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MODELLING THE INFLUENCE OF ELECTRON CONCENTRATION ON

MHD TURBULENCE BY LES

In the present work, a three-dimensional mathematical model of the influence of electron con-
centration on the dynamics of the E-layer of the ionosphere under nonisothermal conditions is
developed. The proposed method shows high computational efficiency and good quality estimates.
To approximate the solution of the convective and diffusion terms of the intermediate velocity
field, the finite difference method is used in combination with a five-diagonal matrix, which made
it possible to achieve fourth-order accuracy in space and third-order accuracy in time. To solve
the pressure, the Poisson equation is solved, which ensures the fulfillment of the continuity equa-
tion. The Poisson equation is transformed from physical space to spectral space using the Fourier
transform. The equation for the temperature and electron concentration is solved using the Adams-
Bashforth method. Before modeling the influence of the magnetic field on MHD turbulence, to
test the adequacy of the numerical algorithm, the Taylor Green test problem was performed for
various Reynolds numbers, where it agrees well with the reference spectral method and analytical
solutions. As a result of the simulation, the temperature contours and turbulent flow isotherms for
various Stuart numbers were obtained. The developed numerical algorithm can be used to model
the attenuation of ionospheric turbulence at various Stuart numbers.
Key words: Ionosphere E-layer, concentration of electron, magnetohydrodynamics, Taylor-Green
vortex problem, finite difference method.
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Iрi қүйындылық әдiсiн қолдану арқылы электрон концентрацияның МГД

турбуленттiлiгiне әсерiн моделдеу

Осы жұмыста электрон концентрациясының ионосфераның Е-қабатының динамикасына
әсер етудiң үш өлшемдi математикалық моделi құрылған. Ұсынылған әдiс жоғары
есептеу тиiмдiлiгiн және сапаны жақсы бағалауды көрсетедi. Аралық жылдамдық өрiсiнiң
конвективтi және диффузиялық бөлiктерiн аппроксимациялау үшiн ақырлы айырмдылық
әдiсi бес диагональды матрицамен бiрге қолданылады, бұл кеңiстiк бойынша төртiншi
реттi дәлдiкке және уақыт бойынша үшiншi реттi дәлдiкке қол жеткiзуге мүмкiндiк
бердi. Қысымды шешу үшiн үздiксiздiк теңдеуiнiң орындалуын қамтамасыз ететiн Пуассон
теңдеуi шешiледi. Пуассон теңдеуi Фурье түрлендiру әдiсi көмегiмен физикалық кеңiстiктен
спектрлiк кеңiстiкке ауыстырылады. Температура мен электрон концентрациясының
теңдеуi Адамс-Башфорт әдiсi арқылы шешiледi. Магниттiк өрiстiң МГД турбуленттiлiгiне
әсерiн модельдеуден бұрын, сандық алгоритмнiң сәйкестiгiн тексеру үшiн, Тейлор Грин
сынақтары Рейнольдстың әртүрлi сандары үшiн жүргiзiлдi, салыстыру нәтижесiнде
құрылған сандық әдiстiң шешiмi спектральды әдiсiмен және аналитикалық шешiмдермен
жақсы келiсiмде көрсеттi. Модельдеу нәтижесiнде турбуленттi ағынның әртүрлi Стюарт
сандары үшiн температура контурлары мен изотермалары алынды. Әзiрленген сандық
алгоритм Стюарттың әртүрлi сандарындағы ионосфералық турбуленттiлiктiң үрдiсiне әсерiн
зерттеуге арналды.
Түйiн сөздер: Ионосфера Е-қабаты, электронның концентрациясы, магнитогидродинамика,
Тейлор-Грин құйындығының есебi, ақырлы айырмдылық әдiсi.
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Моделирование влияния концентрации электронов на МГД-турбулентность методом

