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GREEN’S FUNCTIONS AND CORRECT RESTRICTIONS OF THE
POLYHARMONIC OPERATOR

In this paper, for completeness of presentation, we give explicitly the Green’s functions for the
classical problems — Dirichlet, Neumann, and Robin for the Poisson equation in a multidimensional
unit ball. There are various ways of constructing the Green’s function of the Dirichlet problem
for the Poisson equation. For many types of areas, it is built explicitly. Recently, there has been
renewed interest in the explicit construction of Green’s functions for classical problems. The
Green’s function of the Dirichlet problem for a polyharmonic equation in a multidimensional
ball is constructed in an explicit form, and for the Neumann problem the construction of the
Green’s function remains an open problem. The paper gives a constructive way of constructing
the Green’s function of Dirichlet problems for a polyharmonic equation in a multidimensional
ball. Finding general well-posed boundary value problems for differential equations is always
an urgent problem. In this paper, we briefly outline the theory of restriction and extension of
operators and describe well-posed boundary value problems for a polyharmonic operator.

Key words: Poisson equation, polyharmonic equations, Dirichlet problem, Neumann problem,
Roben problem, correct restrictions of the operator.
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B nmanHOl pabore npuBesieHbl B siBHOM Bujie (yHKiuil I'puna Kiaccudeckux 3ajad — Jlupuxie,
Heiimana u Pobena nst ypasuenusi [lyaccona B MHOrOMepHOM enuHudHOM Imape. CyInecTByroT
pasnuaHble crocoObl mocTpoenns dyHknun ['puna 3amadn lupuxie st ypaBaenusi [lyaccona.
st MHOTHX BHIOB 00JIACTEll OHA IIOCTPOEHA B ABHOM Buje. B mocsienee BpeMst BO30OHOBUIICS
WHTEpeC K MOCTPOEHUIO B ABHOM Bue yHKImit ['puna kmaccuaecknx 3agad. Oywakius ['puna
3asaqn Jupuxiie jiisi oJIMrapMOHUYIECKOT0 YPABHEHUsSI B MHOTOMEPHOM IIIape IIOCTPOeHa B SIBHOM
BHjie, a JuUisi 3ajiadn Helimana mocrpoenue dyHKnum ['puHa ocraercss OTKPBITON 3ajadeil. B
paboTe j1aH KOHCTPYKTUBHBII criocod mocrpoenus dyuknun ['puna 3ama4 Jupuxie 1jist moaurap-
MOHMYECKOTO YpaBHEHUsI B MHOTOMEPHOM Tirape. Haxoxkienne o0Immux KOPPEKTHBIX KPAEBBIX 33181
Hst auddepeHImaIbHbIX YPABHEHWI BCerja sSB/IsSeTCa aKTyaJabHOH 3ajatdeil. B mamnoit pabore
KPATKO U3JIOXKEHA TEOPHs Cy>KEHUsI ¥ PACIIMPEHUSI OIIEPATOPOB U OIMUCAHBI KOPPEKTHLIE KPAEBbIE
381491 T8l TIOJTMTAPMOHIYECKOTO OIIepaTopa.

KimroueBbie ciioBa: ypasHenue [lyaccoma, mosimrapMoHHYecKue ypaBHeHUs , 3ajada Jlupuxiie,
3agada Heiimana, 3amada Pobena, KOppeKTHBIE CYyKeHUsT OTiepaTopa.

Introduction

The need to study boundary value problems for elliptic equations is dictated by
numerous practical applications in the theoretical study of the processes of hydrodynamics,
electrostatics, mechanics, thermal conductivity, elasticity theory, and quantum physics [1-4].
The distributions of the potential of the electrostatic field are described using the Poisson
equation. When studying the vibrations of thin plates of small deflections, biharmonic
equations arise.

This work is devoted to the construction of the Green’s function of the Dirichlet problem
for a polyharmonic equation in a multidimensional ball and to the description of well-posed
boundary value problems for polyharmonic operators.

1 Materials and methods

The subject of this research is a constructive way of constructing the Green’s function of
boundary value problems for a polyharmonic equation in a ball of arbitrary dimension.

The research method is the representation of polyharmonic functions through the sum of
harmonic functions with certain weights. When constructing explicitly the Green’s function
of the Dirichlet problem for a polyharmonic equation in a ball, the method of special
expansion of the fundamental solutions of the polyharmonic equation and the method of
reflection are essentially used. When describing new well-posed boundary value problems
for an inhomogeneous polyharmonic equation in a ball, the method of restricting abstract
operators was applied.

