Weak convergence of the numerical algorithm near
the point t = 0 can be explained easily. When direct problem (1) — (4) is solved numerically,
error accumulates from ¢t = 0 to t = T', so the worst solution we have for ¢ = 7. Then we
solve the adjoint problem from ¢t = T" to ¢ = 0 and the gradient I'(y) = v (t, 1) has the worst
values when ¢ = 0. That’s why we observe such discrepancy for the time values near ¢t = 0.

A jump for t = T was considered in [1], [2] and [3].

If the time horizon increases then it has negative impact on the accuracy of the solution.
The following experiments illustrate this fact.
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y-values

. —— Solution
Himenk — Exact values
Figure 1 - Exact solution y(t) = e!~* and numerical solution for: ¢ = 0.0003, o = 10, p = 1/2;

||yn - yexactHH = 0.230.
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2,0
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1,0

y-values
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o8>

-1,0

—— Solution

el — Exact values

1—

Figure 2 — Exact solution y(t) = e!~* and numerical solution for: £ = 0.0005, o = 50, p = 2;

||yn - yexact”H = 0.247.

3,0
25
2,0
15
1.0

y-values

—— Solution
— Exact values

time t

Figure 3 — Exact solution y(¢) = ¢!~ and numerical solution for: € = 0.0004, o = 1, p = 4, M = 200;
||yn - yexact”H = 0.319.
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y-values

—— Solution

Ll — Exact values

Figure 4 — Exact solution y(t) = e!~*

||yn - yexact”H = 1.368.

and numerical solution for: € = 0.6, « = 0.01, p = 1/2;

3,0

—— Solution
— Exact values

time t

1

Figure 5 — Exact solution y(t) = e'~* and numerical solution for: £ = 0.015, a = 0.005, p = 2;

||yn - yexactHH = 0.470.

2. Second Experiment. For all next three figures 4, 5, 6, which represent a numerical
solution in comparison with exact values, the value of 7" = 10.

As we expected, for the values close to ¢ = 0 the numerical solution has very low precision.
We do not pay attention to the jump in solution for the values close to ¢t = T', the nature of
this phenomena is described in [1], [2] and [3]. Also we emphasize on the fact that we used
M = 200 for the last experiment. Because of if we take M = 100 (that is if we divide time
horizon on 100 equal parts) then algorithm diverges.

It is a challenge to deal with parameters € and o. Unavoidable error in numerical algorithm
with a high degree of nonlinearity does not guarantee that the smaller the value of € the more
accurate solution you get. If the values of o are too small or too large the numerical algorithm
can converge very slowly or diverge at all.
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Figure 6 — Exact solution y(¢) = ¢! ~* and numerical solution for: ¢ = 0.4, « = 0.1, p = 4, M = 200;
||y7l - yexactHH = 1.783.
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Figure 7 - Exact solution y(t) = e! =" and numerical solution for: ¢ = 0.01, a = 0.01, p = 4, M = 500;
||yn - yexactHH = 0.686.

3. Third Experiment.

The situation described in Figure 6 can be improved if the larger value of M is taken.

Figure 7 confirms all previous conclusions. The jump near the final values of time becomes
very small in sense of H norm. Increasing of M (number of steps by variable ¢ in numerical
algorithm) accumulates less error near t = 0.

Conclusions

1. High degrees of nonlinearity of equation (1) causes bigger errors after applying numerical
algorithms. To compensate that error we need to split time interval on larger number of
steps. Accumulated errors cause the maximal discrepancy between numerical solution and
exact values of function y(t) for initial time moment, near t = 0. We give an explanation of
this fact in First Experiment.

2. Choosing parameters € and « is a challenge. If we take too small values of o, algorithm
converges very slowly, on the other hand, if we take too large values, algorithm diverges.
Because of unavoidable errors in algorithm the further decreasing of ¢ has no meaning and
leads to increasing of number of iterations only.
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3ameuanme 1 For a recent time when using gradient methods in optimal control problems
and inverse problems of mathematical physics a researcher can first find a discrete form of a
system n order to make the algorithm more efficient. Then the researcher find a gradient of
the functional and operate with it. [13]. These questions were also considered by author, [2],
in the context of discussed problems but for the linear case. We could expect that in a problem
with a exponential nonlinearity on a large time interval this method would be efficient.
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