крупных вихрей

В представленной работе разработана трехмерная математическая модель влияния
концентрации электронов на динамику E-слоя ионосферы в неизотермических условиях.
Предложенный метод показывает высокую вычислительную эффективность и хорошее
качество оценки. Для аппроксимации решения конвективного и диффузионного членов
промежуточного поля скоростей используется метод конечных разностей в сочетании с
пятидиагональной матрицей, который позволил достичь точности четвертого порядка в
пространстве и третьего порядка во времени. Для решения давления решается уравнение
Пуассона, которое обеспечивает выполнение уравнения неразрывности. Уравнение Пуассона
преобразуется из физического пространства в спектральное пространство с помощью
преобразования Фурье. Уравнение для температуры и концентрации электронов решается
с использованием метода Адамса-Бэшфорта. Перед моделированием влияния магнитного
поля на МГД турбулентность, для проверки адекватности численного алгоритма была
выполнена тестовая задача Тейлора Грина для различных чисел Рейнольдса, где она хорошо
согласуется с эталонным спектральным методом и аналитическими решениями. В результате
моделирования были получены температурные контуры и изотермы турбулентного
потока для различного числа Стюарта. Разработанный численный алгоритм может быть
использован для моделирования затухания ионосферной турбулентности при различных
числах Стюарта.
Ключевые слова: ионосфера E-слой, концентрация электронов, магнитная гидродинамика,
вихревая задача Тейлора-Грина, метод конечных разностей.

1 Introduction

Extensive research has been undertaken over the past decades to improve our knowledge of
the Earth surrounding ionosphere. The ionosphere layer is consisting of neutral and charged
particles that interact with each other and are exposed to external influences of solar origin
and are limited by gravitational, electric and magnetic fields. To simulate the ionosphere
medium means to find a satisfactory description of the behavior of its constituent particles
in a selected space interval in time. Modeling is necessary because it is impossible to observe
the structure and dynamics of the environment in all places and at any time. We will consider
the E layer of the ionosphere, which corresponds to an altitude of approximately 90 − 120
km. There is every reason to believe that at these altitudes the gas is weakly ionized, degree
of ionization Ne/Nn is quite small Ne/Nn << 1, where Ne and Nn are the electron and
molecule concentrations, respectively.

2 Literature review

It is well - known that instabilities produce turbulence in ionosphere [1, 2] and significant
amount of researches have been to study instabilities and their application to ionosphere
turbulence. The chaotic behavior of ionosphere electron density fluctuations resulting from
the interchange instabilities has been investigated [3], and describing the evolution of the
Rayleigh-Taylor and E × B gradient drift instabilities which are relevant to the ionosphere
and reduce to equation which correspond exactly to the Lorenz attractor for Rayleigh-Benard
instability [4,5]. In the developed three-mode system of chaotic behavior the ion inertia plays
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a critical role in that if it is neglected, the three mode system does not exhibit chaos and
a stable convection results [3]. In [6] is shown in the inertial regime , for which the three-
mode theory predicts chaos, and the large-scale turbulence cell do not show chaotic behavior.
We present our results for three mode systems, which corresponds to the Rayleigh Benard
problem. The concept of convection is quite old, however the first quantitative experiments
were performed by Henri Benard [7]. He studied the stability of a thin fluid layer open to air
and submitted to a vertical temperature gradient, where he accurately determined properties
such as the space periodicity of the hexagonal pattern, its variation, the profile of the interface.
Later, Lord Rayleigh [8] proposed his theory of a feedback coupling resting on buoyancy:
a fluid particle hotter than its environment encounters ever-colder fluid as it rises, which
leads to the instability. He developed a complete linear stability analysis assuming stress-free
conditions for the velocity and good heat-conducting plates. From the computational point
of view, it was shown in [9], that the dynamic LES method can be a useful tool for modeling
weakly ionized magnetohydrodynamic turbulence at low Rem values and large N. In fact,
since Joule dissipation leads to an energy sink proportional to the amplitude of the velocity
fluctuation at each magnetic field. On the whole, large scales make a significant contribution
to the dissipation of kinetic energy. Therefore, since the role of the energy cascade is less
dominant compared to hydrodynamic turbulence, small-scale modeling can save significant
computational resources.

