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RESEARCH OF THE STRESS STATE OF A PIPELINE ELEMENT WITH
OVALIZATION UNDER CORROSION-POWER EFFECT

The stress state of an element of a thick-walled pipeline when ovalizing a cross section is studied
under conditions of power and corrosion effect in the statement of plane deformation. The material
of the element under the influence of external loads goes into an elastic-plastic state. The corrosive
effect of a pumped medium leads to softening of the material in the plastic zone. This softening of
the material is taken into account by a special inhomogeneity function in the Tresca-Saint-Venant
plasticity condition. The elastic-plastic problem for an thick-walled elliptical element under uniform
external and internal pressure is considered in non-axisymmetric setting. The problem is solved by
the method of sharing static and physical equations for the considered elastoplastic material and
the perturbation method in the theory of an elastoplastic body. An assessment of the strength and
bearing capacity of a thick-walled pipeline element with ovalization under presence and absence
of corrosion damage is given.
Key words: thick-walled pipeline element with ovalization, elastoplastic state, corrosion damage
to the material, plastic inhomogeneity, softening function.
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Коррозиялық-күштiк әсер ету жағдайында қалың қабырғалы құбыр элементiнiң

көлденең қимасының сопақталу кезiндегi кернеулi күйiн зерттеу

Жазық деформация қойылымында коррозиялық-күштiк әсер ету жағдайында қалың қабы-
рғалы құбыр элементiнiң оның көлденең қимасының сопақталу кезiндегi кернеулi күйi зерт-
телдi. Сыртқы қысымның әсерiнен элемент материалы серпiмдi пластикалық күйге өтедi.
Айдалатын ортаның коррозиялық әсерi иiлгiш аймақта материалдың жұмсаруына әкеледi.
Материалдың жұмсаруы Треск-Сен-Венанның иiлгiштiк шартында бiртексiздiктiң арнайы
функциясымен ескерiледi. Асимметриялық есеп қойылымында бiрқалыпты сыртқы және iш-
кi қысымның әсерiнен қалың қабырғалы эллиптикалық элемент үшiн серпiмдi пластикалық
есеп қарастырылды. Есеп қарастырылып отырған серпiмдi иiлгiш материал үшiн статика-
лық және физикалық теңдеулердi бiрлесiп пайдалану әдiсiмен және серпiмдi иiлгiш дене
теориясында ұйытқулар әдiсiмен шешiлдi. Коррозиялық-күштiк әсер ету жағдайында қалың
қабырғалы құбыр элементiнiң көлденең қимасының сопақталуы кезiндегi берiктiгi мен кө-
тергiштiк қабiлеттiлiгiне баға берiлдi.
Түйiн сөздер: қалың қабырғалы эллиптикалық элемент, серпiмдi иiлгiш күй, материалдың
коррозиялық зақымдануы, берiктендiру функциясы. анықтамасы.
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Исследовано НС элемента толстостенного трубопровода при овализации его поперечного
сечения в условиях коррозионно-силового воздействия в постановке плоской деформации.
Материал элемента под действием внешнего давления переходит в упругопластическое
состояние. Коррозионное воздействие перекачиваемой среды приводит к разупрочнению
материала в пластической зоне. Это разупрочнение материала учитывается специаль-
ной функцией неоднородности в условии пластичности Треска-Сен-Венана. Рассмотрена
упругопластическая задача для толстостенного эллиптического элемента под действием
равномерного наружного и внутреннего давления в неосесимметричной постановке. За-
дача решена методом совместного использования статических и физических уравнений
для рассматриваемого упругопластического материала элемента и методом возмуще-
ний в теории упругопластического тела. Дана оценка прочности и несущей способности
толстостенного элемента трубопровода с овализацией при коррозионно-силовом воздействии.

Ключевые слова: толстостенный элемент трубопровода с овализацией, упругопластическое
состояние, коррозионные повреждения материала, функция разупрочнения.

1 Introduction

We studied the stress state, strength and carrying capacity of an element of a thick-walled
pipeline with the circular cross-section under the action of uniform and non-uniform external
pressure along the contour [1] with accounting of softening of material in the plastic zone due
to corrosion effect of a pumping medium.

