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ON POTENTIAL THEORY FOR THE GENERALIZED BI-AXIALLY
SYMMETRIC ELLIPTIC EQUATION IN THE PLANE

Fundamental solutions of the generalized biaxially symmetric elliptic equation are expressed in
terms of the well-known Appel hypergeometric function in two variables, the properties of which
are necessary for studying boundary value problems for the above equation. In this paper, using
some properties of the Appel hypergeometric function, we prove limit theorems and derive integral
equations for the double- and simple-layer potentials and apply the results of the constructed
potential theory to the study of the Dirichlet problem for a two-dimensional elliptic equation with
two singular coefficients in a domain bounded in the first quarter of the plane.
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O Teopuu moTeHIMAA JJIsI OOOBIIEHHOTO JIBYOCECUMMETPUYHOIO 3JIJIMITUYECKOTO yYPaBHEHUS
Ha MJIOCKOCTH

OyHaaMeHTaIbHbIE PereHnsi 0DOOIEHHOrO JIBYOCECUMMETPUIHOIO SJIIUITUIECKOrO yDABHEHUS
BBIPAYKAIOTCSI YepPe3 U3BECTHYIO TUIIEPTEOMETPUIECKY IO (DyHKIMIO ATIIEsIs ¢ IBYyMsI IIEPEMEHHBIMH,
CBOICTBa KOTOPO# HEOOXOAUMBI JIJIsl M3yU€HUs KPAEBBIX 33124 /i1 YKA3aHHOI'O BBIIIE yPABHEHUS.
B pmannoii paboTe, MCIIOJIBb3ysl HEKOTOPBIE CBOICTBA I'MIIepreoMeTpudecKoil byHKimu Armess, J10-
Ka3bIBae€M IIPEJIeJIbHBIE TEOPEMBI M BBIBOJIMM MHTEI'DAJIbHBIE YPAaBHEHUS, KACAIOIINECH IIJIOTHOCTHA
MIOTEHITUAJIOB JIBOIHOTO M MPOCTOrO cJioeB. IIpuMeHnM pe3yabTaThl MOCTPOEHHON TEOPUU MOTEH-
nuajga K MCCJIEI0BAHUI0 3a7a4n Jlupuxiie mjis AByMEPHOrO SJUIMIITHYECKOTO YPABHEHUS C JIBYMSI
CUHTYJISIPHBIMEU KO3 duiimenTaMu B 00J1aCTH, OFPAHUIEHHON B II€PBOIl Y€TBEPTH IIJIOCKOCTH.
KoroueBble ciioBa: rumepreoMerpudeckasi GyHKIHA ATess JABYX HEPEMEHHBIX, HOTEHIUAJIDI
JIBOIHOI'O W IPOCTOrO cjioeB, pyHKus ['puHa, dpyHIaMeHTaIbHOE pelenue, 3a1a49a Jlupuxie.

1 Introduction

Numerous applications of simple- and double-layer potentials, as well as volumetric potentials,
occur in fluid mechanics, elastodynamics, electromagnetizm, and acoustics [3]; therefore, the
theory of potentials plays an important role in solving boundary value problems for elliptic
equations. This, in particular, allows one to reduce the solution of boundary value problems
to the solution of integral equations [1,2].

For the first time S. Gellerstedt [4] constructed a potential theory and applied it to the
solution of basic boundary value problems for the model Tricomi equation, i.e. for a two-
dimensional elliptic equation with one singular coefficient of the form

2
um—i-uyy—i-?aux:(), 0<2a<1,

which, later, was developed in the works of F.I.Frankl [5], S.P. Pulkin [6], M.M. Smirnov [7].
This line of research adjoin works [8-10].

The papers [11] and [12] are devoted to investigation of the double- and simple-layer
potentials for a three-dimensional singular elliptic equation of the form

2
ux$+uyy+uzz+?auxzo,0<2a<1 (1)

and solving the mixed problem and the Dirichlet problem for the equation (1) in a domain
bounded in the half-space x > 0, respectively.

The authors of the papers [13, 14] constructed a potential theory for multidimensional
elliptic equation with one singular coefficient

= 2c

E U’C’?kxk_'_x_ul’l:()? 0<2a<1, m2>2
1

k=1

in the domain bounded in a half-space z; > 0 and with the help of this theory, the solutions
of the Dirichlet [13] and Holmgren problems [14] are obtained in forms convenient for further
research.



A. Hasanov, T.G. Ergashev 5)

On potential theory for an elliptic equation with two singular coefficients

20

2
E(t) = tyy + gy + — 1ty + ——u, =0, 0 < 20, 28 < 1 2)
x y

are devoted to relatively few works. In the works [15-18] the authors studied only the
properties of the double-layer potentials for generalized biaxially symmetric elliptic equation

(2).

In this paper, for the equation (2), we construct the theory potential and apply it to
the solution of the Dirichlet problem in the domain bounded in the first quarter R3" :=
{(z,y) : 2 > 0, y > 0} of the zOy-plane.