3 Materials and methods

In the framework of this study, to construct a mathematical model of the influence of elec-
tron concentration on the dynamics of changes in the heterogeneity of the E-layer of the
ionosphere under non-isothermal conditions, we consider an incompressible electrically con-
ductive medium with different electron concentration at the three dimensional area. Some
assumptions like no charge separation is observed inside the electrically conductive liquid [10],
the Lorentz force decreases to the magnetic part have been made. For a very wide range of
problems, assuming that relativistic effects are negligible, the nonlinear MHD equations are
directly derived from Maxwell’s equations, so the only relevant equations relate to speed and
magnetic fields. However, even for these specific problems, the Lorentz force in the Navier -
Stokes equations can be specified by various expressions depending on the range of parame-
ters characterizing the flow [10]. It is known that turbulent fluctuations become anisotropic
in the presence of a sufficiently strong magnetic field, which has important con- sequences for
the properties of the turbulence and possibly requires a modification of the numerical models
applied to such flows. If Rem ≥ 1, there is a two-way coupling between the fluctuations of the
magnetic field and the velocity [11, 12]. As the fluid moves in the applied magnetic field B,
induced electric currents result in the Lorentz force affecting the flow and in the modification
of the imposed field by perturbations b of comparable or even larger amplitude. This hap-
pens, for example, in astro-physical processes, in stars, the interstellar medium, etc., where
Rem << 1 , and in geophysics, the geodynamics, where Rem = 102 [13].
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3.1 Statement of the problem

The applied magnetic field B = −H0j̄ effect in the Navier-Stokes equations is the inclusion
of the Lorentz force to the momentum equations Fl = J × B where J = σ(E + V × B)−
is electric current density E - is electric field strength, which we set equal to zero, and σ is
electric conductivity, V = u1ī + u2j̄ + u3k̄ - velocity of fluid, and all of these in combination
we obtain Fl = σ(V × B)× - Lorentz force, where Fl = σ[(u1ī+u2j̄+u3k̄)×(−H0j̄)]×(−H0j̄)
is in detail, after using the properties of the multiplication of unit vectors, we obtain Fl =
σ(u1H0k̄ − u3H0ī) × (−H0j̄), or Fl = σ(−u1H

2
0 ī − u3H

2
0 k̄), and Fl = F1 + F2 + F3, where

F1 = −σu1H
2
0 ī, F2 = 0, F3 = σu3H

2
0 k̄ [14].

To construct a mathematical model of the influence of external disturbances on the gener-
ation and evolution of large-scale inhomogeneities in the E-layer of the ionosphere, we consider
the transport equation for the magnetic field, which underlies the theory of incompressible
MHD:
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where ū1, ū2, ū3 - are velocity components, x1, x2, x3 - coordinates, F̄1 = −n̄N0ū1, F̄2 = 0,
F̄3 = −n̄N0ū3 - non-dimensional Lorentz force [14], N = σLH2

0/ρV0 = neN0 is the Stuart
number, where N0 = σ0H

2
0L3/(ρ0U0) = Ha2/Re, Ha = H0L

√

σ/µ - Hartmann number, H -
magnetic field strength, σ is the conductivity of the medium, which is determined from plas-
ma physics σ = e2ne/(mevi) = neσ0, where e-elcetron charge, me- electron mass, ne electron
concentration,vi - effectivr electron collision frequency in the ionosphere. p̄ is the full pressure,
t is the time, U0 =

√

αD(T1 − T0)L3 - characteristic velocity, θ̄ = (T − T0)/(T1 − T0) - non-
dimensional temperature, where T0 and T1 are respectively the minimum and maximum tem-
peratures in the E layer of ionosphere, Ra = αg(T1 − T0)L

3
3/(νD) - Rayleigh number, where

α is volumetric thermal expansion coefficient, g acceleration due to gravity, Re =
√

Ra/Pr
is the Reynolds number, and to compare numerical simulation results with the work [14].
Pr = ν/D - Prandtl number, D - diffusion coefficient, L1 = L2 = L3 = L is the typical
length of the domain, ν is the kinematic viscosity coefficient, ρ is the density of the flow, t-
nondimensional time, τu

ij , τ
θ
j are the subgrid -scale tensors responsible for small -scale struc-

tures to be modelled, τ θ
j = αsgs

∂θ̄

∂xj
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the thermal eddy diffusivity, where Prsgs = 0.6.