During operation of the elements of pipeline structures are subjected to various exorbitant
loads, leading to ovalization of pipes. Ovalization of pipes significantly affects their strength
and bearing capacity [2,3]. Moreover, during operation, corrosive wear of the inner surface of
a thick-walled element occurs in aggressive working environments, which further reduces its
bearing capacity.

In this regard, this work is devoted to the study of the stress state, strength and bear-
ing capacity of an elastoplastic element of a thick-walled pipeline with ovalization under
conditions of corrosion-force action, leading to weakening of the material in the plastic zone.

2 State of the problem

Ovalization is a factor that is taken into account in regulatory documents at the stage of
delivery and installation of pipes, during design and construction [2,3], however there are no
standards for the limiting value of ovality of pipelines in operation, despite the large amount
of diagnostic data on their ovalization [4]. Meanwhile, the coincidence of the zone of increased
stresses caused by ovalization of pipes with places of rupture and corrosion damage indicates
that ovalization should be taken into account and be able to evaluate from the point of
view of the operability of the pipeline. The ovalization of the cross section of an infinitely
long elastic pipe in pure bending was studied by Brazier [5]. Elastoplastic ovalization of the
profile of an initially straight cylindrical pipe bent by external moments along the mandrel
is considered in [6]. Since in [6] only a part of the pipe is subject to bending, the study of
the deformation of the pipe section is carried out in the framework of the plane stress state.
In [7], the reliability and residual life of gas pipeline sections with defects such as ovalization
and wall thinning due to corrosion and erosion processes are considered on the basis of a
probabilistic approach. The strength characteristics of steel pipelines with geometric defects
of the "dint" type were studied in [8]. In this case, a dint leads to a stress concentration in
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the defect zone under the action of internal pressure and can cause the appearance of other
surface defects, including corrosion.

Ovality of the section is a geometric defect in the section of the pipe resulting from the
transformation of the initial annular section of the pipe into an elliptical. Ovalization of the
section is considered by us as a result of significant external transverse (radial) loads on the
pipeline. This allows us to research the elastoplastic stress state, strength and bearing capacity
of a pipeline element under conditions of corrosion-force action in the formulation of plane
deformation. At the same time, the decrease in the strength properties of the pipe material
during loading due to the accumulation of damage and defects can be taken into account
by introducing a special softening function (radial inhomogeneity of strength characteristics)
in the known criteria of material plasticity for axisymmetric and plane problems [9-11]. In
[12], modified plasticity criteria were used that can take into account the accumulation of
material damage under difficult boundary conditions, when the plastic inhomogeneity changes
in accordance with the change in the elastoplastic boundary. In this work, we use just such
plasticity criteria.

3 Solution of the problem

The element of a thick-walled underground pipeline with ovalization is in plane de-formation
[14]. The equations of the cross-section of the oval pipeline element in the polar coordinate
system r, θ are written for the inner contour in the form a0+f1(r, θ), and for the outer contour
in the form 1 + f2(r, θ). Here, f1(r, θ), f2(r, θ) are some functions of coordinates, a0 < 1.

The pipeline material is taken to be ideally elastoplastic, obeying the Prandtl loading
diagram [15].

Equilibrium equations in general form are written as σij,j = 0.
In the considered formulation, the equilibrium equations of the pipeline in the polar

coordinate system r, θ take the form :

∂σr
∂r

+
1

r

∂τrθ
∂θ

+
σr − σθ

r
= 0,

∂τrθ
∂r

+
1

r

∂σθ
∂θ

+ 2
τrθ
r

= 0 (1)

Here σr, σθ, τrθ are the components of the stress tensor.
In the elastic region, Hooke’s law is valid for a homogeneous, isotropic linear elastic

material:

εij =
1

E
((1 + µ)σij − µδijσkk) , (2)

where σij and εij are the components of the stress and strain tensors, E is the modulus of
elasticity, µ is the Poisson’s ratio, and δij is the Kronecker symbol.