2 Preliminaries

The Pochhammer symbol (p),, is defined by the equality

P =pp+1)..p+n—-1), n=1,2.. (po=1 (3)

The Gaussian hypergeometric function is defined inside the circle |z| < 1 as the sum of
the hypergeometric series [19, Ch.2, eq. 2.1(2)]

F(a,b;c;2) = Z (Z)'I(cgjzkzk, (4)

k=0

and for |z| > 1 is obtained by an analytic continuation of (4).
For the Gaussian hypergeometric function the summation formula [19, Ch.2, eq. 2.1(14)]

L) (c—a—10)
I'(c—a)l(c—1b)

F(a,b;c;1) = Re(c —a —b) >0, (5)

and Bolts’s formula [19, Ch.2, eq. 2.1(22)]

Flabic;z)=(1—2)"F (c—a,b;c;zil) (6)

are valid.
The Appel hypergeometric function of two variables has a form [19, Ch.5, eq. 5.7(7)]

Fy(a;by,bg;c1,c05,y) =

_ R { a, by, by; %y} _ f: (@min(b1)m(b2)n o n

) < 1’
c1, ez e (e, Y e+l

m,n=0

where the parameters a, by, bs, c1, co and variables x, y are arbitrary complex numbers and
C1, C2 7é 0, —1, —2,
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We give some elementary relations for F, necessary in this study:

8m+n

amma n ((I b17b2701762ax y)

_ (a)m+n<bl)m(bz)nF a+m-+mn,by +m,by + n; .
m!n!(c1)m(c2)n c1+m,ca+mn; Y]

b1 a+1,b0+1,0bo; by a-+1,by,00 +1;
—xF2{01+1’62; Ty + ng ci,co + 1; Y

(&1
= I (a + 1; b1, bo; 01,02;%@ - (a; b1, bo; 01702;90;9) )

FQ(CL, bl, b2, C1,C2; T, y) =

x y ) (9)

= (1 — — 2 —b — bo: .
( x y) 2<a7cl 1, C2 27617627x+y_17x+y_1

We note, that every point of the line z4+y = 1 is a logarithmic singularity of the function
F,.

Lemma 1 [20]. If x and y are positive and o« > 0, § > 0, then

r(2a)(28) ., _
F(a+ B, a,8;2a,206;x,y) ~ — % PIn(l—z—vy 10
! ) TN B+ B) Loy 1
asr+y—1—0.
Letci > by, co>byua+b+by=ci+co. If x>0,y >0, then
I'(c1)l(c)

F2 (CL, bla b27 C1,Co; T, y) ~ _F(a)r(bl)r(b2>xblicly@icz hl(l - — y) (11>

asr+y—1—0.
If 1 4+ co < a+ by + by, then
[(e)D () (a+bl+bz—cl—c2)x
I'(a)T'(b1)I(b2) (12)

X T b1—c1 b2 02(1_1, )Cl—l-cz a—by— b2

Fy (a,by, by c1,co5,y) ~

In addition, the fundamental solutions of the equation (2) are expressed in terms of the
Appell hypergeometric function Fj, one of which has the form [21]:

q (I, v é&, 77) :RT20¢+25—4$1—2ay1—2B£1—2an1—26 X

13
K Fy(2—a— Bl —a,l— B2 — 20,2 — 2801, 03): (13)
where
7,2 ,',.2
n=l-5 a=1-0 ==+ -’



A. Hasanov, T.G. Ergashev 7

=@+’ +y—n ==+ @y+n’,
24720281 (1 — a)I'(1 — B)T(2 — a — B)

in T(2 — 2a)0(2 — 25)

The function ¢ (x,y; &, n) satisfies the equation by the variables (x,y), and by virtue of
the formula (10), it has a logarithmic singularity at » — 0 (z > 0, y > 0) and, therefore, the

function ¢ (x,y;&,n) is a fundamental solution to the equation (2).
The fundamental solution given by (13) possesses the following potentially useful property:

I

q (@960 |pmo = ¢ (2,456, 1)] =g = 0. (14)

3 Green’s formula
We consider the following identity:

2*9y?P B (v) — vE(u)] =
9, v Ou 9, v Ou (15)
— 28 7 2a v 2 20 7 s
e [m (uax &%’)} Ty [y ( ay vayﬂ

Integrating both sides of this identity in a domain D, which is located and bounded in
the quarter-plane = > 0, y > 0, and using the Ostrogradsky formula, we obtain

// 2a 25 v) —vE(u)] dedy =
ov Ju v ou
2a, 28
x%y [ (u——v—> dr + (u——v—) dy} ,
// dy dy ox ox
where v is a contour of D.

The Green’s formula (16) is derived under the following assumptions: (a) The functions
u(z,y) and v(x,y) , and their first-order derivatives, are continuous in the closed domain D;
(b) The second-order partial derivatives are continuous inside the domain D.

The integrals over D, consisting of E(u) and E(v), have a meaning. If E(u) and E(v) are
not continuous up to S, then they are improper integrals obtained as limits on any sequence
of domains D,, contained inside D when these domains D,, tend to D, so that any point in

this D,, will be inside of D, starting with some number n.
If v and v are solutions of equation (2), then we find from formula (16) that

/ (uALP [v] — vALP[u])ds = 0, (17)

where A% [ ] is the conormal derivative with respect to (z,y):

dy 0 dx 0
a,f3 2a, 28 -Jg - = =
AL =27y (ds Jr  ds 8y>.
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d x
Here d_y = cos(n, x), = cos(n,y), n is the outer normal to the curve ~.
s s

Assuming that v = 1 in (16) and replacing u by u?, we obtain

/D R Ta [(%)2 + (g—;‘ﬂ drdy = /y AP [u)ds, (18)

where u (z,y) is the solution of equation (2).
The special case of (17) when v = 1 reduces to the following form:

/Az’ﬂ [ulds = 0. (19)

~

We note from (19) that the integral of the conormal derivative of the solution of equation (2)
along the boundary v of the domain is equal to zero.