There are various ways to construct the Green Function of the Dirichlet problem for
the Poisson equation. For many types of domains, it is constructed explicitly. And for the
Neumann problem in multidimensional domains, the construction of the Green function is
an open problem. For the ball, the Green function of the internal and external Neumann
problem is constructed explicitly only for the two-dimensional and three-dimensional cases.
In the general case, for a multidimensional ball, the explicit form of the Green function of
the Neumann and Robin problems for the Poisson equation is constructed recently in [5,6].



B.D. Koshanov 37

2 Results and discussion

Note that recently there has been renewed interest in the explicit construction of Green’s
functions for classical problems. In [7-9], the Green function of the Dirichlet problem for a
polyharmonic equation in a multidimensional ball is constructed explicitly. In [10], the Green
harmonic functions of the Dirichlet, Neumann, and Robin problems are used to construct
the Green functions of the biharmonic Dirichlet, Neumann, and Robin problems in a two-
dimensional circle. Similar results in the class of inhomogeneous biharmonic and triharmonic
functions in the sector were obtained in [11-13|. Note also that the construction of explicit
Green functions of the Robin problem in a circle, when the parameter in the boundary
condition is equal to one, is devoted to the work [14,15]. The results of these studies are based
on the classical theory of integral representations for analytic, harmonic, and polyharmonic
functions on the plane.

Finding general correct boundary value problems for differential equations is always an
urgent problem. The abstract theory of operator contraction and expansion originates from
the work of John von Neumann [16], in which a method for constructing self-adjoint extensions
of a symmetric operator was described and a theory of extension of symmetric operators with
finite defect indices was developed in detail. Many problems for partial differential equations
lead to operators with infinite defect indices.

In [17,18] considered extensions of the minimal operator, rejecting its symmetry, and
described the areas of definition of the extension that have certain solvability properties,
here are investigated to general boundary value problems for general second-order elliptic
differential equations. In [19] found a correct problem that is not contained among the
problems described [18]. This type of problem for ordinary differential equations was studied
in [20].

In the early 80s of the last century, M. Otelbaev and his students [21-23] constructed
an abstract theory that allows us to describe all correct contractions of a certain maximum
operator and separately - all correct extensions of a certain minimum operator, independently
of each other, in terms of the inverse operator. This theory was extended to the case of Banach
spaces [24].

In [25] certain estimates are obtained for the deviation upon domain perturbation of
singular number of correct restrictions of elliptic differential operators.

Thus, this paper is devoted to the construction of the Green function of the classical
Dirichlet, Neumann and Robin problems for the Poisson equation in a multidimensional ball, a
constructive way to construct the Green function of the Dirichlet problem for a polyharmonic
equation in a multidimensional ball, and the description of correct boundary value problems
for polyharmonic operators.

3 Green’s function of the Dirichlet, Neumann, and Robin problem for the Poisson
equation in a multidimensional unit ball

Let 2 CR™, n > 2 be a bounded region with a smooth boundary 0f2. Consider in domain {2
following the Dirichlet problem for the Poisson equation

—Au(z) = f(z), v € Q, u(z) = p(z), v € . (1)
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The classical solution u(x) € C%(Q) N C(Q) of the Dirichlet problem (1) exists, is unique,
and is represented by the Green’s function Gp(z,y) in the following form [1]

we) = [ Gotwnitway— [ 2D oy, ©)

0
where ——— the external normal of 02, and is calculated by the formula

ony

0 - 0
. Z(ny)k‘a_%a ny = ﬁ>y = {(ny)1, (ny)2, .., (ny)n}, Iny| = 1.
Yoo k=1
The Green function of the Dirichlet problem (1) is defined as follows
_AGD(J:ay) = 6($ - y)7 z,y € Q,
Gp(z,y) =0,z € 99, = € Q,

where §(z — y) is the Dirac delta function.
In particular, when Q@ = {# € R" : |z| < 1} is a unit ball, the Green function of the
Dirichlet problem (1) can be constructed by the reflection method and has the form

1 y
GDxay:_[gnI_y _5n<my__>]7 3
(@) = - el = 9) = (el - 3)
27Tn/2
where w,, = Tn/2) the surface area of a unit ball, ¢, (z — y) is the fundamental solution
n

of the Laplace equation [2,3|

1
ln\x—y\’ n:27 |I_y|:\/(xl_y1)2+(‘r2_y2)27
|z —y>, n>3, |r—yl= /> (xr —y)*
n—2 k=1