The stress function in the elastic region Φ(r, θ) must satisfy the biharmonic equation (here
∇2 is the Laplace operator)

∇2∇2Φ = 0. (3)

The solution of equation (3) at r,mθ can be presented in the general form

Φm = (C1r
m + C2r

−m + C3r
m+2 + C4ϕm(r)) cosmθ, m = 0, 1, 2, . . . , (4)
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where ϕm(r) = rm ln r at m = 0, 1; ϕm(r) = r−m+2 at m ≥ 2. The constants C1 − C4 in (4)
are found in the course of the solution from the boundary conditions.

The plasticity condition is generally written as follows:

f∗ (σij, σs∗ (xi, χj)) = 0. (5)

In condition (5), σij are the components of the stress tensor, σs∗(xi, χj) are the strength
characteristics of the material in the plastic zone, which are continuous and differentiable
functions of the coordinates xi and loading parameters χj [12].

As a condition for the transition of a material into a plastic state, we take the Tresca-
Saint-Venant condition, which is widely used in calculations of plastically deformable metal
structures and constructions:

(σθ − σr)2 + 4τ 2rθ = 4K2
∗ (6)

where K∗ is the adhesion coefficient of material.
The material strength parameter K∗ in condition (6) characterizes the plastic

inhomogeneity formed as a result of varying degrees of damage to the material (the presence
of many defects and microcracks in it) due to the force-corrosion effect and distributed over
the thickness of the plastic zone, similar to the outline of its boundary. K∗ = K1 At the
border of the plastic zone, the value K∗ is constant: K∗ = K1. The quantity K∗ is a special
softening function that depends on the coordinates r, θ and loading parameters rO, δ [12]:

K∗ = K∗(r, r0, θ, δ) (7)

Here r0, δ are the axisymmetric and non-axisymmetric loading parameters: r0 = r0(P0, P1 +
P2), δ = δ(P1 − P2).

The problem is solved by the method of joint use of static and physical equations for the
considered elastoplastic material.

The problem also uses the perturbation method in the theory of an elastoplastic body
[13]. The solution by the perturbation method is determined near the known "zero" solution
at δ = 0. As an initial state, we will take the solution we obtained earlier for a circular
thick-walled element in an axisymmetric formulation [1]:

σ0
[r] = P0 + 2

ro∫
ao

r−1K0
∗dr, σ0

[θ] = σ0
[r] + 2K0

∗ , τ 0[rθ] = 0,

σ0
(r)

σ0
(θ)

}
= P +K1r

2
o

(
1∓ 1

r2

)
, τ 0(rθ) = 0.

(8)

Axisymmetric boundary conditions on the inner and outer contour a0 and 1 of thick-
walled circular element and the conjugation conditions on the contour r0 have the form
(Figure 1):
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Figure 1: Design scheme for a circular thick-
walled pipeline element

σ0
[r] = P0 at r = a0; σ

0
(r) = P

at r = 1; [σ0
r ] = [σ0

θ ] = 0 at r = r0

In expressions (8), square (round)
brackets at the indices mean belonging to
the plastic (elastic) zone. The symbol K0

∗
denotes the softening function (7) in the
axisymmetric case, which depends only
on the current radius r and the boundary
radius r0 :

K0
∗ = K∗(r, r0) = (K0 −K1)f(r, r0) +K1. (9)

Here K0 and K1 is the value of the strength of the material on the inner contour a0 and on the
elastoplastic radius r0, f(r, r0) – some kernel with the properties f(a0, 1) = 1, f(r0, r0) = 0.
In [10], the kernel f(r, r0) was taken as a kernel that describes well the decrease in the value
of K0

∗ during loading both along the radius r and depending on the position of the boundary

radius r0 (n is the nonlinearity parameter): f(r, r0) =
an0 (rn0 − rn)

rn (1− an0 )
.

