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ON POTENTIAL THEORY FOR THE GENERALIZED BI-AXIALLY
SYMMETRIC ELLIPTIC EQUATION IN THE PLANE

Fundamental solutions of the generalized biaxially symmetric elliptic equation are expressed in
terms of the well-known Appel hypergeometric function in two variables, the properties of which
are necessary for studying boundary value problems for the above equation. In this paper, using
some properties of the Appel hypergeometric function, we prove limit theorems and derive integral
equations for the double- and simple-layer potentials and apply the results of the constructed
potential theory to the study of the Dirichlet problem for a two-dimensional elliptic equation with
two singular coefficients in a domain bounded in the first quarter of the plane.
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potential theory, Green’s function, Dirichlet problem.
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Жазықтықтағы жалпыланған екi өске симметриялық эллиптикалық теңдеудiң
потенциалдық теориясы жайында

Жалпыланған екi өске симметриялық эллиптикалық теңдеудiң iргелi шешiмдерi екi айныма-
лысы бар Аппелдiң гипергеометриялық функциясы арқылы өрнектеледi, олардың қасиеттерi
жоғарыда келтiрiлген теңдеу үшiн шектi есептердi зерттеу үшiн қажет. Бұл жұмыста Аппел-
дiң гипергеометриялық функциясының кейбiр қасиеттерiн қолдана отырып, бiз қос қабатты
және жай қабатты потенциалдардың тығыздығы үшiн шектi теоремаларды дәлелдеймiз және
интегралдық теңдеулер аламыз. Құрылған потенциалдар теориясының нәтижелерiн жазы-
қтықтың бiрiншi ширегiнде шектелген облыста екi сингулярлы коэффициентi бар екi өлшемдi
эллиптикалық теңдеу үшiн Дирихле есебiн зерттеуге қолданамыз.
Түйiн сөздер: Аппелдiң екi айнымалы гипергеометрияқ функциясы, жәй қабатты және қос
қабатты потенциалдар, Грин функциясы, iргелi шешiм, Дирихле есебi.
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О теории потенциала для обобщенного двуосесимметричного эллиптического уравнения
на плоскости

Фундаментальные решения обобщенного двуосесимметричного эллиптического уравнения
выражаются через известную гипергеометрическую функцию Аппеля с двумя переменными,
свойства которой необходимы для изучения краевых задач для указанного выше уравнения.
В данной работе, используя некоторые свойства гипергеометрической функции Аппеля, до-
казываем предельные теоремы и выводим интегральные уравнения, касающиеся плотности
потенциалов двойного и простого слоев. Применим результаты построенной теории потен-
циала к исследованию задачи Дирихле для двумерного эллиптического уравнения с двумя
сингулярными коэффициентами в области, ограниченной в первой четверти плоскости.
Ключевые слова: гипергеометрическая функция Аппеля двух переменных, потенциалы
двойного и простого слоев, функция Грина, фундаментальное решение, задача Дирихле.

1 Introduction

Numerous applications of simple- and double-layer potentials, as well as volumetric potentials,
occur in fluid mechanics, elastodynamics, electromagnetizm, and acoustics [3]; therefore, the
theory of potentials plays an important role in solving boundary value problems for elliptic
equations. This, in particular, allows one to reduce the solution of boundary value problems
to the solution of integral equations [1, 2].

For the first time S. Gellerstedt [4] constructed a potential theory and applied it to the
solution of basic boundary value problems for the model Tricomi equation, i.e. for a two-
dimensional elliptic equation with one singular coefficient of the form

uxx + uyy +
2α

x
ux = 0, 0 < 2α < 1,

which, later, was developed in the works of F.I.Frankl [5], S.P. Pulkin [6], M.M. Smirnov [7].
This line of research adjoin works [8–10].

The papers [11] and [12] are devoted to investigation of the double- and simple-layer
potentials for a three-dimensional singular elliptic equation of the form

uxx + uyy + uzz +
2α

x
ux = 0, 0 < 2α < 1 (1)

and solving the mixed problem and the Dirichlet problem for the equation (1) in a domain
bounded in the half-space x > 0, respectively.

The authors of the papers [13, 14] constructed a potential theory for multidimensional
elliptic equation with one singular coefficient

m∑
k=1

uxkxk +
2α

x1

ux1 = 0, 0 < 2α < 1, m ≥ 2

in the domain bounded in a half-space x1 > 0 and with the help of this theory, the solutions
of the Dirichlet [13] and Holmgren problems [14] are obtained in forms convenient for further
research.
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On potential theory for an elliptic equation with two singular coefficients

E(u) ≡ uxx + uyy +
2α

x
ux +

2β

y
uy = 0, 0 < 2α, 2β < 1 (2)

are devoted to relatively few works. In the works [15–18] the authors studied only the
properties of the double-layer potentials for generalized biaxially symmetric elliptic equation
(2).

In this paper, for the equation (2), we construct the theory potential and apply it to
the solution of the Dirichlet problem in the domain bounded in the first quarter R2+

2 :=
{(x, y) : x > 0, y > 0} of the xOy-plane.

2 Preliminaries

The Pochhammer symbol (p)n is defined by the equality

(p)n = p(p+ 1)...(p+ n− 1), n = 1, 2, ...; (p)0 ≡ 1. (3)

The Gaussian hypergeometric function is defined inside the circle |z| < 1 as the sum of
the hypergeometric series [19, Ch.2, eq. 2.1(2)]

F (a, b; c; z) =
∞∑
k=0

(a)k(b)k
k!(c)k

zk, (4)

and for |z| ≥ 1 is obtained by an analytic continuation of (4).
For the Gaussian hypergeometric function the summation formula [19, Ch.2, eq. 2.1(14)]

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, Re(c− a− b) > 0, (5)

and Bolts’s formula [19, Ch.2, eq. 2.1(22)]

F (a, b; c; z) = (1− z)−bF

(
c− a, b; c; z

z − 1

)
(6)

are valid.
The Appel hypergeometric function of two variables has a form [19, Ch.5, eq. 5.7(7)]

