ISSN 1563-0277, eISSN 2617-4871 JMMCS. Ne3(111). 2021 https://bm.kaznu kz

1-6eim Pazgen 1 Section 1
MaremaTuka Maremaruka Mathematics
IRSTI 27.31.15 DOL: https://doi.org/10.26577/JMMCS.2021.v111.i3.01

A.M. Ayazbayeva®? = , K.B. Imanberdiyev'?>" =, A.S. Kassymbekova'?
L Al-Farabi Kazakh National University, Kazakhstan, Almaty
2Institute of Mathematics and Mathematical Modeling, Kazakhstan, Almaty
*e-mail: kanzharbek75ikb@gmail.com

ON STABILIZATION PROBLEM FOR A LOADED HEAT EQUATION:
THE TWO-DIMENSIONAL CASE

One of the important properties that characterize the behavior of solutions of boundary
value problems for differential equations is stabilization, which has a direct relationship with
the problems of controllability. The problems of solvability of stabilization problems of two-
dimensional loaded equations of parabolic type with the help of feedback control given on the
boundary of the region are investigated in the article. These equations have numerous applications
in the study of inverse problems for differential equations. The problem consists in the choice
of boundary conditions (controls), so that the solution of the boundary value problem tends
to a given stationary solution at a certain speed at t — oo. This requires that the control is
feedback, i.e. that it responds to unintended fluctuations in the system, suppressing the results
of their impact on the stabilized solution. The spectral properties of the loaded two-dimensional
Laplace operator, which are used to solve the initial stabilization problem, are also studied. The
paper presents an algorithm for solving the stabilization problem, which consists of constructively
implemented stages. The idea of reducing the stabilization problem for a parabolic equation
by means of boundary controls to the solution of an auxiliary boundary value problem in the
extended domain of independent variables belongs to A.V. Fursikov. At the same time, recently,
the so-called loaded differential equations are actively used in problems of mathematical modeling
and control of nonlocal dynamical systems.

Key words: boundary stabilization, heat equation, spectrum, eigenfunction, loaded Laplace
operator.
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4 On stabilization problem for a loaded ...

[Tapabomasblk TeHJEY VIINH CcTaduIn3aius ecediH Toyescid affHbIMabLIAPIbIH, KeHeHTiIreH
OOJIBICHIH IA KOMEKIII [IeKaPAJIbIK, €CEIIT] IIelryTe MeKapaJIbiK, 0aCKapy/Ibl KOJIJIAHY apKbLIbI eIy
unesicol A.B. @ypcukoBke Tueciii. CoHbIMeH KaTap, KeHiHri Ke3jgepie KykreiareH auddepeHtm-
AJIIBIK, TEHJEYIep MaTEMATHKAJIBIK MOJEIbICY KoHe JOKAJILIBI €MeC NUHAMHUKAJBIK JKyieaepm
backapy ecernrepime 6eJICeH T KOMTAHBIIAbI.

Tyiiin ce3aep: mekapaablK CTAOUIN3AIs, KbIIYOTKIZTIMITIK TeHIEyi, CIIEKTP, MEHINKTI (hyHK-
nusIap, *Kykrejres Jlamrac omepaTopsl.
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*e-mail: kanzharbek75ikb@gmail.com
3asaua cTabuan3anum JJjisi HAarpy>KeHHOr0 YPaBHEHUsI TEIJIONPOBOIHOCTU: JBYMEPHBINA CJryJai