4 A double-layer potential

Let D be a domain bounded by two segments [0, a] of the axes x and y, and a curve I' with
the ends at the points A(a,0) and B(0, a) lying in the quarter-plane x > 0, y > 0.

Let the parametric equation of the curve I' be © = z(s), y = y(s), where s is the length
of the arc measured from the point A. With respect to the curve I', we will assume that:

(i) the functions z(s) and y(s) have the continuous derivatives z/(s) and %/(s) on the
segment [0, [], which do not vanish simultaneously; the derivatives z”(s) and 3" (s) satisfy the
Holder condition on [0, ], where [ is the length of the curve I’

(ii) in a neighborhoods of the points A and B on the curve I" the following conditions are
satisfied

dx

ds

d
< Cu), || < curto (20

respectively.
The coordinates of a variable point on the curve I' will be denoted by (£, 7).
We now consider the following integral:

!
wlz,y) = / 1 (s) ASP [q (6,0, y) d, (21)

where 4(s) € C (T) and ¢ (£, 7; 2, y) is a fundamental solution of the equation (2) defined by
(13). Here

ASP] ] = 2o {( ). %] T cos(,) - %] , (22)

is the conormal derivative with respect to (£, 7), v is outer normal to the curve T'.

Definition 1 . We call the integral (21) a double-layer potential with density y (s).
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In the study of the double layer potential (21), the conormal derivative of the fundamental
solution ¢ (§,m;x,y) plays an important role. Applying successively the formula for the
derivative of the Appel hypergeometric function (7) and the adjacent relation (8), taking
into account (22), we obtain (for details, see [18]):

a 1 C2a 1-2841-2a 1—
ASP g (& m; )] = —(2—04—5)’€7m$1 2oy 120 g1 =20 1726 o

x&{S_Q_Bﬂ_aﬂ_ﬁuﬁﬁ4Aywmﬁ]‘

2 — 2,2 — 20,
220 1-26 ¢ 5,2
_2<2_a_6>l€r62—aZ,8F2|:3_2a 9 _ 25 01,021
20228y 51— (23)
+2<2_a_6)ﬁr62—aQﬁF2|:2_2 3 _ 2B 0'1,0'2:|
at ey 2y 2—a—F,1-a,1-0;
+(1—2Q>HWFQ |: 2 20,2 — 26; 0'170'2:| dS -
a2yt 2—a—-p,1-a,1-0; dé(s)
— (= 20— I { 2 — 20,2 — 28 01"’2} ds
We introduce the notation:
!
wy(,y) E/ A (g (&m0, y)] ds,
0
Lemma 2 . The following formula holds true:
i(z,y) =1, (z,9) € D,
. 1
wl(x7y) = Z(l’,y) - 57 (1'73/) € F7 (24)
i(z,y), (z,y) ¢ DUT,
where
[EF(2—a—B,1—a;2— 2
Z(l’,y) (1 _ 2B> 1- 2a 1- Zﬁ/g ( a— 0, aquaiﬁa’ 0-10>d£+
[(z =€) + v]
(1= 200k 12a125/77F2—04—57 5'2—23;020)dn
2—a—pf ’
/ (y —n)?]
4xg 4yn
olg=—"—"-—>—, Ogp= ——F— .
Y@+ Y Py
Proof. Lemma 2 was proved in [18|.
Lemma 3 . If (x,y) € I, then
By rir2
AP [q 1 1). 25
| f”’xi‘/)]'—rgar?ﬁ(“mﬁ ) (25)

where By is a constant.
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Proof. The estimate (25) follows from the formula (23) and Lemma 1.

Lemma 4 . If a curve I' satisfies the conditions (i) and (ii), then the following inequality
holds true:

l
B
Aaaﬁ . d < 2
/0| Pla (& ma,y)]| S

whrer By 1s a constant.

Proof. Using the formula transformations (9), the conormal derivative A%* [q (&, n;x,v)],
defined by the formula (23), can be represented as

4
AsP g (& mym,y)) =D Pils;o,y),
i=0
where
92— _ 2
Py(s;a,y) = _H( 6_0‘20[_256)7’ x1—2ay1—2/3§1—2a771—25><
r

12
3—04—5,1—Oé,].—ﬁ;

XF2|:2—204,2—2ﬁ7 5'1,5'2:| [1117"2]7

Pi(s;w,y) = —2(2 — a = f)rX
x272ay1725€77 |:3—C¥—5,2—O{,1—5, —
—F2

riy 2% 3 — 20,2 —26; 7oz

X

} dn(s)