Along with the Dirichlet problem, the Neumann problem for the Poisson equation is a
classical and well-studied one

ou(x)

—Au(z) = f(z), z € Q, o = Y(x), v € 00. (4)

It is known that the solution of the Neumann problem (4) from class C2(2)NC*(Q) is not
unique up to the constant term. For the existence of a solution to the problem, it is necessary
and sufficient to fulfill the condition

/ fwdy+ [ w(y)ds, = o, (5)
Q o0

If a solution to problem (4) exists, then this solution can be represented in integral form
using the Green function of the Neumann problem Gy (z,y) according to the formula [1]

u(z) = / G, y) F(y)dy + /8 Gl )05}, + const (6)
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The Green function of the Neumann problem (4) is understood as [1] a function that has

the representation
1
Gnl(z,y) = — [eale —y) +g(z, )],

where g(x,y)— the harmonic function in region €.
In this case, the boundary condition must be met
G N 1
(xay):__7y€89' (7)

ony W

If such a Green’s function Gx(z,y) exists, then it follows from (5) and (7) that function
(6) satisfies all conditions of problem (4).

For a unit ball, the Green function of the Neumann problem is presented explicitly for
casesn =2 and n =3

1 1 1
Gy(z,y) = — |In +In ,n=2,
2 | |z =yl ’x| |-
Yl =
1 1 1
GN($5y>:_ + _1n1+($ay>+x‘y|_iH 7”237
A ||z —y| ‘:B|y|—— ||

where (z,y) = z1y1 + ... + £, y,— the scalar product in R"™ of vectors = and y.
The Green function of the Neumann problem (4) has the following representation [5]

1 N
Gn(z,y) = — [en(x —y)+en <x\y| - %) + €(x,y)] + const,

where £(x,y) expressed by the identity

1 1 2—n
~ d d
o) = [ 0= Dslaly = L1 -1] S = [ el - 2] -1 Tz,
0 i s 0 i s
and they are written through elementary functions
- 2 .
5($7 y) , = 3; (Z)
‘1 —(z,y) + ‘$|y| ‘y|
2112 — 2
E(z,y) = (=, y) arctan Vizlly z.9) In (z|y| — Y ,n=4; (i)
" TR - (@ 9 1 ( y) lyl
5 m—1 1-2k
e y) =In T ‘ vl - 1)+
L=y + |l -] = EE r
m—1m—k—1 i i i
2 k‘ +i—1)(2k = 3)!M (2, y)|=[* |y [* [Il‘lzlyl2 —(@y) (x y)]
& & (= DIk +2i - DI(PIyP — (x,u)) ™ er )

‘x|y| Tl
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n>5n=2m+1, m>2; (141)

m—1

1
oyl - ' +3
k=1

—2k

—1}+

m—1
V]z? Iyl2 y)? Z (2k — 1)! |z [y [**

I S T

Y

(x,y) arctan +

k=0

m—1m—k—1

(2k +2i = DU(E + D! (@) [Py rlallyl” = (,9)
> T~ Uk + P F — (o 7| i - o)

k=1 1

hW|\w
n>6,n=2m+2, m>2. (iv)

Along with the Dirichlet and Neumann problems, the Robin problem (the third boundary
value problem) for the Poisson equation is a classical and well-studied one

Ju(x)
on

—Au(z) = f(z), x € Q, +au(z) = ¢Y(z), x € 0. (8)

The solution of the problem Robin (8) from class C2(2) N C*(Q) is represented as follows

o) = [ Gutoa)fyty — [ ZEED oy, )

The Green function of the Robin problem (8) has the form [6]
a) if a > 0, then

™

—2—2a (!
e(r—y) — e(x]y\ - i) + u/ 3“715<sx\yl — i)ds,
[yl wnJo vl

1—¢
where vy =60 — ¢ u P(rps,vy) = R T—— the Poisson kernel;

b) if @ < 0 and a— non-integer, then

1 1
Gul.9) = Golw.v) + 5 [ 5 Plrps.n)ds =
0

Ga(z,y) = Gp(x,y) * cos ky+

2T

1 m
/ 51 (P(rps, v)+1-—2 Z(rps)kcoskv) ds] :
0

k=0

where m = —[a] + 1.
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4 Green’s function of the Dirichlet problem for a polyharmonic equation in a
multidimensional ball