OpHuM ¥3 BayKHBIX CBOMCTB, XapaKTEPU3YIONIMX IOBEJEHUE PEIIeHnH KpaeBbIX 3aJad JIJIst
nuddepeHInaIbHbIX YPABHEHNN, SBJISETCS CTaOWIN3aIisd, HMeoIasi MpPsSIMOe OTHOIIEHHEe K
3aJla9aM YIPaBJISeMOCTH. B cTaTbe MCCIIeIyIoTCs BOIPOCHl PA3PEIIMMOCTH 3a/aY CTAOMIN3AINN
JBYMEPHBIX HAIPYKEHHBIX ypaBHEHHUI Mapabo/IMIecKOro THIA C IOMOINBIO YIPABJICHUS C
00paTHOI CBSI3bI0, 3aJ[AHHOIO HA TrpaHuIe O0JacTH. DTU yPABHEHUsI UMEIOT MHOTOYHCJIEHHBIE
MIPUJIOYKEHUST TIPYU UCCIEIOBAHUN OOPATHBIX 3ajad i nuddepeHuaabHbIX ypaBHueHuii. 3agada
cocrouT B BBIOOpDE I'DAHUYHBIX YCJIOBHUii (yIpaBiieHHil) Tak, 4ro0bl pelleHune KpaeBoil 3aladu C
OTIPEJICTIEHHON CKOPOCTBIO MPUOJINKAIOCH K 3a/[AHHOMY CTAIMOHAPHOMY PEIIeHUIo 1Ipu t — 00.
st aroro Tpebyercst, 9TOObI yrpaBjeHne ObLIIO 0OpAaTHON CBA3bIO, TO €CThb YTOOBI OHO pearu-
pOBAJIO HA HENpPeABUICHHBIE BO3MYIIEHUS B CHCTEME, ITOIABJIsis PE3YJAbTATHI UX BO3IEHCTBUS
Ha CTAOWIM3UPOBAHHOE DPeIleHre. TakKe HMCCJIEIYIOTCS CIeKTPAJbHBIE CBOWCTBA HAIDY2KEHHOTO
AOByMepHOro omeparopa Jlamiaca, KOTOPble WCIOJNB3YIOTCA [IJIsi PEIIeHus HAaYaIbHON 3a1adu
crabuiim3aluu. B crarbe mpejcTaBieH ajrOpuTM PEIeHns 3aa9i CTAOUIM3AINN, COCTOSIINN U3
KOHCTPYKTUBHO PeaJIM30BaHHBIX 3TAIoB. Mnes cBeleHns 3a1a4u crabum3anuu napabomdeckoro
YPaBHEHUS C IOMOIIbIO "PAHUYHBIX YIIPABIEHUN K PEIIEHNI0 BCIIOMOTaTe/IbHON KPAeBOi 3a/1a9M B
pAaCIUpeHHON 00JIACTH HE3aBUCUMBIX TlepeMeHHbIX npunaiexkut A.B. @ypcukosy. Kpowme toro,
B IOCJeHEee BpeMsl TaK Ha3blBaeMble HATrpyKeHHbIe JuddepeHinajbible YPABHEHUS AKTHBHO
HCHOJB3YIOTCS B 33/[a9aX MATEMATHIeCKOTO MOJETUPOBAHUST W YIPABICHUS] HEJOKAJIbHBIMI
JMHAMAYECKAMU CHCTEMAMU.

KiroueBsbie cjioBa: rpaHnvHas CTaOUIN3AINs, YPABHEHNE TEeIIOPOBOIHOCTH, CIIEKTD, COOCTBEH-
Hble PYHKINN, HAPYKEHHBII omeparop Jlamaca.

1 Introduction

The idea of reducing the stabilization problem for a parabolic equation by means of boundary
controls to the solution of an auxiliary boundary value problem in the extended domain of
independent variables belongs to A.V. Fursikov [1]. In [1] the stabilization problem from the
boundary 0f2 for a parabolic equation given in a bounded domain €2 C R", consists in choosing
a boundary condition (a control) such that the solution of the resulting mixed boundary value
problem tends as t — oo to a given steady-state solution at a prescribed rate exp(—ot). It was
proposed in his work [1] and developed further in the works [2-4]. Note that in the works [1-4]
stabilization problems for differential equations without load were considered, i.e. there was no
phenomenon of nonlocality. Last thing complicates the implementation of the idea proposed
by A.V. Fursikov, especially in parts of constructing eigenfunctions and associated functions
for loaded differential operators. At the same time, recently, the so-called loaded differential
equations [5-10] are actively used in problems of mathematical modelling and control of
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nonlocal dynamical systems. We have previously studied stabilization problems for a loaded
one-dimensional heat equation [11], [12]. In this paper, we investigate stabilization problems
for the loaded two-dimensional thermal conductivity equation.

Our work consists of eight sections. Section 1 is an introduction. Section 2 discusses the
statement on the problem. In Section 3, an auxiliary boundary value problem is introduced.
In Section 4, the spectral problem for the loaded two-dimensional Laplace operator is
investigated. In Section 5 gives main results. In Sections 6 and 7, a biorthogonal system of
functions is constructed on the base of eigenfunctions and associated functions. In Section 8§,
the algorithm for solving the above stabilization problem is described. Finally, Section 9 gives
conclusions and discusses possible applications of the results.