F2 (a; b1, b2; c1, c2;x, y) ≡

≡ F2

[
a, b1, b2;
c1, c2;

x, y

]
=

∞∑
m,n=0

(a)m+n(b1)m(b2)n
m!n!(c1)m(c2)n

xmyn, |x|+ |y| < 1,

where the parameters a, b1, b2, c1, c2 and variables x, y are arbitrary complex numbers and
c1, c2 6= 0,−1,−2, ....
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We give some elementary relations for F2 necessary in this study:

∂m+n

∂xm∂yn
F2 (a; b1, b2;c1, c2;x, y) =

=
(a)m+n(b1)m(b2)n
m!n!(c1)m(c2)n

F2

[
a+m+ n, b1 +m, b2 + n;
c1 +m, c2 + n;

x, y

]
,

(7)

b1

c1

xF2

[
a+ 1, b1 + 1, b2;
c1 + 1, c2;

x, y

]
+
b2

c2

yF2

[
a+ 1, b1, b2 + 1;
c1, c2 + 1;

x, y

]
=

= F2 (a+ 1; b1, b2; c1, c2;x, y)− F2 (a; b1, b2; c1, c2;x, y) ,

(8)

F2(a, b1, b2; c1, c2;x, y) =

= (1− x− y)−aF2

(
a, c1 − b1, c2 − b2;c1, c2;

x

x+ y − 1
,

y

x+ y − 1

)
.

(9)

We note, that every point of the line x+ y = 1 is a logarithmic singularity of the function
F2.

Lemma 1 [20]. If x and y are positive and α > 0, β > 0, then

F2 (α + β, α, β; 2α, 2β;x, y) ∼ − Γ(2α)Γ(2β)

Γ(α)Γ(β)Γ(α + β)
x−αy−β ln(1− x− y) (10)

as x+ y → 1− 0.
Let c1 > b1, c2 > b2 и a+ b1 + b2 = c1 + c2. If x > 0, y > 0, then

F2 (a, b1, b2; c1, c2;x, y) ∼ − Γ(c1)Γ(c2)

Γ(a)Γ(b1)Γ(b2)
xb1−c1yb2−c2 ln(1− x− y) (11)

as x+ y → 1− 0.
If c1 + c2 < a+ b1 + b2, then

F2 (a, b1, b2; c1, c2;x, y) ∼ Γ(c1)Γ(c2)Γ(a+ b1 + b2 − c1 − c2)

Γ(a)Γ(b1)Γ(b2)
×

× xb1−c1yb2−c2(1− x− y)c1+c2−a−b1−b2 .

(12)

In addition, the fundamental solutions of the equation (2) are expressed in terms of the
Appell hypergeometric function F2, one of which has the form [21]:

q (x, y; ξ, η) =κr2α+2β−4x1−2αy1−2βξ1−2αη1−2β×
× F2 (2− α− β, 1− α, 1− β; 2− 2α, 2− 2β;σ1, σ2) ;

(13)

where

σ1 = 1− r2
1

r2
, σ2 = 1− r2

2

r2
; r2 = (x− ξ)2 + (y − η)2 ,
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r2
1 = (x+ ξ)2 + (y − η)2 , r2

2 = (x− ξ)2 + (y + η)2 ,

κ =
24−2α−2β

4π

Γ(1− α)Γ(1− β)Γ(2− α− β)

Γ(2− 2α)Γ(2− 2β)
.

The function q (x, y; ξ, η) satisfies the equation by the variables (x, y), and by virtue of
the formula (10), it has a logarithmic singularity at r → 0 (x > 0, y > 0) and, therefore, the
function q (x, y; ξ, η) is a fundamental solution to the equation (2).

The fundamental solution given by (13) possesses the following potentially useful property:

q (x, y; ξ, η)|x=0 = q (x, y; ξ, η)|y=0 = 0. (14)

3 Green’s formula

We consider the following identity:

x2αy2β [uE(v)− vE(u)] =

= y2β ∂

∂x

[
x2α

(
u
∂v

∂x
− v∂u

∂x

)]
+ x2α ∂

∂y

[
y2β

(
u
∂v

∂y
− v∂u

∂y

)]
.

(15)

Integrating both sides of this identity in a domain D, which is located and bounded in
the quarter-plane x > 0, y > 0, and using the Ostrogradsky formula, we obtain

∫ ∫
D

x2αy2β [uE(v)− vE(u)] dxdy =

=

∫
γ

x2αy2β

[
−
(
u
∂v

∂y
− v∂u

∂y

)
dx+

(
u
∂v

∂x
− v∂u

∂x

)
dy

]
,

(16)

where γ is a contour of D.
The Green’s formula (16) is derived under the following assumptions: (a) The functions

u(x, y) and v(x, y) , and their first-order derivatives, are continuous in the closed domain D;
(b) The second-order partial derivatives are continuous inside the domain D.

The integrals over D, consisting of E(u) and E(v), have a meaning. If E(u) and E(v) are
not continuous up to S, then they are improper integrals obtained as limits on any sequence
of domains Dn contained inside D when these domains Dn tend to D, so that any point in
this Dn will be inside of D, starting with some number n.

If u and v are solutions of equation (2), then we find from formula (16) that∫
γ

(
uAα,βn [v]− vAα,βn [u]

)
ds = 0, (17)

where Aα,βn [ ] is the conormal derivative with respect to (x, y):

Aα,βn [ ] ≡ x2αy2β

(
dy

ds

∂

∂x
− dx

ds

∂

∂y

)
.
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Here
dy

ds
= cos(n, x),

dx

ds
= − cos(n, y), n is the outer normal to the curve γ.

Assuming that v ≡ 1 in (16) and replacing u by u2, we obtain∫
D

x2αy2β

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
dxdy =

∫
γ

uAα,βn [u]ds, (18)

where u (x, y) is the solution of equation (2).
The special case of (17) when v ≡ 1 reduces to the following form:∫

γ

Aα,βn [u]ds = 0. (19)

We note from (19) that the integral of the conormal derivative of the solution of equation (2)
along the boundary γ of the domain is equal to zero.

4 A double-layer potential

Let D be a domain bounded by two segments [0, a] of the axes x and y, and a curve Γ with
the ends at the points A(a, 0) and B(0, a) lying in the quarter-plane x > 0, y > 0.