Py(s;x,y) =22 —a— f)rX
120228

X ——————— 1] ) |:
6—2a—2 _ _ .
% & 2 — 2,3 — 20,

Ps(s;z,y) = (1 — 2a)k X

x—Qayl—Qﬂgn 2_05_671 —Oé71 _67 - = dn(s)

Py(s;2,y) = —(1 = 26)kx
pt 2y ¢y T2—a—B1—a,1—4; _ _ ] dé(s)
e { 2 - 20,2 - 265; o 02} ds

4x 4
iy = (x+ €)%+ (y+n)? 512757 52=$, 0<o,+0, <1
T'12 712
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By virtue of (12), we obtain

I I, 1-2a,1-28¢,,.2
"y e
/ |PO(Sax7y)|d$ S 02/ 6—201—2ﬁ77 X
0 0 T12

2E a—1 n 81,2\ 1| 5 1
x| = = | g, (oo
12 12 T2 v r
! 1 !
< 025/ gonf 2 (ln —> ds < Cs / |COSl9|dS,
xyB J, ov r xoyb Jo oo

¥ is an angle between r and outer normal v to the curve T'.
From the theory of the logarithmic potential we have

l
9
/ leosdl 4 < ¢, (27)
0 T

Similarly we estimate P;(s;z,y) and Ps(s;x,y):

ds < (26)

< = .
IPsielas < 25 (=12 (28)
Now we will estimate Ps(s;x,y) and Py(s;x,y). It is easy to see that
Z—Ek Dk;
Py (s; ds < —— >0, k=3,4 29
/gk | k(saxay” §> Iayﬁ <8k ) ) )7 ( )

where D3 and D, are independent of (z,y).
€k l
Integrals / |P.(s;x,y)| ds and / |Pr(s;z,y)|ds are estimated similarly. Let us
0 !

—ek

estimate the first of them for & = 3. Using the estimate (11), taking into account the first of
the conditions (20), we get

&3 E1 &3 T EQ
Ps(s;z,y)|ds < —— In|—|ds < . 30
[ intsamias < 25 M D as< 2 (30)
Thus, the obtained estimates (26) - (30) imply the validity of the Lemma 4.
Theorem 1 . The following limit formulas hold true for a double-layer potential (21):
l
wi(s) = ~gu(s) + [ ulK (s, 00

0

(31)

where

K(s,t) = A37 [q ((t), n(t); 2(s), y(s))].

AP [w (x,y)]; and AYP [w (z,y)], are limiting values of the double-layer potential (21) at the
point t € I' from the inside and the outside, respectively.

Proof. Theorem 1 follows from the Lemmas 2 and 4.
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5 The simple-layer potential

In this section, we consider the following integral:

v(z,y) = /0 p(t)a(&,m; . y)dt, (32)

where the density p(t) € C (f) and ¢ (&, n;x,y) is given in (13). We call the integral (32) a
simple-layer potential with density p(t).

The simple-layer potential (32) is defined throughout the quarter-plane x > 0,y > 0
and is a continuous function when passing through the curve I'. Obviously, a simple-layer
potential is a regular solution of equation (2) in any domain lying in the quarter-plane
x >0,y > 0. It is easy to see that, as the point (x,y) tends to oo , a simple-layer potential
v (z,y) tends to 0. Indeed, we let the point (z,y) be on the quarter-circle given by Cg:
22 +y? = R?*(z > 0, y > 0). Then, by virtue of (13), we have

l
el < [ IOl < 75 (33)

where M is a constant.(R > Ry).

We take an arbitrary point N (z(x), y(s)) on the curve I and draw a normal at this point.
By considering on this normal any point M (z,y), not lying on the curve I', we find the
conormal derivative of the simple-layer potential (32):

AWW@WHZAP@&?M@W@MM@ (34)

where

0 0
aB] ] — 20,28 o - —_
AMPL ] = ™%y <cos(n,x) 5 + cos(n, y) 8y> :

The integral in (34) exists also in the case when the point M(x,y) coincides with the
point N, which we mentioned above.

Theorem 2 . The following limit formulas hold true for a simple-layer potential (32):

l
A el = 3o + [ K
(35)

where

K(t,s) = AxP [q (£(t), n(t); z(s),y(s))].

AP v (z,y)); and A2P [v (z,y)], are limiting values of the normal derivative of simple-layer
potential (32) at the point t € I' from the inside and the outside, respectively.
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Proof. Theorem 2 is proved in the same way as theorem 1.
Making use of these formulas, the jump in the normal derivative of the simple-layer
potential follows immediately:

AP v (x,y)]; — A2 [v (2, )], = plz, y). (36)

For future researches on the subject of the present investigation, it will be useful to note
that when the point (z,y) tends to oo, the following inequality

M

x,y)” < Ri—2a-23 (37)

A28 o (

is valid, M is a constant (R > Ry).
In exactly the same way as in the derivation of (18), it is not difficult to show that Green’s
formulas are applicable to the simple-layer potential (32) as follows:

/ /D oy [(%)Z (%)2] ddy = /F AP [v], ds, (38)
///xzay% [(%)2 + (%)2] drdy = —/FUA%’B [0], ds. (39)

Hereinafter D' = R3" \ D is the unbounded domain at z > 0, y > 0.