Let m be a natural number and in the n— dimensional ball Q2 = {z € R" : || < r } consider
Dirichlet problem for a polyharmonic equation

AMu(z) = f(x), =€, (10)
Hu(x)
on

The classical solution u(x) € C?™(Q)NC™1(Q) to the Dirichlet problem (10), (11) exists,
is unique, and it is represented by the Green’s function Ga,, (2, y) in the following form [3]

=pj(r), 0<j<m—1, z €. (11)

m—1
0 L
/szn:cy >dy+2/ {aTA Gamn(,y) - A7 T p(y)—
Y

, 0 L
A Ganale 1) oAy ) | S, (12)
Ny

where i— external normal 0f).

y
The Green function of the Dirichlet problem (10), (11) is defined as follows
A"Gopmn(x,y) =0(x —y), x,y € 8, (13)

ajGQm,n ([E, y)
onl
where d(x — y)— the Dirac delta function.

=0,2€00yeQ 0<j<m-—1, (14)

Theorem 1 [7-9] a) In the case of odd n, as well as for even n, if 2m < n the Green’s
function of the Dirichlet problem (13), (14) can be represented in the form

m—1
GQmﬂ(x) y) = €2m,n($, y) - ggm,n(l’7 y) - ggm,n(x7 y)? (15)
k=1
where
52m,n(xa ?J) = d2m7n|x - y|2m n’
2m—n
0 Y Y 9
) =d n ’_‘ : 1 9 )
g2m,n<x y) 2m, [ r x |y|27’ ]
2m—n—2k
g;“m’n(x, y) = damn(2m —mn)...2(m—k+1) —n)- [ % x — ﬁrz ] .

T

r

Y

r

o\ K NF /2 \F
() () () e w12
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dy = 1 T'(n/2)
T m =)' 2m —n)(2(m —1) —n)...(4 —n)(2 —n) 2mgv/2’

()= gamma function;
b) In the case of even n and 2m > n, the Green’s function of the Dirichlet problem (13),
(14) can be represented in the form (15), where

52m,n(x7 y) = d2m,n|x - y|2m—n In |ZE - y|a

2m—n r

0 y y 2 ’[J y 9
gmn(xay):de,n ‘_’ r— —57T In ‘— T — ——7r ,

" [’f’ lyl? r y]?

2m—n—2k ) i , k
; Y Y 2 Yy X 2%
) = damn ‘_‘ : - — 1—1Z 1— 2 .
ng,n@ Y) 2m, [7’ x |y‘2fr ] . ) ( . ) ,

[ﬂ(gm —n)2(m—1)—n)...2(m—k+1)—n)ln [

4 (_1)77,/2—1
2 D(m)(m — nj2 + 1) - 22m—1gn/2’

Lemma 1 a) It is known [3] that in the case of odd n and even n, when 2m < n, the function

52m,n(x7 y) = d2m,n|x - y|2m_n

and in the case of even n, when 2m > n, the function
€2m,n(x7 y) = d?m,n|x - ?/|2m_n In |IL‘ - yl
is a fundamental solution to equation (10);

b) for all 0 < k <m — 1 functions

y Y 2m—n—2k y ) k 12 k

k o g1 . _d 2 . g I st 2k
ngm,(x?y) = dy, [’ T‘ X |y‘2r ] (1 . ) (1 ‘T ) T,
where .

are solutions to the homogeneous polyharmonic equation

A"gs o (@,y) =0, z,y€ Q. (16)
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Proof 1 Indeed, the function ggmm(x,y) can be represented in the form gé“m’n(x,y) =

g(x,y) far (||, |y|), where for(|z|, |y|)— polynomial of degree 2k in |z| for fized |y|, and g(x,y)
satisfy the equation A™ *g(x,y) = 0.
By Almanzi’s theorem [3], the function g(z,y) can be represented as

m—k—1
|20 (2, y),
7=0

where W;(x,y)— harmonic functions, i.e. AyW;(x,y) = 0. Then the function g5, . (z,y)
satisfies the representation

K‘

m—k—1 m—k—1

gh (@ y) = 220 (2, ) 2l Jo) = Y (2, y),

J 7=0

Il
o

where \le(x,y)— some harmonic functions.
Therefore, according to Almanzi’s theorem, the function ggm’n(:c, y) forall0 <k <m-—1
satisfies homogeneous polyharmonic equation (16).