Let the parametric equation of the curve Γ be x = x(s), y = y(s), where s is the length
of the arc measured from the point A. With respect to the curve Γ, we will assume that:

(i) the functions x(s) and y(s) have the continuous derivatives x′(s) and y′(s) on the
segment [0, l], which do not vanish simultaneously; the derivatives x′′(s) and y′′(s) satisfy the
Holder condition on [0, l], where l is the length of the curve Γ;

(ii) in a neighborhoods of the points A and B on the curve Γ the following conditions are
satisfied∣∣∣∣dxds

∣∣∣∣ ≤ C1y(s),

∣∣∣∣dyds
∣∣∣∣ ≤ C2x(s), (20)

respectively.
The coordinates of a variable point on the curve Γ will be denoted by (ξ, η).
We now consider the following integral:

w(x, y) =

∫ l

0

µ (s)Aα,βν [q (ξ, η;x, y)] ds, (21)

where µ(s) ∈ C
(
Γ
)
and q (ξ, η;x, y) is a fundamental solution of the equation (2) defined by

(13). Here

Aα,βν [ ] = ξ2αη2β

[
cos(ν, ξ) · ∂[ ]

∂ξ
+ cos(ν, η) · ∂[ ]

∂η

]
, (22)

is the conormal derivative with respect to (ξ, η), ν is outer normal to the curve Γ.

Definition 1 . We call the integral (21) a double-layer potential with density µ (s).
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In the study of the double layer potential (21), the conormal derivative of the fundamental
solution q (ξ, η;x, y) plays an important role. Applying successively the formula for the
derivative of the Appel hypergeometric function (7) and the adjacent relation (8), taking
into account (22), we obtain (for details, see [18]):

Aα,βν [q (ξ, η;x, y)] = −(2− α− β)κ
1

r4−2α−2β
x1−2αy1−2βξ1−2αη1−2β×

× F2

[
3− α− β, 1− α, 1− β;
2− 2α, 2− 2β;

σ1, σ2

]
Aα,βν

[
ln r2

]
−

− 2(2− α− β)κ
x2−2αy1−2βξη

r6−2α−2β
F2

[
3− α− β, 2− α, 1− β;
3− 2α, 2− 2β;

σ1, σ2

]
dη(s)

ds
+

+ 2(2− α− β)κ
x1−2αy2−2βξη

r6−2α−2β
F2

[
3− α− β, 1− α, 2− β;
2− 2α, 3− 2β;

σ1, σ2

]
dξ(s)

ds
+

+ (1− 2α)κ
x1−2αy1−2βη

r4−2α−2β
F2

[
2− α− β, 1− α, 1− β;
2− 2α, 2− 2β;

σ1, σ2

]
dη(s)

ds
−

− (1− 2β)κ
x1−2αy1−2βξ

r4−2α−2β
F2

[
2− α− β, 1− α, 1− β;
2− 2α, 2− 2β;

σ1, σ2

]
dξ(s)

ds
.

(23)

We introduce the notation:

w1(x, y) ≡
∫ l

0

Aα,βν [q (ξ, η;x, y)] ds,

Lemma 2 . The following formula holds true:

w1(x, y) =


i(x, y)− 1, (x, y) ∈ D,
i(x, y)− 1

2
, (x, y) ∈ Γ,

i(x, y), (x, y) /∈ D ∪ Γ,

(24)

where

i(x, y) ≡(1− 2β)κx1−2αy1−2β

a∫
0

ξF (2− α− β, 1− α; 2− 2α;σ10)

[(x− ξ)2 + y2]2−α−β
dξ+

+(1− 2α)κx1−2αy1−2β

a∫
0

ηF (2− α− β, 1− β; 2− 2β;σ20)

[x2 + (y − η)2]2−α−β
dη,

σ10 = − 4xξ

(x− ξ)2 + y2
, σ20 = − 4yη

x2 + (y − η)2
.

Proof. Lemma 2 was proved in [18].

Lemma 3 . If (x, y) ∈ Γ, then∣∣Aα,βν [q (ξ, η;x, y)]
∣∣ ≤ B1

r2α
1 r2β

2

(
ln
r1r2

r12r
+ 1

)
. (25)

where B1 is a constant.
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Proof. The estimate (25) follows from the formula (23) and Lemma 1.

Lemma 4 . If a curve Γ satisfies the conditions (i) and (ii), then the following inequality
holds true:∫ l

0

∣∣Aα,βν [q (ξ, η;x, y)]
∣∣ ds ≤ B2

xαyβ
,

whrer B2 is a constant.

Proof. Using the formula transformations (9), the conormal derivative Aα,βν [q (ξ, η;x, y)],
defined by the formula (23), can be represented as

Aα,βν [q (ξ, η;x, y)] =
4∑
i=0

Pi(s;x, y),

where

P0(s;x, y) = −κ(2− α− β)r2

r6−2α−2β
12

x1−2αy1−2βξ1−2αη1−2β×

× F2

[
3− α− β, 1− α, 1− β;
2− 2α, 2− 2β;

σ̄1, σ̄2

] [
ln r2

]
,

P1(s;x, y) = −2(2− α− β)κ×

× x2−2αy1−2βξη

r6−2α−2β
12

F2

[
3− α− β, 2− α, 1− β;
3− 2α, 2− 2β;

σ̄1, σ̄2

]
dη(s)

ds
,

P2(s;x, y) = 2(2− α− β)κ×

× x1−2αy2−2βξη

r6−2α−2β
12

F2

[
3− α− β, 1− α, 2− β;
2− 2α, 3− 2β;

σ̄1, σ̄2

]
dξ(s)

ds
,

P3(s;x, y) = (1− 2α)κ×

× x−2αy1−2βξη

r4−2α−2β
12

F2

[
2− α− β, 1− α, 1− β;
2− 2α, 2− 2β;

σ̄1, σ̄2

]
dη(s)

ds
,

P4(s;x, y) = −(1− 2β)κ×

× x1−2αy−2βξη

r4−2α−2β
12

F2

[
2− α− β, 1− α, 1− β;
2− 2α, 2− 2β;