6 Integral Equations For Denseness

Formulas (31) and (35) can be written as the following integral equations for densities:

l
() = A [ K. oua = 1) (40)

1
) = [ Klt.s)ptat = g(s), (41)
where

A=2, f(s) = —2wi(s), g(s) = —24%7 [v]_,

A=-2, f(s) =2w.(s), g(s) = 242" [v],.
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Equations (40) and (41) are mutually conjugated and, by Lemma 3, Fredholm theory is
applicable to them. We show that A = 2 is not an eigenvalue of the kernel K (s,t). This
assertion is equivalent to the fact that the homogeneous integral equation

I
p(s) — 2/0 K(t,s)p(t)dt =0, (42)

has no non-trivial solutions.

Let p(t) be a continuous non-trivial solution of the equation (42). The simple-layer
potential with density p (t) gives us a function o (x,y), which is a solution of the equation (2)
in the domains D and D’. By virtue of the equation (42), the limiting values of the normal
derivative of A%# [0], are zero. The formula (39) is applicable to the simple-layer potential
0(x,y), from which it follows that v(x,y) = const in domain D’. At infinity, a simple layer
potential is zero, and consequently ©(z,y) = 0 in D', and also on the curve I'. Applying now
(38), we find that o(z,y) = 0 is valid also inside the domain D. But then A%” [7], = 0, and
by virtue of formula (36) we obtain p(¢) = 0. Thus, clearly, the homogeneous equation (42)
has only the trivial solution; consequently, A = 2 is not an eigenvalue of the kernel K (s;t).

7 The Uniqueness of the Solution of Dirichlet Problem

We apply the obtained results of potential theory to the solving the boundary value problem
for the equation (2) in the domain D.

We consider the Dirichlet problem for equation (2) in the domain D defined in Section 4.
We assume that the curve I' satisfies conditions (i) and (ii) in Section 4.

Dirichlet problem. Find a regular solution u(x, y) of equation (2) in the domain D that
is continuous in the closed domain D and satisfies the following boundary conditions:

ulr = o(s) (0 < s < 1), (43)
lim u(z,y) = 7i(y), limu(e,y) = (@) (0 <ay < a), (44)

where ¢(s) is given continuous function in 0 < s < [; 71 (y) and 72 (x) are continuous functions
at 0 <z, y < a; 71(0) = 12(0), 7i(a) = (1), 72(a) = ¢(0).

Theorem 3 . If the Dirichlet problem has a reqular solution, then it is unique.

Proof. Consider the domain D, 5, 5, C D, bounded by the curve I';, parallel to the curve
I', and line segments x = §; > € and y = 9y > €.

Integrating both sides of the identity (15) along the domain D, and using the Gauss-
Ostrogradsky formula, we obtain

// 2%y* [uE(v) — vE(u)] dedy =
De 51,59

- / (U’Azﬁ[v] o UAz’B[u])dSE,&,(Sz?
S,

£,01,09
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where S, 5, 5, is a contour of the domain D, s, 5,.
One can easily check that the following equality holds:

[,

2> y?PuB(u dxdy—// 2*y*P [u2 + u] dody—
52

661 o

. 0
//551 } [ (x uux) + 2 8_y (y uuy)} dxdy.

Application of the Ostrogradsky formula to this equality after 6; — 0, 3 — 0 and ¢ = 0
yields

// 20920 Tu2 2+ ul| dedy = — /@(S)Ag’ﬁ[u]ds—f—
r
¢ 5,0 ¢ 450
+/ 20 -y%ﬁ(y)dw/ y
0 Oz |,_, 0 dy y=0

If we consider the homogeneous Dirichlet problem, then we find from (45):

// 2o 26 u +u§]dmdy:().

Hence, it follows that u(x,y) =0 in D.

561

- 27y () dz.

r=

8 Green’s Function Revisited

To solve this problem, we use the Green’s function method. First, we construct the Green’s
function for solving the Dirichlet problem for an equation in a domain which is bounded by
an arbitrary curve and two mutually perpendicular line segments. We then show that, in view
of the Green’s function, the solution of the Dirichlet problem in a quadrant takes a simpler
form as described below.

Definition 2 . We refer to G(z,y; xo,yo) as Green’s function of the Dirichlet problem, if it
satisfies following conditions:

1) The function G(z,y; xo, Yo) is a reqular solution of equation (2) in the domain D, expect
at the point (xo,yo), which is any fized point of D.

2) The function G(x,y; o, Yo) salisfies the boundary conditions given by

G(x,y;20,9%0) I = 0, G(x,9320,%0) |, = 0, G(2,4; %0, 40)],— = 0; (46)
3)The function G(x,y;xo,yo) can be represented as follows:
G(7,y; 70, Y0) = 4(,y; o, Yo) + v(¥,Y; To, Yo) (47)

where q (x,y; To,Yo) is a fundamental solution of the equation (2), defined in the domain D,
and the function v(x,y; xo,yo) s a reqular solution of the equation (2) in the domain D.
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The construction of the Green’s function G(z, y; o, o) reduces to finding its regular part
v(x,y; xo,yo) which, by virtue of (14), (46) and (47), must satisfy the following boundary
conditions:

U(xay;x(J?yO)‘F = _Q(may;{ﬂanO)lF? (48>

v(Z, Y320, Y0) |, = 0, v(x, Y5 %0, Y0)l,—o = 0.