Elastoplastic radius r0 in our "zero" solution is implicitly determined from the
transcendental equation

P0 − P + 2

ro∫
ao

r−1K0
∗dr +K1(1− r20) = 0 (10)

In the absence of corrosion damage, the parameter K0
∗ = K1 and the radius of the plastic

zone r0 are found from the equation

P0 − P + 2K1

(
ln

(
r0
a0

)
+

1

2

(
1− r2o

))
= 0. (11)

According to the perturbation method, the solution is sought in the form of rows of the
sought components in powers of a small parameter, which is δ

σij =
ν∑
0

δνσ
(ν)
ij = σ0

ij +
ν∑
1

δνσ
(ν)
ij ,

K∗ =
ν∑
0

δνK(ν)
∗ = K0

∗ +
ν∑
1

δνK(ν)
∗ ,

rs =
ν∑
0

δνrν = r0 +
ν∑
1

δνrν

(12)
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where rs is the sought elastoplastic boundary.
For this, the initial equations, boundary conditions and conjugation conditions are

linearized. Equilibrium equations (1) retain their form for any approximation

∂σ
(ν)
r

∂r
+

1

r

∂τ
(ν)
rθ

∂θ
+
σ
(ν)
r − σ(ν)

θ

r
= 0,

∂τ
(ν)
rθ

∂r
+

1

r

∂σ
(ν)
θ

∂θ
+ 2

τ
(ν)
rθ

r
= 0. (13)

The linearization of the relations of the theory of ideal plasticity consists in the combined
use of equations (1), (6). Introducing the stress function F = F (r, θ) according to (1)

σ(ν)
r =

1

r

∂F (ν)

∂r
+

1

r2
∂2F (ν)

∂θ2
, σ

(ν)
θ =

∂2F (ν)

∂r2
, τ

(ν)
rθ = − ∂

∂r

(
1

r

∂F (ν)

∂θ

)
, ν = 0, 1, 2, . . . (14)

and linearizing equation (6) we obtain in the plastic zone an inhomogeneous differential
equation in partial derivatives for the function F (ν)(r, θ) :

r2
∂2F (ν)

∂r2
− r∂F

(ν)

∂r
− ∂2F (ν)

∂θ2
= r2f (ν)(r, θ), ν ≥ 0. (15)

Here f (ν) is the right side of the corresponding linearized relation: f 0 = 2K0
∗ , f

(I) = 2K
(I)
∗ ,

f (II) = − 1

KO

(τ
(I)
rθ )2 + 2K

(II)
∗ .

The solution to equation (15) F (ν) is determined taking into account static or geometric
boundary conditions.

The linearization of the boundary conditions depends on the given forces on the initial
contour, and the linearization of the conjugation conditions on the elastoplastic boundary is
determined by the nature of the initial conjugation conditions.

4 Thick-walled pipeline element with ovalization under uniform external and
internal pressure

Consider a thick-walled pipeline element with ovalization, loaded with uniform internal P0

and external P pressures, under conditions of plane deformation (Fig. 2)

Figure 2: Design scheme for a thick-walled
pipeline element with ovalization

The equations of the outer and inner
contours of the pipeline element have the
form

re = 1 + δd1 cos 2θ,
ri = a0(1 + δd2 cos 2θ),

(16)

where δ is the parameter of deviation of the
oval contour from the circular one, d1 and d2
are geometric coefficients.

We construct a solution to the problem
in the form (12) at ν ≥ 0. The zero solution
for ν = 0 is given in the previous part of the
work. Let us find a solution for ν = 1.
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Consider the plastic zone of a thick-walled element. We represent the stress function F (1)

in equation (15) based on the geometric boundary conditions of the outer and inner contours
(16): F (1) = R(r) cos 2θ.

Solving equation (15), we find the function F (1) in the plastic zone:

F (1) =

AiRi +Ri

r∫
a0

Vi(r)

V (r)
dr

 cos 2θ, , i = 1, 2, (17)

where AiRi = A1R1 +A2R2 = r(A1 cos(
√

3 ln r) +A2 sin(
√

3 ln r)), V (r) is the Wronskian of
the system of solutions Ri, Vi(r) is the determinant obtained from the Wronskian by replacing
the ith column with a column with a single nonzero element 2K

(I)
∗ cos−1 2θ located at its end.