σ̄1, σ̄2

]
dξ(s)

ds
,

r2
12 = (x+ ξ)2 + (y + η)2, σ̄1 =

4xξ

r2
12

, σ̄2 =
4yη

r2
12

, 0 ≤ σ̄1 + σ̄1 ≤ 1.
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By virtue of (12), we obtain∫ l

0

|P0(s;x, y)|ds ≤ C2

∫ l

0

x1−2αy1−2βξηr2

r6−2α−2β
12

×

×
(
xξ

r2
12

)α−1(
yη

r2
12

)β−1(
r2

r2
12

)−1 ∣∣∣∣ ∂∂ν
(

ln
1

r

)∣∣∣∣ ds ≤
≤ C2

xαyβ

∫ l

0

ξαηβ
∣∣∣∣ ∂∂ν

(
ln

1

r

)∣∣∣∣ ds ≤ C3

xαyβ

∫ l

0

|cosϑ|
r

ds,

(26)

ϑ is an angle between r and outer normal ν to the curve Γ.
From the theory of the logarithmic potential we have∫ l

0

|cosϑ|
r

ds < C4. (27)

Similarly we estimate P1(s;x, y) and P2(s;x, y):∫ l

0

|Pk(s;x, y)| ds ≤ Dk

xαyβ
(k = 1, 2). (28)

Now we will estimate P3(s;x, y) and P4(s;x, y). It is easy to see that∫ l−εk

εk

|Pk(s;x, y)| ds ≤ Dk

xαyβ
(εk > 0, k = 3, 4), (29)

where D3 and D4 are independent of (x, y).

Integrals
∫ εk

0

|Pk(s;x, y)| ds and
∫ l

l−εk
|Pk(s;x, y)| ds are estimated similarly. Let us

estimate the first of them for k = 3. Using the estimate (11), taking into account the first of
the conditions (20), we get∫ ε3

0

|P3(s;x, y)| ds ≤ E1

xαyβ

∫ ε3

0

ln

[
r

r12

]
ds ≤ E2

xαyβ
. (30)

Thus, the obtained estimates (26) - (30) imply the validity of the Lemma 4.

Theorem 1 . The following limit formulas hold true for a double-layer potential (21):

wi(s) = −1

2
µ(s) +

∫ l

0

µ(t)K(s, t)dt,

we(s) =
1

2
µ(s) +

∫ l

0

µ(t)K(s, t)dt,

(31)

where

K(s, t) = Aα,βν [q (ξ(t), η(t);x(s), y(s))] .

Aα,βn [w (x, y)]i and A
α,β
n [w (x, y)]e are limiting values of the double-layer potential (21) at the

point t ∈ Γ from the inside and the outside, respectively.

Proof. Theorem 1 follows from the Lemmas 2 and 4.
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5 The simple-layer potential

In this section, we consider the following integral:

v (x, y) =

∫ l

0

ρ(t)q(ξ, η;x, y)dt, (32)

where the density ρ(t) ∈ C
(
Γ
)
and q (ξ, η;x, y) is given in (13). We call the integral (32) a

simple-layer potential with density ρ(t).
The simple-layer potential (32) is defined throughout the quarter-plane x > 0, y > 0

and is a continuous function when passing through the curve Γ. Obviously, a simple-layer
potential is a regular solution of equation (2) in any domain lying in the quarter-plane
x > 0, y > 0. It is easy to see that, as the point (x, y) tends to ∞ , a simple-layer potential
v (x, y) tends to 0. Indeed, we let the point (x, y) be on the quarter-circle given by CR:
x2 + y2 = R2 (x > 0, y > 0). Then, by virtue of (13), we have

|v (x, y)| ≤
∫ l

0

|ρ (t) ||q (ξ, η;x, y)|dt ≤ M

R2
, (33)

where M is a constant.(R ≥ R0).
We take an arbitrary point N (x(x), y(s)) on the curve Γ and draw a normal at this point.

By considering on this normal any point M(x, y), not lying on the curve Γ, we find the
conormal derivative of the simple-layer potential (32):

Aα,βn [v (x, y)] =

∫ l

0

ρ(t)Aαβn [q (ξ, η;x, y)] dt, (34)

where

Aα,βn [ ] = x2αy2β

(
cos(n, x) · ∂

∂x
+ cos(n, y) · ∂

∂y

)
.

The integral in (34) exists also in the case when the point M(x, y) coincides with the
point N , which we mentioned above.

Theorem 2 . The following limit formulas hold true for a simple-layer potential (32):

Aα,βn [v (x, y)]i =
1

2
ρ(s) +

∫ l

0

ρ(t)K(t, s)dt,

Aα,βn [v (x, y)]e = −1

2
ρ(s) +

∫ l

0

ρ(t)K(t, s)dt,

(35)

where

K(t, s) = Aα,βn [q (ξ(t), η(t);x(s), y(s))] .

Aα,βn [v (x, y)]i and A
α,β
n [v (x, y)]e are limiting values of the normal derivative of simple-layer

potential (32) at the point t ∈ Γ from the inside and the outside, respectively.
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Proof. Theorem 2 is proved in the same way as theorem 1.
Making use of these formulas, the jump in the normal derivative of the simple-layer

potential follows immediately:

Aα,βn [v (x, y)]i − A
αβ
n [v (x, y)]e = ρ(x, y). (36)

For future researches on the subject of the present investigation, it will be useful to note
that when the point (x, y) tends to ∞, the following inequality

∣∣Aα,βn [v (x, y)]
∣∣ ≤ M

R4−2α−2β
, (37)

is valid, M is a constant (R ≥ R0).
In exactly the same way as in the derivation of (18), it is not difficult to show that Green’s

formulas are applicable to the simple-layer potential (32) as follows:

∫ ∫
D

x2αy2β

[(
∂v

∂x

)2

+

(
∂v

∂y

)2
]
dxdy =

∫
Γ

vAα,βn [v]i ds, (38)

∫ ∫
D′
x2αy2β

[(
∂v

∂x

)2

+

(
∂v

∂y

)2
]
dxdy = −

∫
Γ

vAα,βn [v]e ds. (39)

Hereinafter D′ = R2+
2 \D is the unbounded domain at x > 0, y > 0.