We now look for the function v(x,y; g, yo) in the form of a double-layer potential given
by

!
U(I,y;wo,yo)Z/ 1 (t; w0, yo) A% q (€, m; 2, y))dt. (49)
0

By taking into account the equality (31) and the boundary condition (48), we obtain the
integral equation for the density u (¢; o, yo) as follows:

1 (55 70, 50) — 2 / K (s, )10 (¢ 20, 0) dt = 2q (2(s), y(5); 20, o) (50)

The right-hand side of (50) is a continuous function of s (the point (xg,yo) lies inside D). In
Section 6, it was proved that A = 2 is not an eigenvalue of the kernel K (s, t) and, consequently,
the Equation (50) is solvable and its continuous solution can be written in the following form:

!
1 (8320, 40) = 2q (2(s),y(s); To, o) + 4/0 R(s,t;2)q (&, m; w0, o) dt, (51)

where R(s,t;2) is the resolvent of kernel K (s,t); (x(s),y(s)) € I'. Thus, upon substituting
from (51) into (49), we obtain

l
v (2, y; To, Yo) = 2/ q (&, m; w0, y0) ALP[q (&, m; 2, y)dt+
0

52)
Lol (
[ Azlatém ) Rolt, 5 20 (2(6), y(s)smn, o) s,
o Jo
We now define the function g(z,y) as follows:
U(%?J?%ﬂo)» (w,y) € D>
) = 53
9(z.v) { —4(z, y; 20, %0), (2,y) € D", 53)

The function g(z,y) is a regular solution of equation (2) both inside the domain D and
inside D" and equal to zero at infinity. Because the point (g, yo) lies inside D, therefore, in
D', the function g(z,y) has derivatives of any order in all variables that are continuous up
to I'. We can consider g(x,y) in D’ as a solution of Equation (2) satisfying the boundary
conditions given by

AP [g(z,y)] | = —A3" [q(x(s), y(s); 2o, yo)] ,
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9(z,y)],—o = 0, 9(x7y)‘y=0 = 0.

We represent this solution in the form of a simple-layer potential as follows:

l
A%MZAPM%MM@me%(LMEU (54)

with an unknown density p(t; xg, yo)-
Using the formula (35), we obtain the following integral equation for the density

p(s; 0, Yo):

p(8; %0, Yo) — 2/0 K(t, 5)p(t; zo, yo)dt = 2457 [q((s), y(s); zo, yo)] - (55)

Equation (55) is conjugated with the equation (50). Its right-hand side is a continuous
function of s. Thus, clearly, the equation (55) has the following continuous solution:

p(s; w0, 90) = 2457 [a(x(s), y(s); 0, yo)] +

| y (56)
4 [ Rt 2) A a6 mian, )

0

The values of a simple-layer potential g(x,y) on the curve I are equal to —q(x, y; o, ¥o), that
is, just as the functions v(x,y; xg, yo) and on the axes = and y their partial derivatives with
respect to y and z multiplied, respectively, by ?? and 22® are equal to zero. Hence, by virtue
of the uniqueness theorem for the Dirichlet problem, it follows that the formula (54) for the
function ¢(z,y) defined by (53) holds throughout in the quarter-plane x > 0, y > 0, that is,

[
UW%%&@I/P@%MM@m%w%(%wGD (57)
0

Thus, the regular part v(z,y;xo,y0) of Green’s function is representable in the form of a
simple-layer potential.
Applying the formula (35) to (57), we obtain

l
2407 [0 (2(s), y(s); 20, yo)]; = p(s; T0, Yo) + 2/ K (t, s)p(t; zo, yo)dt,
0

But, according to (55), we have

2457 [q (2(s), y(s); 20, 90)]; = p(s;20, o) —2/0 K(t, s)p(t; zo, yo)dt.

Summing the last two equalities by term-by-term and taking equation (47) into account, we

find that

AP (G (x(s), y(s); 20, 50)] = p(s; o, o). (58)
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Consequently, formula (57) can be written in the following form:

l
v(z, y; o, Yo) =/ AP (G (€, 520, y0)] (&, m; 7, y)dt.
0

Multiplying both sides of (56) by ¢ (z(s),y(s);z,y), integrating by s over the curve I'
from 0 to [ and, by virtue of (51) and (49), we obtain

!
v(zo, Yo; 7, Y) =/ p(t; %0, 90)q (&, 15 2, y)dt.
0
Comparing this last equation with the formula (57), we have

(@, y; o, yo) = v(wo, Yo; T, Y).- (59)
if the points (z,y) and (xo,yo) are inside the domain D.

Lemma 5 . If points (x,y) and (xo,yo) are inside domain D, then Green’s function
G(z,y; xo,Y0) is symmetric about those points.

Proof. The proof of Lemma 5 follows from the representation (47) of Green’s function
and the equality (59).