The stress components in the plastic zone under the Tresque-Saint-Venant condition based
on (14), (17) are written as:

σ
(I)
[r] =

1

r
[A1 cos(

√
3 ln r) + A2 sin(

√
3 ln r)− 2(

√
3 cos(

√
3 ln r) + sin(

√
3 ln r))×

×
r∫

a0

− sin(
√

3 ln r)K
(I)
∗

cos 2θ
dr + 2(cos(

√
3 ln r)−

√
3 sin(

√
3 ln r))×

×
r∫

a0

cos(
√

3 ln r)K
(I)
∗

cos 2θ
dr] cos 2θ, σ

(I)
[θ] = σ

(I)
[r] + 2K(I)

∗ ,

τ
(I)
[rθ] =

1

2r
[(A1 −

√
3A2) cos(

√
3 ln r) + (A2 −

√
3A1) sin(

√
3 ln r)−

−8 sin(
√

3 ln r) ·
r∫

a0

− sin(
√

3 ln r)K
(I)
∗

cos 2θ
dr + 8 cos(

√
3 ln r)×

×
r∫

a0

cos(
√

3 ln r)K
(I)
∗

cos 2θ
dr] sin 2θ.

(18)

Find constants A1 and A2. For this, we have linearized boundary conditions on the inner
contour

σ
(I)
[r] + a0d2

dσ0
[r]

dr
cos 2θ = 0, τ

(I)
[rθ] + 2d2(σ

0
[θ] − σ0

[r]) sin 2θ = 0, at r = a0. (19)

Substituting (18) into (19), we obtain

A1 = −2(
√

3 sin(
√

3 ln a0) + cos(
√

3 ln a0))a0d2K∗(a0, r0),

A2 = 2(
√

3 cos(
√

3 ln a0)− sin(
√

3 ln a0))a0d2K∗(a0, r0).

Substituting A1 and A2 in (18), we can obtain expressions for the components σ(I)
[r] , σ

(I)
[θ] ,

τ
(I)
[rθ] in their final form.
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Consider the elastic region of a thick-walled element. The components σ(I)
(r) , σ

(I)
(θ) , τ

(I)
(rθ) of

the stress tensor in the elastic region are found from the stress function Φ(1) in equations (4),
(14):

σ
(I)
(r) = (−2C1 − 6C2r

−4 − 4C4r
−2) cos 2θ = 0,

σ
(I)
(θ) = (2C1 + 6C2r

−4 + 12C3r
2) cos 2θ = 0,

τ
(I)
(rθ) = (2C1 − 6C2r

−4 + 6C3r
2 − 2C4r

−2) sin 2θ

(20)

To determine C1, C2, C3, C4 we have linearized boundary conditions on the outer contour
of the element

σ
(I)
(r) + d1

dσ0
(r)

dr
cos 2θ = 0, τ

(I)
(rθ) + 2d1(σ

0
(θ) − σ0

(r)) sin 2θ = 0, at r = 1 (21)

and two linearized conditions for conjugation of stresses at the boundary of the plastic zone

[σ(I)
r ] = 0, [τ

(I)
rθ ] = 0 at r = r0 (22)

Then, from conditions (21), (22), we obtain the boundary value problem for the elastic
region of a thick-walled oval element:

σ
(I)
(r) = M1(r) cos 2θ, τ

(I)
(rθ) = M2(r) sin 2θ, at r = r0,

σ
(I)
(r) = −M0(r) cos 2θ, τ

(I)
(rθ) = −2M0(r) sin 2θ, at r = 1.

(23)

Here under the condition of Tresque-Saint-Venant

M0 = 2r20d1K1,

M1 =
2a0d2K∗(a0, r0)

r
(
√

3 sin(
√

3 ln
r0
a0

) + cos(
√

3 ln
r0
a0

))−

− 2

r0
(
√

3 cos(
√

3 ln r0) + sin(
√

3 ln r0)) ·
r0∫

a0

− sin(
√

3 ln r)K
(I)
∗

cos 2θ
dr+

+
2

r0
(cos(

√
3 ln r0)−

√
3 sin(

√
3 ln r0)) ·

r0∫
a0

cos(
√

3 ln r)K
(I)
∗

cos 2θ
dr,

M2 =
4a0d2K∗(a0, r0)

r
cos(
√

3 ln
r0
a0

)− 8

r0
sin(
√

3 ln r0) ·
r0∫

a0

− sin(
√

3 ln r)K
(I)
∗

cos 2θ
dr+

+
8

r0
cos(
√

3 ln r0)

r0∫
a0

cos(
√

3 ln r)K
(I)
∗

cos 2θ
dr
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Solving the boundary value problem (23), we find all constants C1 − C4 :