2 Statement of the problem

Let Q = {2,y : —7/2 < z,y < 7/2} be a domain with a boundary 0Q. In the cylinder
Q = Q x {t > 0} with lateral surface ¥ = 9Q x {t > 0} we consider the boundary value
problem for the loaded heat equation

uy — Au+ au(()? Y, t) + ﬁu(a:, 0, t) =0, {l’, Y, t} S Qa (1)
u<x7y70) = U0($,y), {I7y} €, (2)
u(z,y,t) = p(x,y,t), {z,y,t} €%, (3)

where «, € C are given (in general case are complex) bounded constants, uy(z,y) is given
function. The aim is to find a function p(x,y,t) such that a solution of the boundary value
problem (1)—(3) satisfies the inequality

lu(@, v, )l ) < Coe™ ", 0>0, t>0. (4)

Note that here o is a given constant and Cj is an arbitrary bounded constant.

Remark 1. In section 8 it will be shown that the solution of the stabilization problem
(1)-(4) significantly depends on the values of the coefficients o and B, including the sign of
their real parts.

Equation (1) is called a loaded equation [5,6]. We note that problem (1)—(4) with a single
load point was studied in [12].

3 Auxiliary boundary value problem (BVP)

Let Q) ={z,y: —7m <z,y <7} and Q; = Q; x {t > 0}.

Zt_AZ+aZ(07yut)+BZ($7O7t):07 {xayat}EQla (5)
Z(Z’,y,()) = Zo(ﬂf,y), {.’I?,y} € Qb (6)
aj’Z(_ﬂ-?yat) _ 8jz(7r,y,t)

pp B , {y,t} € (—m,m) x {t > 0},

O z(x,—m,t) P z(x,m,t)
oyJ n oyJ

, Azt € (—m,m) x {t >0}, j=0,1. (7)
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The problem is to find an initial function zy(z,y) such that a solution of the BVP (5)—(7)
satisfies the inequality

H’Z('Tvy7t)HL2(Ql) < Coeiotv g > 07 t>0. (8>

We recall, as we indicated above, that here ¢ is a given constant and Cj is an arbitrary
bounded constant.

We will define the function zo(x,y) as a continuation of the function wg(x,y), which
was given in the original domain 2. Thus in the auxiliary boundary value problem (5)—(7)
it is needed to find the function zy(x,y) on the square €2y, so that the requirement (8) is
satisfied for a solution z(x,y,t) of the problem (5)—(7). In this case the condition (4) holds
for restriction u(x,y,t) of z(x,y,t) too and a required boundary control p(z,y,t), {z,y} € X
is defined as trace of function z(z,y,t) for {x,y,t} € X.

4 Spectral problem for the loaded twodimensional Laplace operator

Let us search a solution of the problem (5)—(7) in the form

Z([L’,y,t) - Z Zkl(t)wkl(x7y)7 (9)

kIEZ

where {tg(z,v), k,l € Z} is a biorthogonal basis of the space Ly(€;) and Z = {0, £1, £2, ...},
The following two spectral problems are considered for the construction of the biorthogonal
basis {¢x(x,y), k,| € Z} in the domain O = {z,y: — 7 <z <7m,—-7T<y<7}

.

—Ap(z,y) + ap(0,y) = Ap(z,y),

Dio(—my) Doy Pple,—m)  dplzm) (10)
L i - Oxd oyl oy

Do(—my)  Dp(my) Fp(e,—m)  Dolx,n) (1)
L O’ O Oyd oy

where j = 0,1, A is the Laplace operator, o, § € C are given complex numbers, A € C is
a spectral parameter. A one-dimensional analogue of the problems (10) and (11) is studied

in [12].
5 Main results

Let Z = {0,£1,42,... }. The following propositions are valid [13].

Theorem 1. (a). Let V1 € Z : a # I2. Then a system of eigenfunctions and eigenvalues
of the problem (10) is defined in the form:

{(pkl(ﬂi,y) = (e”"” —+ %) €iky, )\kl = l2 + /{72, l € Z/ = Z\{O},
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oro(z,y) =™, Mo=a+k* (1=0), ke Z}. (12)

(b). Let 31y € Z : o =13. Then a system of eigenfunctions, associated functions (marked
with ~) and eigenvalues of the problem (10) is defined in the form:

{@kl(fﬁ, y) = (e“x +r— i a) e, Ay =P+ K, 1 €Zy =7\{£l};

Okl (T,y) = ey, @flo(x,y) = eFilortiky Mg =a+ K (a=13), ke Z}. (13)

Theorem 2. (a). LetV k, 1 € Z: B # k* « # 1% Then a system of eigenfunctions and
eigenvalues for the problem (11) is defined in the form:

{@kz(ﬂﬁ,y) = <€ilx + %) (eiky + ]{726— ﬁ) y ARl = k* + l2, k, | e Z/;

o da= B+ L, €7

()001(37, y) = eilx +

oro(z,y) = e+ , o=k +a, ke, woo(x,y) =1, Xoo = + B}' (14)

s
k%2 —p

(b). LetVk € Z: B#Kk*and Iy € Z : « = 12 Then a system of eigenfunctions,
associated functions (marked with ~) and eigenvalues for the problem (11) is defined in the

form (where Zy = Z\{xlp}):

{@kl(l'ay) = <€ilx + %) (Giky + k.géi 5) ,)\kl = k’z +l2, ke Z/, [ e le;

Py (T, Y) Zek“r;@—_, Giae (T, y) = 107 [ ™ :

p k-3
)\klo = k2 + a, = l(%a k € Z/’ Spﬂlo(ajay) = ]-7 Sbg:lo(ajay) = eﬂlng )\Olo = +B} (15)

(c) LetN1 €Z: o #1> and ko € Z : B = ki. Then a system of eigenfunctions,
associated (marked with ~) functions and eigenvalues for the problem (11) is defined in the

form (where Ziy = Z'\{xko}):

{gpkl(:):,y) = <€ilz + ﬁ) (eiky + kQ/B_ 5) , /\kl = ]{?2 + l2, ke ZIQ, l e Z/;

iz % i il Q
Prot(2y) = €+ , Pigley) = e (e’ + )
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)\kol = B + 127 B = kga l € Z/; @koO(Iay) = 17 ¢k00<x7y) = e:l:z'koy7 /\kOO - Oé"’ﬁ} <16>

(d). Let 3 ko, lyg € Z : B = ki, a = I3 Then a system of eigenfunctions, associated
functions (marked with ~) and eigenvalues for the problem (11) is defined in the form:

i (1525) (ro52)

)\kl = k2 + l27 k S Zl27 [ S lea Sokol(ajay> = eilz +

(0%

2—a’

~ ; : (6%

; 5}
@kl0<x7y) = eky+ kQ _57 Oé+l€2, k € Z/27
Pkolo ((E, y) = 1a @kolo (xa y) = eiik0y7 )‘kolo =+ 5;
s

@klo(‘r?y) = eiiloflf (eiky + ) ; ot k27 k€ Z/27

K2 — B

@kolo (]3, y) - eiil0x7 @kolo (Ia y) = e:l:z'lg:r:l:il%y) )‘kolo =a+ B} (17>

6 Construction of biorthogonal system of functions for the cases of Theorem 1

Let us find a biorthogonal sequences for (12) (case (a) from Theorem 1) and for (13) (case
(b) of Theorem 1) [13].

Theorem 3. (a). Let VI € Z : a # [?. Then a biorthogonal sequence for the basis (12)
(case (a) of Theorem 1) is

) 1 )
{u(z,y), k,leZ}= {e““*‘“y% — Y et ez ke Z}, (18)

27 n? — o
nez
which defines an biorthogonal basis in La(£2y).

(b). Let 31y € Z : o = I%. Then a biorthogonal sequence for the basis (13) (case (b) of
Theorem 1) is

. 1 )
{u(x), k1€ Z} =t —— 3~ 20‘ itk pe 7 leZ Y, (19)
neZ\{xlo}

which defines an biorthogonal basis in Ly(€)y).
Where we applying the Paley-Wieners theorem ( [14], p.206-207).
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7 Construction of biorthogonal systems for the cases of Theorem 2

Let us find a biorthogonal sequences for (14), (15), (16) and (17) (cases (a), (b), (c) and (d)
from Theorem 2, respectively) [13].

Theorem 4. (a). LetV k, 1 € Z: B # Kk* « # 12 Then a biorthogonal sequence for the
basis (14) (case (a) from Theorem 2) is

_ i(let+ky) § . i(ny+l)
{¢kl(x7y)v k?,lEZ}— {6 y’ o’r ~ nQ_B e )

! Ttk ke 7,

2 n? —«
nez

1 04/8 i(na+my)
i . Si(nz+m 2
472 (n? — a)(m? — f) ‘ ’ (20)
m,ne”Z
which defines a biorthogonal basis in La(€)y).
(b). LetY k € Z: B#k* and Iy € Z: o =13. Then a biorthogonal sequence for the

basis (15) (case (b) from Theorem 2) is

. 1 8 .
_ i(le+ky) E . i(ny+ix)
{wkzl(x7y)v k? le Z} - {6 Y ) ot n2 _ﬁ et )