A schematic picture of the computational domain is shown in Figure 1, where the top layer
- indicated by the blue color, corresponds to a medium with a strong electron concentration
and a low temperature environment of the ionosphere. The bottom layer - highlighted in red,
corresponds to a weakly electronic concentrated and high temperature environment of the
ionosphere.

Figure 1 – Illustration of the problem statement

Initial conditions for temperature, velocity components are set zero in all directions of
the domain, and for electron concentration is ne = 1.

The boundary conditions imposed for temperature, and electron concentration are Dirich-
let on the lower and upper boundary, and Neumann on the other directions of the domain.
The velocity components are equal to 0 in all directions.

Top:

u1, u2, u3|top = 0

θ|top = θcold = 0, where θcold - the lowest temperature of the ionosphere layer is set,

ne|top = 1 - concentrated medium.

Bottom:

u1, u2, u3|bottom = 0

θ|bottom = θhot = 1, where θcold - the high temperature of the ionosphere layer is set,

ne|bottom = 0 - weak concentrated medium.

Other walls:

∂θ

∂x1

= 0,
∂θ

∂x2

= 0,

∂ne

∂x1

= 0,
∂ne

∂x2

= 0.
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3.2 Numerical method

To solve the problem of homogeneous incompressible MHD turbulence, a scheme of splitting
by physical parameters is used:

I.
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where
Kn = −(ūn▽)ūn + F n + (Ra/Re2Pr)θ̄n − (▽τu)n,
Mn = −(ūn▽)n̄n

e ,
Gn = −(ūn▽)θ̄n −−(▽τ θ)n, where Pe = RePr - Peсlet number.
During the first stage, the full magneto hydrodynamic equation system is solved with-

out the pressure consideration. For approximation of the convective and diffusion terms of
the intermediate velocity field a finite-difference method in combination with penta-diagonal
matrix is used, which allowed to increase the order of accuracy in space. The numerical al-
gorithm for the solution of incompressible MHD turbulence without large eddy simulation is
considered at [15]. The intermediate velocity field is solved using the Adams-Bashfort scheme
in combination with the five-point sweep method. At the second step, the pressure Pois-
son equation is solved, which ensures that the continuity equation is satisfied. The Poisson
equation is transformed from the physical space into the spectral space by using a Fourier
transform. To solve the three-dimensional Poisson equation, the spectral conversion in com-
bination with matrix sweeping algorithm is developed [15]. The resulting pressure field in the
third stage is used to recalculate the final velocity field [16]. At the fourth stage, the equation
for temperature is solved by using Adams-Bashforth scheme. At the fifth stage, for the solu-
tion of concentration electron equation the similiar algorithm as for solution of temperature
the Adams Bashforth scheme is used.

4 Analitical solution of Taylor-Green vortex problem

We duplicate the classical example proposed in [17] in order to validate the numerical
simulation of increasing order of accuracy in time and in space O(dt2, h4), with efficient
acceleration for sequential algorithm. Starting from a simple incompressible three-dimensional
initial condition of the form.











u1(x1, x2, x3, t = 0) = cos(ax1) sin(ax2) sin(ax3),

u2(x1, x2, x3, t = 0) = − sin(ax1) cos(ax2) sin(ax3),

u3(x1, x2, x3, t = 0) = 0.