For a quarter circle Dy bounded by two segments [0, a] of the axes « and y and a quarter
circle given by 2%+ 4* = a? (z > 0, y > 0), the Green’s function of the Dirichlet problem has
the following form

a 20428 o
Go(z, y; o, Yo) = q(x,y; To, Yo) — (}_z) q(x, y; Zo, %o), (60)
where
_ a? . a?
R =af + 5, To= 2 v0r Yo = g3l
We now show that the function given by
a 20420 3 B
vo(, y; o, Yo) = — <§> q(, y; To, o)
can be represented in the following form:
l
vo(, Y; 20, Yo) = —/ p(s; &, y)vo(x(s), y(s); To, yo)ds, (61)
0

where p(s;z,y) is a solution of equation (57).
Indeed, by letting an arbitrary point (xg, o) be inside the domain D, we consider the
function given by

l
Wz, 0, 90) = — / o(s: 2,y )vo(2(s), y(s); 20, yo)ds.
0
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As a function of (x,y), the function u (x, y; x¢, yo) satisfies equation (2), because this equation
is satisfied by the function p(s;x,y). Substituting the expression (56) for p(s;x,y), we obtain

UWM%WMZjAMsmmMWMM%MﬁmwM& (62)

where

l
Y(s; w0, 90) = 2v0 (2(s), y(5); To, Yo) +4/ R(s,t;2)vo (§,m; 70, yo) dt,
0

that is, ¥(s; xo, yo) is a solution of the integral equation

’W&%w®—2Alﬁ%ﬂ%&%wdﬁ=2%@@%MﬁWmm) (63)

Applying formula (31) to the double-layer potential (62), we obtain

ui (z(s), y(s); zo, Yo) = %@/J(S;xo,yo) - /Ol K (s, 1)1(t; 20, yo)dt,
whence, by virtue of (63) we get
ui ((s), y(s); w0, yo) = vo (2(s), y(s); 20, yo) , (x(s),y(s)) €T
It is easy to see that
u (z,y; 5130,?/0)‘1:0 =0, wo (1’7% xo,yo)|x:0 =0,

Uu ('Ia Y5 o, yO)‘y:O = 07 Vo ('T7 Y; Xo, yO)’yzo = 0.

Thus, clearly, the functions u (z,y; xo, yo) and vg (x,y; o, yo) satisfy the same equation
(2) and the same boundary conditions. Also, by virtue of the uniqueness of the solution of
the Dirichlet problem, the equality

u (z,y; To, Yo) = Vo (@, Y; To, Yo) -

is satisfied.
Now, subtracting the expression (60) from (47), we obtain

H (z,y; %0, 90) = G (x,y; 20, yo) — Go (2, Y; T0, Yo) =

= v (2, y; o, yo) — o (@, Y3 %o, yo)

or, by virtue of(57), (59), (60) and (61), we obtain

[
H(z,y; 0, y0) = / p(t; z,y)Go(&, m; xo, yo)dt. (64)
0

Solving the Dirichlet Problem for Equation (2)
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Theorem 4 . The following function

u(x07y0) :/ y26 (1'204 aG <x7y;x07y0))
0

1 (y)dy+

=0

ox
‘ IG (z,y; o, yo)
2c¢ 2c¢
+/0 ! <y dy

_ / ASB[G (€, 7 0, 30)) 0 (5)ds

0
=11 (o, y0) + I2(x0, yo) + I3(x0, Y0),

. To(x)dx— (65)

where p(s) is given continuous function in 0 < s < I; 7i(y) and To(x) are given continuous
functions in 0 < x, y < a with 71(0) = 7(0), 11(a) = @(I), 72(a) = ¢(0), is the solution of
the Dirichlet problem for equation (2) in the domain D.

Proof. Let (z9,70) be a point inside the domain D. Consider the domain D, s, 5, C D
bounded by the curve I'., which is parallel to the curve I', and the line segments x = §; > ¢
and y = dy > ¢.

We choose ¢, d; and d2 to be so small that the point (zo, ) is inside D, s, 5,. We cut out
from the domain D, g, 5, a circle of small radius p with center at the point (zo, o), and we
denote the remainder part of D, s, 5, by Dg’ s» in which the Green’s function G(z,y; xo, yo) is
a regular solution of equation (2).

Let u(x,y) be a regular solution of the equation (2) in the domain D that satisfies the
boundary conditions (43) and (44). Applying the formula (17), we obtain

o oG ou
a,fB . a,fB — 2a, 28 o
/Cp (GAYP[u] — uAL”[G]) ds /52 %y <u_8x G_8x>

o oG ou
+ o e (u— - G—)
/51 Y dy dy

x1 and y; are an abscissa and ordinate of the intersection points of the curve I'. with the
straight lines y = 0, and o = 4, respectively, and C, is a circumference of the cut circle.

Proceeding to the limit as p — 0 and then as ¢ — 0, §; — 0 and d; — 0, we obtain the
formula (65).

We show that the formula (65) gives a solution of the Holmgren problem.

It is easy to see that the first integral I (x¢,yo) in the formula (65) is a solution of the
equation (2) and is regular in the domain D, continuous in D.

We use the following notation:

a (9 x,Y;To,
VI (0, Yo) =/ y?? <x2a q( (?; 0 yo))
0 x

dy+

=0

do + / (GAP[u] — uA®P[G)) ds,

y=042

71(y)dy = (1 — 2a)k X
x=0

4yyo

20 1-28 ayF(B_a71_ﬁ72_2ﬁ7x3+(y+y0)2)

*To Yo 2 2|l-ar 2 2)1-8 mi(y)dy.
0 (25 + (v — y0)?]" " [x5 + (¥ + %0)?]