6 Integral Equations For Denseness

Formulas (31) and (35) can be written as the following integral equations for densities:

µ(s)− λ
∫ l

0

K(s, t)µ(t)dt = f(s), (40)

ρ(s)− λ
∫ l

0

K(t, s)ρ(t)dt = g(s), (41)

where

λ = 2, f(s) = −2wi(s), g(s) = −2Aα,βn [v]e ,

λ = −2, f(s) = 2we(s), g(s) = 2Aα,βn [v]i .
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Equations (40) and (41) are mutually conjugated and, by Lemma 3, Fredholm theory is
applicable to them. We show that λ = 2 is not an eigenvalue of the kernel K (s, t). This
assertion is equivalent to the fact that the homogeneous integral equation

ρ(s)− 2

∫ l

0

K(t, s)ρ(t)dt = 0, (42)

has no non-trivial solutions.
Let ρ̃ (t) be a continuous non-trivial solution of the equation (42). The simple-layer

potential with density ρ̃ (t) gives us a function ṽ (x, y) , which is a solution of the equation (2)
in the domains D and D′. By virtue of the equation (42), the limiting values of the normal
derivative of Aα,βn [ṽ]e are zero. The formula (39) is applicable to the simple-layer potential
ṽ(x, y), from which it follows that ṽ(x, y) = const in domain D′. At infinity, a simple layer
potential is zero, and consequently ṽ(x, y) ≡ 0 in D′, and also on the curve Γ. Applying now
(38), we find that ṽ(x, y) ≡ 0 is valid also inside the domain D. But then Aα,βn [ṽ]i = 0, and
by virtue of formula (36) we obtain ρ̃ (t) ≡ 0. Thus, clearly, the homogeneous equation (42)
has only the trivial solution; consequently, λ = 2 is not an eigenvalue of the kernel K (s; t).

7 The Uniqueness of the Solution of Dirichlet Problem

We apply the obtained results of potential theory to the solving the boundary value problem
for the equation (2) in the domain D.

We consider the Dirichlet problem for equation (2) in the domain D defined in Section 4.
We assume that the curve Γ satisfies conditions (i) and (ii) in Section 4.

Dirichlet problem. Find a regular solution u(x, y) of equation (2) in the domain D that
is continuous in the closed domain D and satisfies the following boundary conditions:

u|Γ = ϕ(s) (0 ≤ s ≤ l), (43)

lim
x→0

u(x, y) = τ1(y), lim
y→0

u(x, y) = τ2(x) (0 ≤ x, y ≤ a), (44)

where ϕ(s) is given continuous function in 0 ≤ s ≤ l; τ1(y) and τ2(x) are continuous functions
at 0 ≤ x, y ≤ a; τ1(0) = τ2(0), τ1(a) = ϕ(l), τ2(a) = ϕ(0).

Theorem 3 . If the Dirichlet problem has a regular solution, then it is unique.

Proof. Consider the domain Dε,δ1,δ2 ⊂ D, bounded by the curve Γε, parallel to the curve
Γ, and line segments x = δ1 > ε and y = δ2 > ε.

Integrating both sides of the identity (15) along the domain Dε and using the Gauss-
Ostrogradsky formula, we obtain∫ ∫

Dε,δ1,δ2

x2αy2β [uE(v)− vE(u)] dxdy =

=

∫
Sε,δ1,δ2

(
uAα,βn [v]− vAα,βn [u]

)
dSε,δ1,δ2 ,
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where Sε,δ1,δ2 is a contour of the domain Dε,δ1,δ2 .
One can easily check that the following equality holds:

∫ ∫
Dε,δ1,δ2

x2αy2βuE(u)dxdy =

∫ ∫
Dε,δ1,δ2

x2αy2β
[
u2
x + u2

y

]
dxdy−

−
∫ ∫

Dε,δ1,δ2

[
y2β ∂

∂x

(
x2αuux

)
+ x2α ∂

∂y

(
y2βuuy

)]
dxdy.

Application of the Ostrogradsky formula to this equality after δ1 → 0, δ2 → 0 and ε→ 0
yields ∫ ∫

D

x2αy2β
[
u2
x + u2

y

]
dxdy = −

∫
Γ

ϕ(s)Aα,βn [u]ds+

+

∫ a

0

x2α∂u

∂x

∣∣∣∣
x=0

· y2βτ1(y)dy +

∫ a

0

y2β ∂u

∂y

∣∣∣∣
y=0

· x2ατ2(x)dx.
(45)

If we consider the homogeneous Dirichlet problem, then we find from (45):

∫ ∫
D

x2αy2β
[
u2
x + u2

y

]
dxdy = 0.

Hence, it follows that u(x, y) = 0 in D.

8 Green’s Function Revisited

To solve this problem, we use the Green’s function method. First, we construct the Green’s
function for solving the Dirichlet problem for an equation in a domain which is bounded by
an arbitrary curve and two mutually perpendicular line segments. We then show that, in view
of the Green’s function, the solution of the Dirichlet problem in a quadrant takes a simpler
form as described below.

Definition 2 . We refer to G(x, y;x0, y0) as Green’s function of the Dirichlet problem, if it
satisfies following conditions:

1) The function G(x, y;x0, y0) is a regular solution of equation (2) in the domain D, expect
at the point (x0, y0), which is any fixed point of D.

2) The function G(x, y;x0, y0) satisfies the boundary conditions given by

G(x, y;x0, y0)|Γ = 0, G(x, y;x0, y0)|x=0 = 0, G(x, y;x0, y0)|y=0 = 0; (46)

3)The function G(x, y;x0, y0) can be represented as follows:

G(x, y;x0, y0) = q(x, y;x0, y0) + v(x, y;x0, y0) (47)

where q (x, y;x0, y0) is a fundamental solution of the equation (2), defined in the domain D,
and the function v(x, y;x0, y0) is a regular solution of the equation (2) in the domain D.
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The construction of the Green’s function G(x, y;x0, y0) reduces to finding its regular part
v(x, y;x0, y0) which, by virtue of (14), (46) and (47), must satisfy the following boundary
conditions:

v(x, y;x0, y0)|Γ = −q(x, y;x0, y0)|Γ , (48)

v(x, y;x0, y0)|x=0 = 0, v(x, y;x0, y0)|y=0 = 0.