C1 =
1

2
(1− r−2

0 )−3
(
M0r

−2
0 (2− r−2

0 − r−4
0 )−M1(1 + r−2

0 + 2r−4
0 ) + 2M2r

−4
0

)
,

C2 =
1

2
(1− r−2

0 )−3
(
3M0(1− r−2

0 )−M1(3 + r−2
0 ) + 2M2r

−2
0

)
,

C3 =
1

6
r−2
0 (1− r−2

0 )−3
(
3M0(r

−4
0 − r−2

0 ) +M1(1 + 3r−2
0 ) +M2(1− 3r−2

0 )
)
,

C4 =
1

2
(1− r−2

0 )−3
(
−M0(1 + r−2

0 − 2r−4
0 ) +M1(2 + r−2

0 + r−4
0 )−M2(r

−2
0 + r−4

0 )
)

Substituting C1, C2, C3, C4 in (20), we obtain the stress components in the elastic region of
the thick-walled element σ(I)

(r) , σ
(I)
(θ) , τ

(I)
(rθ) in the final form.

We seek the equation for the boundary of the plastic zone rs in the form rs = r0 + δr1.
To determine the value of r1, we use the linearized conditions for the conjugation of the
components σθ and K∗ on r0 :[

σ
(I)
θ +

dσ0
θ

dr
r1

]
= 0,

[
K(I)

∗ +
dK0

∗
dr

r1

]
= 0 at r = r0, (24)

From conditions (24) we obtain

r1 = (σ
(I)
(θ) − σ

(I)
[θ] )/

(
dσ0

[θ]

dr
−
dσ0

(θ)

dr

)
, K(I)

∗ = −dK
0
∗

dr
r1 at r = r0

Then we finally have
r1 = ψ(r0)r0 cos 2θ,

where ψ(r0) is some function of r0 : ψ(r0) =
Y1 + Y2 + Y3
Y4 + Y5 + Z

.

Here under the condition of Tresque-Saint-Venant

Y1 = −4(2− 7r−2
0 + 5r−4

0 )(1− r−2
0 )−3d1K1,

Y2 = (1 + 5r−2
0 − 11r−4

0 − 3r−6
0 − (1− r−2

0 )3)
a0d2K∗(a0, r0))

r0(1− r−2
0 )3

×

×
(√

3 sin

(√
3 ln

r0
a0

)
− cos

(√
A3 ln

r0
a0

))
,

Y3 = −8
(
1− 3r−2

0 + r−4
0 + 3r−6

0

) a0d2K∗(a0, r0))

r0(1− r−2
0 )3

× cos

(√
3 ln

r0
a0

)
,

Y4 = −2(1 + 5r−2
0 − 11r−4

0 − 3r−6
0 − (1− r−2

0 )3)
2K̃∗

(1− r−2
0 )3
×

×((
√

3 cos(
√

3 ln r0) + sin(
√

3 ln r0))B1 + (cos(
√

3 ln r0)−
√

3 sin(
√

3 ln r0))B2),

Y5 = −4(1− 3r−2
0 + r−4

0 + 3r−6
0 )

K̃∗

(1− r−2
0 )3

× (sin(
√

3 ln r0)B1 + cos(
√

3 ln r0)B2),
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Z = 4K1, K̃∗ = (K0 −K1)
an0

1− an0
n

r0
,

B1 =
r0
2

sin(
√

3 ln r0 −
π

3
)− a0

2
sin(
√

3 ln a0 −
π

3
),

B2 =
r0
2

cos(
√

3 ln r0 −
π

3
)− a0

2
cos(
√

3 ln a0 −
π

3
)

In the homogeneous case, the expression Y1 is the same, the expressions Y2 and Y3 are
preserved, but instead of K∗(a0, r0), K1, Y4 = Y5 = 0 should be written. In this case, the
radius r0 corresponds to the homogeneous case.