(66)

Here, 9(0, o) is a continuous function in D. In view of (66) and (52) and the symmetry of
the function v(x, y; xo, yo), the integral I1(zg,yo) can be represented in the following form:
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!
I (w0, y0) =9 (0, Yo) + 2/0 9 (&,m) ALP[q (&, m; w0, yo))di+
(67)

I gl
+4/0 /o R (t,5;2) 9 (x(s), y(s) A3 [ (€ m; w0, yo)]dtds.

The last two integrals in the formula (67) are double-layer potentials. Taking into account
the formula (31) and the integral equation for the resolvent R(s,t;2) from formula (67), we

obtain

]1 ('r()a yO)’F = 07

It is easy to see that

limu(z,y) =71 (yo) (0<yo < a).

xo—0

In fact, by virtue of (57) and the symmetry of the function v (x, y; o, yo), the above integral
can also be written in the following form:

I (0, 96) — / A ()q(0, y: 70, yo)dy-+
0
a [
+ / 1 (y)dy / (150, 9)a(€, 1 20, yo .
0 0

Following the work [7], it is easy to show that

a

lim [ 71(y)q(0,y; 20, y0)dy = 7 (y0) (0 <yo < a)

xro—0 0

and

a

l
lim ﬁ(y)dy/ p(t;0,9)q(&,m; w0, y0)dt =0 (0 < yo < a),
0

:Eo—)O 0

because
q(&,m; 20, y0) = 0

when 2o =0, 0 < gy < a.
By virtue of the last from the conditions (46), we have

limu(z,y) =0 (0 <z <a).

yo—)O
Similarly, we get

Iy (w0, y0)|p = 0; xlgglofz (z0,y0) =0, yloigloﬁ (w0, 40) = T2 (20) -
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We consider the third integral I3(zo, yo) in the formula (65), which, by virtue of (58) and
(56), can be written in the following form:

l l
Iy(o,50) = — / o(5)p(5: 70, yo)ds = — / 6(8) A% [q(&, 700, yo)] d,

where
0(t) = 20(t) + 4 /0 R(t,5:2)p(s)ds,

that is, the function 6(s) is a solution of the integral equation

0(s) — 2 /0 K (s,1)0(t)dt = 2(s). (68)

Because 6(s) is a continuous function, I3(xo, o) is a solution of Equation (2), regular in
the domain D, that is continuous in D, which, by virtue of (31) and (68), satisfies following
condition:

I3 (o, Yo)|p = ¢(5).

It is now easy to see that

lim I3 (29,%) =0 (0 <y < a), lim I3 (z0,%) =0 (0 <20 < a).
zo—0 yo—0

Theorem 4 is proved.
By using formulas (64) and (60), solution (65) of the Dirichlet problem given by (43) and
(44) for Equation (2) can be written in the following form:

u (%o, 0) =

@ 0
=/ Tl(y)y%-f“a—x[@o (2, y; 20, y0) + H (x,y; Zo, Yo)]
0

(69)

@ 0
+/ Tz(w):vg"‘-y%a—y[Go (2,520, y0) + H (,y; 70, y0)]
0

y=0
l
- / o(5) { A2 [Glo (€, 0, yo)] + ADP [H (€, m: 20, 0)] } ds,

where

[
H(ﬂc,y;xo,yo):/ po (t; 20, y0) Go (§,m; , y) dt.
0

We remark that solution (69) of the Dirichlet problem is more convenient for further
investigations.
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In the case of a quarter circle Dy, the function H (z,y;0,y0) = 0 and solution (69)
assumes a simpler form as follows:

u (2o, 4o) =

=(1- 20()1@:(:(1)*26“1/3725

[ ~ dyyo ~ dyyo
F (- F (-
’ ( X%) ( Y7
(Y)Y — — dy+
0

X{l—2a—2ﬂ Y14—2a 28
[~ < 4xx0> ~ < 4$$0)
2\ — 2\ Ty
B a X2 Y2 (70)
g [faine| ) BUE)
o X;l 2a—203 Y’z 2a—28
L 2 _ 2
22— o — Byrai-ty / P()E(5)n(5) g
0 12
P22 g2 g2
><F2(3—04—6,1—0471—5;2—204,2—25; 1r2 ) 27“2 )d‘97
12 12

where

F(x)=F2—-a—p,1-5;2-28;2), Fy(z)=F2—a—8,1-a;2—20a;2);

R*=ax5+ys, o> =&+ 7“2:(5—560)2+(77—y0)27

ri=(E+z0)’ +(m—10)", 15 =(E—20)"+ (+w0)°;

> yyo\2 | Y’
Xi=a5+(y—10), Y12:<G—T> +§»’U3;

9 xx9\2 2’
X3 = (z—0)" + y5, Y22=<a—7> +?y§.

The resulting explicit integral representations (69) and (70) play an important role in
the study of problems for equation of the mixed type (that is, elliptic-hyperbolic or elliptic-
parabolic types): they make it easy to derive the basic functional relationship between the
traces of the sought solution and of its derivative on the line of degeneration from the elliptic
part of the mixed domain.
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