1 4
I
nEZ\{:‘:lg}

1 af ,
- . pi(ma+ny) 21
JND DR e i , (21)
n€Z, meZ\{xlo} (TTL Oé) (TL B>
which defines a biorthogonal basis in La(€2y).
(c). LetY1€Z: a#1*>and I ko € Z: B = k. Then a biorthogonal sequence for the

basis (16) (case (c) from Theorem 2) is

. 1 5
i(lz+k i(ny+lx
{Yu(z,y), k, 1€ Z} = { loth) — — E nQ—ﬂ'e(er ),

n€Z\{+ko}

1 )
L Z o . ez(nac—i-ky)7 k?, le Z/7

L Z aﬁ . ei(mr-‘rny)

(e = )%~ B) ’ .

n€Z\{£ko}, meZ

which defines a biorthogonal basis in Lo(§2y).
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(d). Let 3 ko, lg € Z: [ =Fk:, a=12. Then a biorthogonal sequence for the basis (17)
(case (d) from Theorem 2) is

. 1 '
{¢k1($, y)7 k,le Z} — ez(la:—l—ky), = Z B _ez(ny+lm)’
neZ\{xko}

1 .
D D S I
nEZ\{:I:lo}

1 ap . ilma-tny)
2 Z (m? —a)(n? — f) et (23)

n€Z\{ko}, meZ\{£lo}

which defines a biorthogonal basis in Ly(£2y).

8 Algorithm for solving stabilization problem

We propose the following algorithm for solving the stabilization problem for the heat equation
with a loaded two-dimensional Laplace operator. It consists of the following constructively
implemented steps.

Step 1. We define the function zo(z,y) as a continuation of the given function wug(z,y).
Thus in the auxiliary boundary value problem (5)—(7) it is needed to continue the function
zo(x,y) on the square €y, so that the requirement (8) is satisfied for a solution z(z,y,t) of
the problem (5)—(7). In this case the condition (4) holds as well for its restriction u(z,y,t)
and a required boundary control p(x,y,t), {z,y} € ¥ is defined as trace of function z(x,y,t)
for {x,y,t} € X.

Step 2. We construct complete biorthogonal system of functions on the square €2; by
solving appropriate spectral problems.

Step 3. Find the coeflicients of the decomposition for the desired function zo(x,y) on the
square €2y from constructed at the previous step complete biorthogonal system so that the
condition (8) holds.

We will show estimates of values Cy and o from inequality (8) for the case (a) of Theorem 1.
And for case (b) of Theorem 1 and for cases (a)—(d) of Theorem 2 required estimates of values
Cy and o can be obtained similarly. For this purpose the solution of initial-boundary value
problem (5)—(7) can be written in form (9):

(o2 2
2z y.t) = zoree” T oz y) + Y zooe oz, y)+

keZ! lez’

+zo00€ Yoo (@, y) + Z ZOkze_(kQHQ)t@/}kl(%y), (24)
k,lcZ!

where

comt — / on(T )zo(asy)de dy, k1€ Z,

Q1
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are Fourier coefficients zy(x,y), where {on(x,y), k1 € Z} and {¢Yy(x,y), k,1 € Z} are
defined respectively by the formulas (12) and (18).
We introduce the following sets of indices

I Cw

W=ZxZ=W,UW,UW, W =7 xZ, Wy=

; IWOJ-UW(M, (25)

W01 = ch \W[)la WOQ = Wl \WOZ: WO?) = Wl \WOS- (26)
where

W, =7 x {0}, W, ={0}xZ, Z' =7\ {0},

Wor = {{k,0} : Re{a} + k> > o} C Wy,

Woo = {{0,1}: * >0} CW,

Wos = {{k, [} : K +1? >0} CW,

Wos = {{0,0} : Re{a} > o}.

Remark 2. Sets Wy, Woo, Wos (25) and Wy (26) are finite.

Thus, let the conditions of case (a) of Theorem 1 hold. Then the following assertion is
true.

Theorem 5. Let conditions
Zow = 0 at {]{?, l} e Wy, (27)

be satisfied for solution (24), then the stabilized solution zsap(x,y,t) of problem (5)—(7) takes
the form

(o2 2
Zaan(T 0, 1) = Y zowee” T o y) + Y zome ! arlw, y)+
{k70}6W01 {O,Z}EWOQ

+A(a)e™ oo (2, y) + Z ZOkze_(kQHQ)t%l(%y), (28)
{k,l}EWog

which will satisfy the inequality (8), where in conformity with (25)-(27):

o 2000,  Uf W047’é@7
Ale) = { 0, if Wo=0.