(2)
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and assuming periodic conditions in a cubic domain: 0 6 x1 6 2π, 0 6 x2 6 2π, 0 6 x3 6 2π
with a = 1, the three-dimensional filtered Navier-Stokes equation

∂ui
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+ uj

∂ui

∂xj

= −
1

ρ

∂p

∂xi

+
1

Re

∂2ui

∂xi∂xj

, (3)

can be solved analytically at small times, using the method of perturbation expansion. In
(1) all quantities have been properly normalized by the initial maximum velocity magnitude
U0 in the x1 or x2 direction, and L/2π , where L is the physical domain size, ui -velocity at
i = 1, 2, 3, corresponding to x1, x2, x3 directions, Re = LU0/ν is the Reynolds number of flow,
U0 - the characteristic velocity, T = aU0t, a = 2π/L. The pressure p has been normalized by
ρU2

0 . Taylor and Green obtained a perturbation expansion of the velocity field, up to O(t5).
The resulting average kinetic energy is:
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The dissipation rate is written in the following form:
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Simulation at different Reynolds numbers was compared with the analytical solution of
the Taylor-Green vortex problem from the point of view of: the average kinetic energy and the
average dissipation rate of the turbulent flow. Figure 2 compares the average turbulent kinetic
energy obtained in this paper with the analytical solution of the Taylor-Green vortex problem
for different Reynolds numbers. The results obtained by analytical solution of short-time
theory of TG, spectral methods at 2563grid resolution and hybrid finite difference method
at 643 grid resolution show a satisfactory agreement till T = 3 at Re = 100 , and till
T = 4 at Re = 300 , and Re = 600 for the average turbulent kinetic energy. The error
between analytical and numerical solutions for the average kinetic energy was defined as:
Error(Ek) = |EHFDM

k − ETG
k | = 10−4.
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Figure 2 – Comparative results of modeling the evolution of the average kinetic energy
in time, spectral and hybrid methods of modeling the Taylor-Green vortex of: TG short-time
theory at: 1) Re=100; 2)Re=300; 3)Re=600; Spectral method, 2563 at: 4)Re=100; 5)Re=300;
6)Re=600; HFD method at: 7)Re=100; 8)Re=300; 9)Re=600.

Fig. 2. Comparative results of modeling the evolution of the average kinetic energy in
time, spectral and hybrid methods of modeling the Taylor-Green vortex of: TG shorttime
theory at: 1) Re = 100; 2) Re=300 ; 3) Re= 600; Spectral method, 2563 at: 4) Re=100 ; 5)
Re=300; 6) Re=600; HFD method, 643 at: 7) Re=100; 8) Re=300; 9) Re=600.

Figure 3 compares the results of average rate of dissipation of the turbulence decay with
respect to time of the numerical simulation, and the analytical solution of the Taylor-Green
vortex problem at different Reynolds number. It can be seen from Figure 3 that the short-
term theoretical results and numerical simulation results are in good agreement till T = 2.5
for Re = 100, and T = 2 for Re = 300; Re = 600. It is difficult to compare the analytical
solution with numerical simulation, since the analytical solution valid only for short-term
time, and the numerical solution can provide good results for long term, so it is worthwhile
to compare simulation results of spectral method and HFD method for long term. The rate of
dissipation increases sharply due to the formation of small-scale flow structures and reaches
a maximum at T = 3, for short time theory of TG at Re = 100, and at T = 4 for other
case, and then the rate of dissipation shows a decrease in the tendency for result of analytical
solution of TG at Re = 100 because of the decrease in the total Reynolds number of the
stream. In the simulation results, the error between analytical and numerical solutions for
the average dissipation rate is: Error(ǫ) = |ǫHFDM − ǫTG| = 10−2.
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Figure 3 – Comparative results of modeling the evolution of the average rate of dissi-
pation of the decay of turbulence in time, the spectral and hybrid methods of modeling the
Taylor-Green vortexof: TG short-time theory at: 1) Re=100; 2)Re=300; 3)Re=600; Spectral
method, 2563 at: 4)Re=100; 5)Re=300; 6)Re=600; HFD method at: 7)Re=100; 8)Re=300;
9)Re=600.