It is easy to show that in the following notation

Y
]x—y]2:X2(x,y):X2, ; r = |y|27”2 _Y2($7y):Y2,
2 712
(1— = ) (1—’—‘ )rzzZQ(x,y):ZQ, (17)
r r
we have the identity
X2 —Y?=_-77% Va,y €. (18)

Proof 2 a) Using equality (18) and the expansion of functions f(z) = (1—x)*, 0 <z <1 [4],
we represent the fundamental solution of equation (10) as a series

Eomm(T,Y) = X2 = Y?m- (1 — ﬁ) =

m—1
—1)*
yemen gy (=) (m— 2)(m— = — 1)...(m - g —k+ 1>Y2m—”—2kz2k+

Z k" )(m—§—1)...(m—g—k—i—l)YQm_”_%Z%.
k=

Moving the m terms to the left, we get the required Green’s function in the following form:

GQm,n(x7y> ngnm n( ) ngin n( 7y>7

where
m—1
—1)*
Qﬁ;nm n( ) - d?m,n [XQm—n - Y2m—n - ( k") (m — g)<m — g —k + 1>Y2m—n—2k22k ,
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1)k
65?71,71(1‘7:1/) - dZm,n Z ( ) (m — E)(7’)’l — E — ]_)(m — E —k+ 1>Y2m—n—2kZ2k.

V(-1

k=m

Because

(-7

then using the equalities

= _7?

_O’

z€IN,YeN €0N,yeN

T€IN,YEN r

¥ om e
A g = 07 J = 07 m — 17
on. €HNYeN
it 18 easy to show that the function
ngfn,n(xv y) =

72m [de,n i (—=1)* (m — g)(m _n_ 1).“<m _ g Ckdima 1)y2m—n—2kZ2k—2m] _

' Vo)

k=m

Xz

r

Y

r

<r2 (1 .

[dzm,n f: (_k—l,)k(m - g)(m - g —1)... (m - g —k+m+ 1>y2m—n—2kz2k—2m]

k=m

satisfies the boundary condition (14).
According to Lemma 1 and the last equality, we have

(_Al“)mG%%n(x?y) = (_Aw)mﬁgnm,n(‘xa y) = (5(1‘ - y)v x,y € Q>

8]
; G2m,n (ZL’, y)

on,
By virtue of the uniqueness of the solution to the Dirichlet problem for the polyharmonic
equation, the Green’s function of problem (13), (14) is

o

®2m,n (.7}, y)

=0,5=0m-—1.
€02 J m

€0 6ngc

Gomn(T,y) = domn [men — Yy — (m — T—l) <m D ks 1)Y2m*”*2’“22k _

2 2

b) Using Lemma 1 and the expansion of functions f(x) = In(1 —x),0 < x <1 [4], we
represent the fundamental solution of equation (10) as a series

€2m,n($7y) = ‘:U - y‘men In ‘-T - y\ = X" InX =

m—Z _n

2 Z2\m-3 1 72 2 ] Z2\m-3
2m—n _
vy 3o (1-55) THgn(-5) - X g (-5) =

p=1
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m_n m_n 1
y2m—niny + Z cl e ZQVyZ(mfv)fn nY + Z (_1)Z/CV p) Z 2_22uy2(mfz/)fn+
v=1 v=1 M:m—y—i—l—% M
i e 1
(_1)m+17§ V m_ﬂzZ(m+y)fnY72u.
; wCy T
Mowing the m — 1 terms to the left, we get the equality
GQm,n(x7 y) = gg@mm(x’ y) = S;fn’n(x, y)7
where
;nm,n (ZL’, y) = d2m,n [X2m—n In X — Y2m—n InY—
m—n/2 B n/2-1 92m+2v—n
Z (_1)1/017/7’7,771/2 |:1I1Y + C:| 72y 2m—2v—n + (_1)mfn/2 — Z2(m+l/)Y72ufn:|’
= = 2wl
N ( ) ; i 92(m+v) R — 5 mzn:/Q 1
an,n T,Y)= —Qommn —— noav m V’ = —

Using this representation, just as in the proof of assertion a), we make sure that Gap, ,(z,y)
is the required Green’s function for even n for 2m > n. The theorem is proved.