We now look for the function v(x, y;x0, y0) in the form of a double-layer potential given
by

v (x, y;x0, y0) =

∫ l

0

µ (t;x0, y0)Aα,βν [q (ξ, η;x, y)]dt. (49)

By taking into account the equality (31) and the boundary condition (48), we obtain the
integral equation for the density µ (t;x0, y0) as follows:

µ (s;x0, y0)− 2

∫ l

0

K(s, t)µ (t;x0, y0) dt = 2q (x(s), y(s);x0, y0) . (50)

The right-hand side of (50) is a continuous function of s (the point (x0, y0) lies inside D). In
Section 6, it was proved that λ = 2 is not an eigenvalue of the kernelK(s, t) and, consequently,
the Equation (50) is solvable and its continuous solution can be written in the following form:

µ (s;x0, y0) = 2q (x(s), y(s);x0, y0) + 4

∫ l

0

R(s, t; 2)q (ξ, η;x0, y0) dt, (51)

where R(s, t; 2) is the resolvent of kernel K(s, t); (x(s), y(s)) ∈ Γ. Thus, upon substituting
from (51) into (49), we obtain

v (x, y;x0, y0) = 2

∫ l

0

q (ξ, η;x0, y0)Aα,βν [q (ξ, η;x, y)]dt+

+ 4

∫ l

0

∫ l

0

Aα,βν [q(ξ, η;x, y)]R0(t, s; 2)q (x(s), y(s);x0, y0) dtds.

(52)

We now define the function g(x, y) as follows:

g(x, y) =

{
v(x, y;x0, y0), (x, y) ∈ D,
−q(x, y;x0, y0), (x, y) ∈ D′. (53)

The function g(x, y) is a regular solution of equation (2) both inside the domain D and
inside D′ and equal to zero at infinity. Because the point (x0, y0) lies inside D, therefore, in
D′, the function g(x, y) has derivatives of any order in all variables that are continuous up
to Γ. We can consider g(x, y) in D′ as a solution of Equation (2) satisfying the boundary
conditions given by

Aα,βn [g(x, y)]
∣∣
Γ

= −Aα,βn [q(x(s), y(s);x0, y0)] ,
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g(x, y)|x=0 = 0, g(x, y)|y=0 = 0.

We represent this solution in the form of a simple-layer potential as follows:

g(x, y) =

∫ l

0

ρ(t;x0, y0)q(ξ, η;x, y)dt, (x, y) ∈ D′ (54)

with an unknown density ρ(t;x0, y0).
Using the formula (35), we obtain the following integral equation for the density

ρ(s;x0, y0):

ρ(s;x0, y0)− 2

∫ l

0

K(t, s)ρ(t;x0, y0)dt = 2Aα,βn [q(x(s), y(s);x0, y0)] . (55)

Equation (55) is conjugated with the equation (50). Its right-hand side is a continuous
function of s. Thus, clearly, the equation (55) has the following continuous solution:

ρ(s;x0, y0) = 2Aα,βn [q(x(s), y(s);x0, y0)] +

+ 4

∫ l

0

R(t, s; 2)Aα,βν [q(ξ, η;x0, y0)] dt.
(56)

The values of a simple-layer potential g(x, y) on the curve Γ are equal to −q(x, y;x0, y0), that
is, just as the functions v(x, y;x0, y0) and on the axes x and y their partial derivatives with
respect to y and x multiplied, respectively, by y2β and x2α are equal to zero. Hence, by virtue
of the uniqueness theorem for the Dirichlet problem, it follows that the formula (54) for the
function g(x, y) defined by (53) holds throughout in the quarter-plane x ≥ 0, y ≥ 0, that is,

v(x, y;x0, y0) =

∫ l

0

ρ(t;x0, y0)q(ξ, η;x, y)dt, (x, y) ∈ D. (57)

Thus, the regular part v(x, y;x0, y0) of Green’s function is representable in the form of a
simple-layer potential.

Applying the formula (35) to (57), we obtain

2Aα,βn [v (x(s), y(s);x0, y0)]i = ρ(s;x0, y0) + 2

∫ l

0

K(t, s)ρ(t;x0, y0)dt,

But, according to (55), we have

2Aα,βn [q (x(s), y(s);x0, y0)]i = ρ(s;x0, y0)− 2

∫ l

0

K(t, s)ρ(t;x0, y0)dt.

Summing the last two equalities by term-by-term and taking equation (47) into account, we
find that

Aα,βn [G (x(s), y(s);x0, y0)] = ρ(s;x0, y0). (58)
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Consequently, formula (57) can be written in the following form:

v(x, y;x0, y0) =

∫ l

0

Aα,βν [G (ξ, η;x0, y0)] q(ξ, η;x, y)dt.

Multiplying both sides of (56) by q (x(s), y(s);x, y), integrating by s over the curve Γ
from 0 to l and, by virtue of (51) and (49), we obtain

v(x0, y0;x, y) =

∫ l

0

ρ(t;x0, y0)q(ξ, η;x, y)dt.

Comparing this last equation with the formula (57), we have

v(x, y;x0, y0) = v(x0, y0;x, y). (59)

if the points (x, y) and (x0, y0) are inside the domain D.

Lemma 5 . If points (x, y) and (x0, y0) are inside domain D, then Green’s function
G(x, y;x0, y0) is symmetric about those points.

Proof. The proof of Lemma 5 follows from the representation (47) of Green’s function
and the equality (59).

For a quarter circle D0 bounded by two segments [0, a] of the axes x and y and a quarter
circle given by x2 + y2 = a2 (x ≥ 0, y ≥ 0), the Green’s function of the Dirichlet problem has
the following form

G0(x, y;x0, y0) = q(x, y;x0, y0)−
( a
R

)2α+2β

q(x, y; x̄0, ȳ0), (60)

where

R2 = x2
0 + y2

0, x̄0 =
a2

R2
x0, ȳ0 =

a2

R2
y0.