5 Results and discussion

The numerical model allows one to describe the influence of electron concentration on the
dynamics of changes in the inhomogeneities of the E-layer of the ionosphere under nonisother-
mal conditions. The mathematical model of the problem is based on solving non-stationary
equations of magnetohydrodynamics with filtration in combination with the continuity equa-
tion, equations for temperature, equations of electron concentration, equations for the motion
of charged particles, taking into account the continuity equation in a Cartesian coordinate
system in dimensionless form. For this problem, the Stuart number has the following val-
ues a)N0 = 0; b)N0 = 1, the Rayleigh number is taken Ra = 106, and Prandtl number is
Pr=0.7. For calculations, a grid size is taken 64 × 64 × 64. The domain size are equal to
L1 = 2π; L2 = 2π; L3 = 2π , corresponding accord to the x1, x2 and x3 directions. As a result
of modeling at various Stuart numbers Rayleigh Benard convection is obtained. At figure 4-9
it is shown temperature convection at different Stuart number, and at different sections. It
is seen, that with the increase interaction number, the development of heat transfer flow is
more stable and static than where it is neglected. Heat transfer is largely suppressed by an
external magnetic field. Convection flow will completely disappear under the action of the
inhibitory force of the magnetic field.

In this study, to construct a mathematical model of the influence of electron concentration
on the dynamics of changes in the heterogeneity of the E-layer of the ionosphere under non-
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a) b)

Figure 4 – Temperature contour of the turbulent flow for different interaction coefficients
a)N0 = 0 and N0 = 1 at different sections: x1 = 0.05; x1 = 0.5; x1 = 0.95.

a) b)

Figure 5 – Temperature contour of the turbulent flow for different interaction coefficients
a)N0 = 0 and N0 = 1 at x1 = 0.5.

isothermal conditions, we consider an incompressible electrically conductive medium with
different electron concentration at the three dimensional area. To construct a mathematical
model of the influence of external disturbances on the generation and evolution of large-scale
inhomogeneities in the E-layer of the ionosphere, the motion of the electron concentration
under the influence of a magnetic field, regardless of its strength directed horizontally along
the axis, heat transfer were also considered.

The magnetohydrodynamic equation system is used for modeling of ionosphere processes.
The numerical algorithm for the solution of three-dimensional mathematical model of the
influence of the electron concentration on the dynamics of the ionosphere E-layer under non-
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a) b)

Figure 6 – Isotherms for different interaction coefficients a)N0 = 0 and N0 = 1 at
x1 = 0.5.

a) b)

Figure 7 – Temperature contour of the turbulent flow for different interaction coefficients
a)N0 = 0 and N0 = 1 at different sections x2 = 0.05; x2 = 0.5; x2 = 0.95

isothermal condition is developed. For approximation of the convective and diffusion terms of
the intermediate velocity field a finite-difference method in combination with penta-diagonal
matrix is used, which allowed to reach fourth-order accuracy in space and third-order accuracy
in time. For the solution of pressure the Poisson equation is solved, which ensures that the
continuity equation is satisfied. The Poisson equation is transformed from the physical space
into the spectral space by using a Fourier transform. The equation for temperature and
electron concentration are solved by using Adams-Bashforth scheme. The concentration of
electrons under the influence of a horizontal magnetic field shows, that the three-dimensional
instability of convection flow with the increasing Stuart number, the development of heat
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a) b)

Figure 8 – Isotherms fordifferent interaction coefficients a)N0 = 0 and N0 = 1 at x2 = 0.5
section.

a) b)

Figure 9 – Temperature contour of the turbulent flow for different interaction coefficients
a)N0 = 0 and N0 = 1 at different sections x3 = 0.05; x3 = 0.5; x3 = 0.95

transfer flow is more stable and static than where, the Stuart number is neglected. Heat
transfer is largely suppressed by an external magnetic field. Convection flow will completely
disappear under the action of the inhibitory force of the magnetic field.

Before investigating the influence of the magnetic field on the flow, the adequacy of the
numerical algorithm was checked without applying a magnetic field. For this purpose, the
Taylor Green test problem was carried out for various Reynolds numbers, where it has a good
agreement with the Benchmark spectral method and analytical solutions.
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