The equation for the boundary of the plastic zone rs is written in the form:

rs = r0(1 + δψ(r0) cos 2θ).

The obtained solution area is as follows

r0(1− δψ(r0)) ≥ a0(1− δd2).

The bearing capacity of a thick-walled pipeline element with ovalization is determined as
follows: If ψ(r0) = d1, then the boundary equation rs has the form rs = r0(1 + δd1 cos 2θ). In
this case, the ellipses bounding the outer contour of the element and the plastic zone will be
similar. Consequently, the plastic zone will reach the critical contour at once in all its points
and the bearing capacity is determined from a simple condition r∗ = r0.

In the absence of corrosion damage (r∗ = 1), the condition for determining the bearing
capacity of the element will take the form from r0 = 1. Here r∗ is the numerically determined
critical radius of the element (a0 < r∗ ≤ 1), corresponding to the maximum point on the
loading diagram ∆P = ∆P (r0), at which a thick-walled element is destroyed [1].

In all other cases (ψ(r0) 6= d1), the bearing capacity of a pipeline element with ovalization
can be researched as follows.

From the equation

r∗(1± δd1) = r0(1± δψ(r0)), (25)

at θ = 0 or θ = π/2, we find the value r0, and then from (10) we obtain the critical value of
external loads, at which the plastic zone will reach some ”critical” points of the thick-walled
element.

In the absence of corrosion damage to the element, equation (11) should be adopted and
r∗ = 1 used in equation (25). In this case, critical points (marked with zeros in Fig. 2) are
located on the outer contour of the element 1 + δd1 cos 2θ at the points of its greatest (θ = 0)
or least (θ = π/2) curvature.

In the presence of corrosion damage of the element, the critical points are located inside
the element (marked with crosses in Fig. 2) on the contour r∗(1+ δd1 cos 2θ) in the directions
of its greatest (θ = 0 or least (θ = π/2) curvature (this is determined through the coefficients
d1 and d2). Reaching these crosses by any point of the plastic zone will lead to the destruction
of the element. Note that in an oval element, the plastic zone in the presence of damage to
the material becomes larger in size and somewhat elongated in the directions of its greatest
curvature. Wherein, in the above directions, the element acquires the greatest damage.
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In this case d1 = 0, d2 = 1, we have a thick-walled circular element with an oval hole. The
bearing capacity of such an element is determined from the equation r∗ = r0(1 + δψ(r0)) at
Y1 = 0. Consequently, the ”critical” points are located inside the element on the contour r∗
in the directions of the greatest curvature (θ = π/2) of the hole.

In this case d1 = 1, d2 = 0, we have a thick-walled oval element with a circular hole. The
bearing capacity of such element is determined from equation (25) at Y2 = Y3 = 0. "Critical"
points are located inside the element on the contour r∗(1 + δd1 cos 2θ) in the directions of the
greatest (θ = 0) or least (θ = π/2) curvature of its outer contour.

All the obtained solutions at γ = 1 go to the homogeneous case, and at δ = 0 go to the
axisymmetric case.

5 Conclusion

The stress state of an elastoplastic element of a thick-walled pipeline when ovalizing a cross
section is studied under conditions of power and corrosion effect using a special softening
function (plastic inhomogeneity) in the plasticity condition of Tresca-Saint-Venant. An
elastoplastic problem is considered for a thick-walled pipeline element with ovalization under
the action of uniform external and internal pressure in a nonaxisymmetric formulation. The
problem is solved by the method of joint use of equilibrium equations and physical equations
in each zone and their "sewing" through the conjugation conditions on the elastoplastic
boundary, as well as by the method of perturbations in the theory of an elastoplastic body.

An assessment of the strength and bearing capacity of a loaded thick-walled pipeline
element with ovalization in the presence and absence of corrosion damage is given.
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