5 Correct constrictions and extensions of differential operators

In the early 80s of the last century, M.O. Otelbaev and his students [21-23] constructed
an abstract theory that allows us to describe all correct constrictions of a certain maximum
operator and separately - all correct extensions of a certain minimum operator, independently
of each other, in terms of the inverse operator. Moreover, this theory was extended to the
case of Banach spaces and it was possible to partially abandon the linearity of operators. We
give a brief summary of this theory in the case of Hilbert spaces.

Let the Hilbert space H be a linear operator L with a domain of definition D(L) and a
domain of value R(L). The kernel of operator L is the set

KerL ={fe€ D(L): Lf=0}.

Definition 1 A linear closed operator L in a Hilbert space H is called maximal, if R(E) =H
and KerL # {0}.

Definition 2 A linear closed operator Lo in a Hilbert space H is called is called, if R(Lg) #
H and there is a bounded inverse operator Ly" by R(Ly).

Definition 3 A linear closed operator L in a Hilbert space H is called correct, if there is a
bounded inverse operator L~ defined on all H.

Definition 4 Operator L is called a contraction of operator Ly, and operator Ly is called an
extension of operator L, and briefly write L C Ly, if

1) D(L) € D(L),

2) Lf = Lif, Vf € D(L).
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Definition 5 The correct operator L in the Hilbert space H is called the correct contraction
of the maximum operator L (‘the correct extension of the minimum operator Lg), if L C

~

L (LoC L)

Definition 6 A correct operator L in a Hilbert space H is called a boundary-correct
extension, if L is both a correct contraction of the mazimum operator L and a correct
extension of the minimum operator Lg, i.e. Lo C L C L.

Theorem 2 [21,22] Let L be a mazimal linear operator in a Hilbert space H, L— a known
correct narrowing of operator L and K— an arbitrary linear operator bounded in H that
satisfies the following condition

R(K) C KerL. (19)
Then the operator Ly, defined by the formula

Lif=L"f+Kf VfeH, (20)

is the inverse of some correct narrowing of Lx of the mazimal operator E, 1.e. Lg C L.
Conversely, if Ly is some correct narrowing of the maximal operator L, then there exists a
linear operator K bounded in H that satisfies condition (19), such that the equality holds

Li'f = L7\ f+ K\f, Vf € H.

As a rule, it is difficult to describe the kernel of the maximal operator. Therefore, often
the following Theorem 3 is more effective than Theorem 2.

Theorem 3 /23] Let L be the mazimal operator, Ly be the known correct constriction of Z,

and K be the continuous operator acting from H to D(L) be the domain of the definition of
operator L. Then operator Ly, defined by the formula

L f=L;'f+(E—-L'L)Kf (21)

18 the inverse of some correct narrowing L, i.e. Lx C L.
Conversely, any correct narrowing of operator L is represented as (21) with some operator

K.
In what follows, this theorem will be applied to the polyharmonic operator.

6 Correct boundary value problems for a polyharmonic operator in a
multidimensional ball

In this section Q = {z € R": |z| < r}. On D(L) = W2™(Q) we define the maximal operator
L by the formula
Lu = A™u, Yu € D(L).

By definition R(E) = L5(Q2), and KerL is not trivial.
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In the previous section, it was proved that the Dirichlet boundary value problem for the
polyharmonic equation

ATu(z) = f(z), zeQ={x:|z| <7},

.: j
Lou: PuT) o < i<m—1. xeon
on3,
has a unique solution u(zx) for any f € Ly(2), which has an integral representation
L' = u(e) = [ Gh(n.)r ) (22)
Q
where G2 (x,y) = Gamu(x,y)— Green’s function of the Dirichlet problem from (15).

Note that the zero Dirichlet boundary conditions for a polyharmonic equation are
equivalent to the following boundary conditions for the same equation.

Theorem 4 a) For any f € Lo(2), the function u(x) given by formula (22) with m = 2p is
a solution to the boundary value problem

Alu(z) = f(x), x€Q, (23)
w(x) o =0 iu(:c) =0, Ayu(z) s =0 iA u(z)| =0
00 on, 89_’ ’ o an, " BQ_’
......... AP~ ly(x) ‘aﬂ =0, 8?1 AP~ly(x)|  =0. (24)
x o9

b) For any f € Lo(Q2), the function u(x) given by formula (22) with m = 2p+ 1 is a
solution to the boundary value problem

Alu(z) = f(z), =€,

0 0
u(x) |y =0, a—u(x) =0, Ayu(x) |y, =0, aTAxu(x) =0,
x o0 T o0
......... iAgflu(:zc) =0, APu(z) |, = 0. (25)
ong 50
0? 0

Proof 3 Let us show that Aul|sq = WUL?Q =0, if ulgo =0 u 8_u|8ﬂ =0.
n
This fact follows from the following identity

1 0 ,,0 1 n
Au:rn_lgr §u+ﬁAgu,x:T-9€R.