Remark 3. If Rea > o, then zgo0 # 0. In addition, we note that additional restrictions
on the constant o, which were indicated in Remark 1 (section 2), are contained in conditions
(27). Similar restrictions also takes place for the constant B too in cases (a)—(d) of Theorem 2.

The proof of Theorem 5 directly follows from our further reasoning. Thus, each of the
sets Wo1, Woa, Wos contains a set of indices {k, [} that not satisfy conditions (27). From (28)
we obtain that for constant Cj the following equality is true:

= [lalwP dedy= [1 3 coubute.n) + Alah(e ) dedy < oo, (20
o {k,0}eWo1
{O,Z}GWOQ
{k‘,l}EWU:g

Q1
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where

Zo(l’,y) _ { uo(xay)a at {l‘,y} €, (30)

z1(z,y), at {z,y} € 2\ €

and here the function z;(z,y) and its Fourier coefficients {zox, {k,l} € Wy} are unknown,
and there is a need to find them. And for this we will use equalities (27), from which we
obtain:

/ gpkl(x,y)zl(x,y)dxdy: —ﬂ()(k’,l), {k7l} EWO; (31>
Q1\Q
where

fio(k, 1) = / on (@ ol y) de dy.
Q

Now we will look for the unknown function z(x, y) in the form of next linear combination:

al@y)= Y. 20mn)em(T,y). (32)

{m,n}eWy

As a result, substituting z1(x, y) (32) into the relation (31), we obtain a system of algebraic
equations relatively unknown constant matrix {Z;(m,n), {m,n} € Wy} :

Z aklmnél (ma n) = _aO(ka l>7 {ka l} € W07 (33>
{m,n}eWy
where
Aklmn = / @kl(%?/)@mn(%y)dzdy, {kal}a{mvn} € WO- (34)
Q1\Q

We fix the indices kg and mg. Then the system of equations (33) with a known matrix
(34) we will represent as next family of independent systems of linear equations

Z &kolmonél(mm n) = —ﬂo(ko, l)? {k()? l} € W(b (35>

{mo,n}GWQ

with an unknown vector Z,(mg, n), and with known vector right parts of —ug(ko, ), and with
well-known matrix

Akolmon = / (;Okol(-ra y)@mon(ﬂf, ?J) dx dy> {kOa l}7 {m07 n} S WO- (36)
Q1\Q2

Since matrices (36) are built on elements {¢ (z,v), {k,l} € Wy}, which are the finite
subsystems of the basis {pw(x,y), k,1 € Z} (12), then for each fixed pair of indices ko and
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myg they are Gram matrices. As it is known, the determinants of Gram matrices are different
from zero ( [15], p.219). Therefore, we will have the unique solvability for the equation (35),
and as corollary of it and for the equation (33) too.

Next, by finding the unknown matrix {Z;(m, n), {m,n} € Wy} according to the formula
(32) we find the function {z(z,y), {z,y} € 1 \Q}, and together with it, according to (30) we
find the function {z9(z,y), {x,y} € 1} as a continuation of the function {uy(z,y), {z,y} €

Further, analyzing the formula (24) and taking into account the definitions of sets Wy;, j =
1,3 in (26), we obtain the estimate real constant o,, which determines the decay order in the
exponent of (8):

A . . 2 . 2 . 2 2
= R k“}; “}, B(a); k l > o,
g i {{k})r}lé%vm{ e{a} * } {0,%1&?1%'02{ } (05) {k:IlI}lg‘}Vos{ + }} =7

where in conformity with (25)-(27) and Remark 1:

[ Re{a}, if Wy # 0,
B(a) = { 0. it Wo, = 0.

Now, according to formulas (28)—(30), we can find the value of the bounded constant Cj
from (8).

Step 4. By the solution found z(x,y,t) of the auxiliary boundary value problem (5)—(7)
as restriction of it to the cylinder @ we find a solution u(z,y,t) to the given boundary
value problem (1)—(3), satisfying the required condition (4). A boundary control p(z,y,t),
{z,y} € ¥ is found as trace of the solution z(z,y,t), i.e.

p(xa Y, t) = Z(fL’, Y, t)\{x,y,t}EE-

9 Conclusion

The results of the work can be useful in solving stabilization problems for a loaded parabolic
equation with the help of boundary control actions that can be used in problems of
mathematical modeling by controlled loaded differential equations.
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