We now show that the function given by

v0(x, y;x0, y0) = −
( a
R

)2α+2β

q(x, y; x̄0, ȳ0)

can be represented in the following form:

v0(x, y;x0, y0) = −
∫ l

0

ρ(s;x, y)v0(x(s), y(s);x0, y0)ds, (61)

where ρ(s;x, y) is a solution of equation (57).
Indeed, by letting an arbitrary point (x0, y0) be inside the domain D, we consider the

function given by

u(x, y;x0, y0) = −
∫ l

0

ρ(s;x, y)v0(x(s), y(s);x0, y0)ds.
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As a function of (x, y), the function u (x, y;x0, y0) satisfies equation (2), because this equation
is satisfied by the function ρ(s;x, y). Substituting the expression (56) for ρ(s;x, y), we obtain

u(x, y;x0, y0) = −
∫ l

0

ψ(s;x0, y0)Aα,βn [q(x(s), y(s);x, y)] ds, (62)

where

ψ(s;x0, y0) = 2v0 (x(s), y(s);x0, y0) + 4

∫ l

0

R(s, t; 2)v0 (ξ, η;x0, y0) dt,

that is, ψ(s;x0, y0) is a solution of the integral equation

ψ(s;x0, y0)− 2

∫ l

0

K(s, t)ψ(t;x0, y0)dt = 2v0 (x(s), y(s);x0, y0) . (63)

Applying formula (31) to the double-layer potential (62), we obtain

ui (x(s), y(s);x0, y0) =
1

2
ψ(s;x0, y0)−

∫ l

0

K(s, t)ψ(t;x0, y0)dt,

whence, by virtue of (63) we get

ui (x(s), y(s);x0, y0) = v0 (x(s), y(s);x0, y0) , (x(s), y(s)) ∈ Γ.

It is easy to see that

u (x, y;x0, y0)|x=0 = 0, v0 (x, y;x0, y0)|x=0 = 0,

u (x, y;x0, y0)|y=0 = 0, v0 (x, y;x0, y0)|y=0 = 0.

Thus, clearly, the functions u (x, y;x0, y0) and v0 (x, y;x0, y0) satisfy the same equation
(2) and the same boundary conditions. Also, by virtue of the uniqueness of the solution of
the Dirichlet problem, the equality

u (x, y;x0, y0) ≡ v0 (x, y;x0, y0) .

is satisfied.
Now, subtracting the expression (60) from (47), we obtain

H (x, y;x0, y0) = G (x, y;x0, y0)−G0 (x, y;x0, y0) =

= v (x, y;x0, y0)− v0 (x, y;x0, y0)

or, by virtue of(57), (59), (60) and (61), we obtain

H(x, y;x0, y0) =

∫ l

0

ρ(t;x, y)G0(ξ, η;x0, y0)dt. (64)

Solving the Dirichlet Problem for Equation (2)
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Theorem 4 . The following function

u (x0, y0) =

∫ a

0

y2β

(
x2α∂G (x, y;x0, y0)

∂x

)∣∣∣∣
x=0

τ1(y)dy+

+

∫ a

0

x2α

(
y2α∂G (x, y;x0, y0)

∂y

)∣∣∣∣
y=0

τ2(x)dx−

−
∫ l

0

Aα,βν [G (ξ, η;x0, y0)]ϕ(s)ds

=I1(x0, y0) + I2(x0, y0) + I3(x0, y0),

(65)

where ϕ(s) is given continuous function in 0 ≤ s ≤ l; τ1(y) and τ2(x) are given continuous
functions in 0 ≤ x, y ≤ a with τ1(0) = τ2(0), τ1(a) = ϕ(l), τ2(a) = ϕ(0), is the solution of
the Dirichlet problem for equation (2) in the domain D.

Proof. Let (x0, y0) be a point inside the domain D. Consider the domain Dε,δ1,δ2 ⊂ D
bounded by the curve Γε, which is parallel to the curve Γ, and the line segments x = δ1 > ε
and y = δ2 > ε.

We choose ε, δ1 and δ2 to be so small that the point (x0, y0) is inside Dε,δ1,δ2 . We cut out
from the domain Dε,δ1,δ2 a circle of small radius ρ with center at the point (x0, y0), and we
denote the remainder part of Dε,δ1,δ2 by Dρ

ε,δ, in which the Green’s function G(x, y;x0, y0) is
a regular solution of equation (2).

Let u(x, y) be a regular solution of the equation (2) in the domain D that satisfies the
boundary conditions (43) and (44). Applying the formula (17), we obtain∫

Cρ

(
GAα,βn [u]− uAα,βn [G]

)
ds =

∫ y1

δ2

x2αy2β

(
u
∂G

∂x
−G∂u

∂x

)∣∣∣∣
x=δ1

dy+

+

∫ x1

δ1

x2αy2β

(
u
∂G

∂y
−G∂u

∂y

)∣∣∣∣
y=δ2

dx+

∫
Γε

(
GAα,βn [u]− uAα,βn [G]

)
ds,

x1 and y1 are an abscissa and ordinate of the intersection points of the curve Γε with the
straight lines y = δ2 and x = δ1, respectively, and Cρ is a circumference of the cut circle.

Proceeding to the limit as ρ → 0 and then as ε → 0, δ1 → 0 and δ2 → 0, we obtain the
formula (65).

We show that the formula (65) gives a solution of the Holmgren problem.
It is easy to see that the first integral I1 (x0, y0) in the formula (65) is a solution of the

equation (2) and is regular in the domain D, continuous in D.
We use the following notation:

ϑ(x0, y0) =

∫ a

0

y2β

(
x2α∂q (x, y;x0, y0)

∂x

)∣∣∣∣
x=0

τ1(y)dy = (1− 2α)κ×

× x1−2α
0 y1−2β

0

∫ a

0

yF

(
β − α, 1− β; 2− 2β;

4yy0

x2
0 + (y + y0)2

)
[x2

0 + (y − y0)2]
1−α

[x2
0 + (y + y0)2]

1−β τ1(y)dy.