In the case of the ball §2, the direction of the outward normal to the boundary OS2 coincides
with the direction of the radius of the vector 7, therefore the derivative with respect to the
outward normal at the boundary OS2 coincides with the derivative in the direction of the radius.
From here we get

0? n—1
AUl(’jQ = wﬂbg +

0 1
Eubg + T—2A9u|a§z =0,

0
because Aulgg = 0, —ulag = 0, u|gg = 0.

on
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In this section, based on the representation of the solution (12) of the Dirichlet problem,
we present other well-posed boundary value problems for an inhomogeneous polyharmonic

equation. For this we apply Theorem 3 to describe correct restrictions of the maximal operator
L.

Lemma 2 For any h € W3™(Q) fair representation

(B~ L;'L)h(z) =

(2.9) - -2 ATIn(y)| ds,.

m—1

0 .

2 ANJD CAM—1—j j D
E:/m[ NGD. (2,y) - AT h(y) — AIG o

8ny 2m,n 2m,n
J=

Proof 4 For this purpose, we introduce into consideration the integral
) = 1'Th = | G, hwd. (26)

where h(y) is sufficiently smooth, for example, from the class W3™(S2), and the rest is an
arbitrary function.

Taking into account the second Green’s formula for the polyharmonic equation, the integral
(26) can be written in the form

I(z) = / B(y)AGE, (. y)dy—

m—1
. 0 )
3D X m—1—j i D L2 AmMm—1—j —
g /8 |:anyA G2m n( ) Ay h( ) A G2m n( ) anyAy h<y):| dSZJ

h(:c)—mz_l/m [iNGD (z,y) - A h(y) — AIGY,

2m,mn 2m,mn
on,

(@, >-%A$-1-J’h<y>} s,

J=
From here, on the one hand, we get

17
h—L;'Lh=

m—1
0 j 0 )
R .7 D . m—1—j ] D . m—1—j

Lemma 2 s proved.

Lemma 3 The Green function of the Dirichlet problem Gapy,,(z,y) on the boundary OS2 has
the following properties

A]Ggmn(az,y)]xem =0,j=0,1,...m—1, Yy € 99, (27.1)
0
o, — NG (@, ))eeon =0, =0,1,....,m—2, Vy € 09, (27.2)
a
%Am 1G2Dmn($7y>’x€39 = 0(x — Y)|zesn, Yy € 00 (27.3)
Yy

and (28.1) — (30.7) with m = 2p; (28.i) — (31.i) withm =2p+1,i=1,2,3.
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Proof 5 It follows from representation (26) that I(x) satisfies the Dirichlet boundary
conditions. Therefore, for x € 0, taking into account (24) or (25), we obtain the relation

0= I(z)lsean = h(@)]zeon — Z/@Q {%A]Gfmn(x,y)lxem Ay I h(y) -
)

0 L
A] GQDm n(xa y)|x66Q : %AZL ! Jh(y):| dSy,
Y

i.e. I(z) =0, Vo € 092, which is valid for all sufficiently smooth h(z). Since the function h(y)
is arbitrary, we conclude from this that the relations (27.3), i = 1,2, 3.
Using the second boundary condition of Dirichlet, arguing similarly, we obtain the relation

0 L
0= g e = oo = 3 ] [ St lcan 257500
0 O 1o
o MGl eon - G-I 8,
for an  arbitrary  sufficiently  smooth  function  h(y).  Since  the  wvalues
{Ayh(y), a%A;”_l_jh(y),j = 0,1,....m — 1} are linearly independent from each
other, therefore !
0 D :
o AJG2mn(m,y)|x€aQ =0,7=0,1,....,m— 2, Yy € 99, (28.1)
o0 0  i.p ,
5 o A Gy o (2,Y) |lecon =0, 7 =0,1,...,m — 1, Vy € 09, (28.2)
z Oy
0
an Am IGZDm n('r7y)|1639 - 5(I - y)’CCGafb vy € 0N (283)

Taking into account the above statement, the third Dirichlet boundary condition allows us to
write out the relation

m—1
) L
/ [A G G0l - A7 hy)
9]