(66)

Here, ϑ(x0, y0) is a continuous function in D. In view of (66) and (52) and the symmetry of
the function v(x, y;x0, y0), the integral I1(x0, y0) can be represented in the following form:
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I1 (x0, y0) =ϑ (x0, y0) + 2

∫ l

0

ϑ (ξ, η)Aα,βν [q (ξ, η;x0, y0)]dt+

+ 4

∫ l

0

∫ l

0

R (t, s; 2)ϑ (x(s), y(s))Aα,βν [q (ξ, η;x0, y0)]dtds.

(67)

The last two integrals in the formula (67) are double-layer potentials. Taking into account
the formula (31) and the integral equation for the resolvent R(s, t; 2) from formula (67), we
obtain

I1 (x0, y0)|Γ = 0,

It is easy to see that

lim
x0→0

u(x, y) = τ1 (y0) (0 ≤ y0 ≤ a).

In fact, by virtue of (57) and the symmetry of the function v (x, y;x0, y0), the above integral
can also be written in the following form:

I1(x0, y0) =

∫ a

0

τ1(y)q(0, y;x0, y0)dy+

+

∫ a

0

τ1(y)dy

∫ l

0

ρ(t; 0, y)q(ξ, η;x0, y0)dt.

Following the work [7], it is easy to show that

lim
x0→0

∫ a

0

τ1(y)q(0, y;x0, y0)dy = τ (y0) (0 ≤ y0 ≤ a)

and

lim
x0→0

∫ a

0

τ1(y)dy

∫ l

0

ρ(t; 0, y)q(ξ, η;x0, y0)dt = 0 (0 ≤ y0 ≤ a),

because
q(ξ, η;x0, y0) = 0

when x0 = 0, 0 ≤ y0 ≤ a.
By virtue of the last from the conditions (46), we have

lim
y0→0

u(x, y) = 0 (0 ≤ x0 ≤ a).

Similarly, we get

I2 (x0, y0)|Γ = 0; lim
x0→0

I2 (x0, y0) = 0, lim
y0→0

I2 (x0, y0) = τ2 (x0) .
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We consider the third integral I3(x0, y0) in the formula (65), which, by virtue of (58) and
(56), can be written in the following form:

I3(x0, y0) = −
∫ l

0

ϕ(s)ρ(s;x0, y0)ds = −
∫ l

0

θ(t)Aα,βν [q(ξ, η;x0, y0)] dt,

where

θ(t) = 2ϕ(t) + 4

∫ l

0

R(t, s; 2)ϕ(s)ds,

that is, the function θ(s) is a solution of the integral equation

θ(s)− 2

∫ l

0

K(s, t)θ(t)dt = 2ϕ(s). (68)

Because θ(s) is a continuous function, I3(x0, y0) is a solution of Equation (2), regular in
the domain D, that is continuous in D, which, by virtue of (31) and (68), satisfies following
condition:

I3 (x0, y0)|Γ = ϕ(s).

It is now easy to see that

lim
x0→0

I3 (x0, y0) = 0 (0 ≤ y0 ≤ a), lim
y0→0

I3 (x0, y0) = 0 (0 ≤ x0 ≤ a).

Theorem 4 is proved.
By using formulas (64) and (60), solution (65) of the Dirichlet problem given by (43) and

(44) for Equation (2) can be written in the following form:

u (x0, y0) =

=

∫ a

0

τ1(y)y2β · x2α ∂

∂x
[G0 (x, y;x0, y0) +H (x, y;x0, y0)]

∣∣∣∣
x=0

dy+

+

∫ a

0

τ2(x)x2α · y2β ∂

∂y
[G0 (x, y;x0, y0) +H (x, y;x0, y0)]

∣∣∣∣
y=0

dx−

−
∫ l

0

ϕ(s)
{
Aα,βν [G0 (ξ, η;x0, y0)] + Aα,βν [H (ξ, η;x0, y0)]

}
ds,

(69)

where

H (x, y;x0, y0) =

∫ l

0

ρ0 (t;x0, y0)G0 (ξ, η;x, y) dt.

We remark that solution (69) of the Dirichlet problem is more convenient for further
investigations.
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In the case of a quarter circle D0, the function H (x, y;x0, y0) ≡ 0 and solution (69)
assumes a simpler form as follows:

u (x0, y0) =

= (1− 2α)κx1−2α
0 y1−2β

0

∫ a

0

τ1(y)y

 F̃1

(
−4yy0

X2
1

)
X4−2α−2β

1

−
F̃1

(
−4yy0

Y 2
1

)
Y 4−2α−2β

1

 dy+

+ (1− 2β)κx1−2α
0 y1−2β

0

∫ a

0

τ2(x)x

 F̃2

(
−4xx0

X2
2

)
X4−2α−2β

2

−
F̃2

(
−4xx0

Y 2
2

)
Y 4−2α−2β

2

 dx−
+ 2(2− α− β)κx1−2α

0 y1−2β
0

∫ l

0

ϕ(s)ξ(s)η(s)
R2 − a2

r6−2α−2β
12

×

× F2

(
3− α− β, 1− α, 1− β; 2− 2α, 2− 2β;

r2
1 − r2

r2
12

,
r2

2 − r2

r2
12

)
ds,

(70)

where

F̃1(z) = F (2− α− β, 1− β; 2− 2β; z), F̃2(z) = F (2− α− β, 1− α; 2− 2α; z);

R2 = x2
0 + y2

0, a
2 = ξ2 + η2; r2 = (ξ − x0)2 + (η − y0)2 ,

r2
1 = (ξ + x0)2 + (η − y0)2 , r2

2 = (ξ − x0)2 + (η + y0)2 ;

X2
1 = x2

0 + (y − y0)2 , Y 2
1 =

(
a− yy0

a

)2

+
y2

a2
x2

0;

X2
2 = (x− x0)2 + y2

0, Y
2

2 =
(
a− xx0

a

)2

+
x2

a2
y2

0.

The resulting explicit integral representations (69) and (70) play an important role in
the study of problems for equation of the mixed type (that is, elliptic-hyperbolic or elliptic-
parabolic types): they make it easy to derive the basic functional relationship between the
traces of the sought solution and of its derivative on the line of degeneration from the elliptic
part of the mixed domain.
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