0 L
A A]Gé)m n<x7y)|m€89 : aTAgL ! ]h(y)} dSy,
Y

for an arbitrary sufficiently smooth function h(y). Therefore

0
A, "B A]Ggmn(x,yﬂzeag =0,j=0,1,...m—1, j#m—2, Vy € 09, (29.1)
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ANGY () econ =0, j=0,1,...,m — 1, Vy € 09, (29.2)
0
A, aTAm 2Gh o (@,Y)|ocon = 0(z — Y)|scon, Yy € . (29.3)
)

Similarly, we write out other conditions that the Green’s function G5, . (x,y) on the boundary

0N) satisfies

form =2p
0?1 0 0
0= —— ——APTL] = AP 1p _
on2r—1 )| seon ~ On, I(z) wcoQ  Ong ° (z) 2€d0
2p—1
Z /8Q [anIAP ! AJGgm n(x7y)|$€39 ’ Azp_l_]h(y)_
0 p—1AJ D 0 2p—1—j
an A A GQm n(a:?y)’fl?639 ’ %Ay h’(y> dSlﬁ
y
form=2p+1
0= o I APT APh
- onZ (v scon ¢ (@ zco © (@ €00
2p a
> [ At Ao - A )~
§=0
APAJ G 0 A?P=Ip, s
2mn(T5Y)|weo - o, ()| dSy,
for an arbitrary sufficiently smooth function h(y). Therefore, for m = 2p
0 0
%Ag 16 NG (@) |scon =0, 5 =0,1,....,2p — 1, Yy € 99, (30.1)
0 p—1 AJ D ; ;
o ——AVTAI Gy, (T, Y)[ecoa = 0, 5 =0,1,...,2p — 1, j # p,Vy € 09, (30.2)
0
. ——APTIAPGY (2, |econ = —0(2 — ) |scon, Yy € O (30.3)
form=2p+1
)
Aga AGh (@, Y)|scon =0, j =0,1,...,2p, j # pVy € 0L, (31.1)
APNIGE(2,y)econ =0, § =0,1,...,2p, Vy € 09, (31.2)
APAPGsz n(xvy)‘SCGaQ = 5($ - y)|x€8Q; Vy € oq. (313)

Lemma 8 is proved.

Now we can describe the domain of the maximum operator L in terms of the Green’s function
GQm n:
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Lemma 4 The domain of the maximum operator L has the representation

D) = {w: we) = [ Ganalos)f)n+ Y [ |58l 87 hiy)-

im0 /o0 Iny
A o .. -
—A) Gomn(,y) - B_nyAy ! ]h(y)] dS,, Vf € Ly(2), Yh € W™ (Q)}. (32)
In particular, if
1 O i ‘
AT h(y)]yesn = 0, %Ay “Ih(y)|yeon =0, j =0, ....;m — 1,
y

then we get D(L,) domain of the operator Ly.

Now the question arises: how to describe the domains of definition of other possible correct
restrictions of the maximal operator L?

Let K be an operator that puts each function f(x) € Ly(€2) in there is a unique function
h(z) € W3™(Q), such that ||K f||1,) < C|fll1.()- Using the chosen operator K, construct
the set R

Dk ={w(x)e D(L): h=Kf}.

On the set D we define the operator

Dk

It follows from Theorem 3 that L is a correct restriction of the maximal operator L. In
conclusion, we give another description of the operator Lg in terms of boundary conditions.

~

Theorem 5 Let K be an arbitrary continuous operator acting from Lo(Q) to D(L). Then
the inhomogeneous operator equation Lxw = f is equivalent to the following boundary value
problem

a) for m =2p
Afw(z) = f(z), =€,
0 0
oo = K(A"0) g ——w| = = K(ATw)| ...
[2/9) oQ anz 00 8”3[: 00
At = A AT Larte| = LAt ame)|
b) form=2p+1
0 0
= K(A”" — = KA
w |6Q ( T w)|6§27 anmw 00 8n$ ( xw) 897 )
a p—l _ a p—l m P I p m
Ony o0 Nz o9

Other applications of M.Otelbaev’s results in various branches of the theory of differential
equations can be found in the works [26-29).
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7 Conclusion

The studies carried out in this article are of significant importance in the theory of boundary
value problems of linear and nonlinear partial differential equations, spectral theory, and the
theory of numerical methods for approximate solutions of certain classes of boundary value
problems for differential equations.
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