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SOLUTION OF A TWO-DIMENSIONAL BOUNDARY VALUE PROBLEM
OF HEAT CONDUCTION IN A DEGENERATING DOMAIN

In the paper we consider the boundary value problem of heat conduction outside the cone, i.e. in
the domain degenerating into a point at the initial moment of time. In this case, the boundary
condition contain a derivative with respect to the time variable. The peculiarity of the problem
under consideration consists precisely in the presence of a moving boundary and the degeneration
of the solution domain into a point at the initial moment of time. The well-known classical
methods are generally not applicable to this type of problems. By the method of heat potentials,
such boundary value problems of heat conduction are reduced to the solution of singular Volterra
type integral equations of the second kind A singular Volterra type equation is understood as
an equation whose kernel has the following property: the integral of the kernel of the equation
does not tend to zero as the upper limit tends to the lower one. Such integral equations cannot
be solved by the method of successive approximations, and in most cases the corresponding
homogeneous integral equations have nonzero solutions. We prove a theorem on the solvability
of the considered boundary value problem in weighted spaces of essentially bounded functions.
The issues of solvability of the singular Volterra integral equation of the second kind, to which
the original problem is reduced, are studied. We found a nonzero solution of this singular integral
equation.

Key words: noncylindrical domain, cone, boundary value problem of heat conduction, singular
Volterra integral equation, regularization.
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YKOMBIJIATHIH OBJIBICTA YKBLIIY OTKIIIIIITIKTIH EKI ©JIIITEM 11
IMEKAPAJIBIK ECEBIH HIEIITY

MaxaJjiajia KOHYCTaH ThIC, siFHU OAaCTaIllKbl YAKbITTa HYKTere aifHAJIATBIH OOJIBICTa YKBLIY OTKIi3-
PIMITIKTIH, IIeKapasiblk, ecedi KapacThIpbLIabl. MyYHIAFbl IMEKAPAJIBIK, MMAPT YaKbIT OOMBIHIIA
AJBIHFAH TYBIHIBIHB KAMTHIBI. KapacThIPBIILII OTBIPFaH €Cell YKBLIKBIMAJIBI TEeKApAHbIH Oap
OOJIybIMEH KoHE OACTAlKbl YaKBLITTa IIeITy OOJIBICHIHBIH, HYKTEre aiHaJybIMEH €peKIe/IeHEI].
Mynmait Typ/eri ecenTep/ii KaJbl Kargaiga Oelriai KJIacCUKAJbIK OJicTepMeH Ienryre 60J-
Maiijipl. Bys mekapasiblk, ecentep KbLIY MOTEHIINMAJIAPBIHBIH, dJliciMeH eKiHmn TeKTi BoJsbreppa
TUIIHJIET] CUHTYJISPJIBIK, HTHTEIPAJIBIK, TEHJEYJIep/Ii Tenryre KeaTipiiemi. Boabreppa Tumingeri
CHUHTYJISIPJBIK, TEHEYIl SApOChI Kejleci KacueTKe me OOJAThIH TEHIEY JeIl TYCIHY KepeK: KOFraprbl
IMeK TOMEHT1 IMeKKe YMTBLIFAaHA SIAPOJAH aJblHFaH WHTErpaj HeJare YMTbLIMaimael. Esreysi
meHe/reH PyHKIUAIAP KEHICTITiHIe KapaCThIPhLIATHIH MEKAPAJIBIK, €CENTiH, MeNTiMTIIIr Typabl
TeopeMa JpJiesieH . Bepinren ecem TypseHeTiH exiHmii TekTi BosbTeppaHbIH CHHIYSJIPJIBIK,
MHTErpaJjIIblK, TeHJEYIHIH MeniMIIr Typasbl Maceaeaep 3eprresai. Ocbl CUHTYISPJIBIK WHTE-
TPaJIIBIK TEHAEYIIH HOIAIK eMeC IIemiMi TaObLIIbI.

Tyitin ce3mep: MUINHIPJIIK eMec 00JIbIC, KOHYC, KBLIY OTKI3TIMTIKTIH IeKapaJbik, ecebi, Bob-
TEepPPAHBIH, CHHTYJISIPIIBIK, MHTETPAJIJIBIK, TEHJIEY, PEeryJIsipI3aliys.
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PEIIIEHUE JIBYMEPHOI T'PAHUYHOW 3A/JJAYU TEILJIOIIPOBOJHOCTHU B
BBIPOXK/IAIOIIIEMCSI OBJIACTHU

B pabote paccmarpuBaeTcs KpaeBas 3ajada TEIJIOIIPOBOJHOCTH BHE KOHyCa, TO €CTh B 00JacTH
BBIPOK/IAIONIENCS B TOUKY B HAYAJbHBIH MOMEHT BpeMmeHHu. [Ipu 3TOM rpaHuYHOE yCJIOBHE COJEP-
JKAT TPOU3BOJHYIO IO BPEMEHHOU mepeMenHoit. OcoOGeHHOCTh pacCMaTPUBAEMOM 3a[a9U COCTOUT
VMEHHO B HAJIMYWN TOJBUKHOI I'PAHUIIBI M BBIPOXKIEHUsT OOJIACTH PEIIeHNs B HAYAJbHBIA MOMEHT
BpeMeHH B TOUKy. K 3TOoMy THILY 3371241 B 00IT[EM CJIydae He MPUMEHUMbI U3BECTHBIE KJIACCHIECKUE
MeTobl. MeTo/0M TENJIOBBIX MTOTEHITNAJIOB IT0I00OHbIE KPAEBbIe 3a/1a9l TEIJIONPOBOIHOCTH PeIy-
NUPYIOTCS K PEIIEHUI0 CUHTYJIAPHBIX WHTEIPAJbHBIX ypaBHeHuil Tuna Bosbreppa BTOpOro poja.
Ilon cunrynspubiM ypaBHeHUeM Tuma BoJsibTeppa mogpa3yMeBaeTcs ypaBHEHHUE, siIpO KOTOPOTO
0o0JIaTaeT CJIEAYIONUM CBOWCTBOM: HHTErPAJ OT siipa yPABHEHHWS IPHU CTPEMJICHUH BEDPXHETO
mpejiesia K HIPKHEMY HE CTPEMHUTCH K HyJ0. 1akKoro poma WHTErpPAJIbHbIE YPABHEHUS HEIb3s
PEIuTh METOIOM IIOCJIEI0BATENbHBIX IPUOJIMKEHNIT U B OOJIBIITMHCTBE CJIyYIaeB COOTBETCTBYIOIIIE
OJHOPOJIHbIE WHTETrPAJbHbIE YDaBHEHHSI WMEIOT HeHyJeBble pemrenus. Jlokazana Teopema o
Pa3penmMOCT  pacCMaTpUBaeMOl KpaeBOi 3aj/ladi B BECOBBIX IIPOCTPAHCTBAX CYIIECTBEHHO
orpaHnvueHHbIX GyHKIwmit. VlccremoBanbl BOIPOCH PA3PEIIMMOCTA CUHTYJISPHOIO HHTETrPAJIHLHOTO
ypaBuenuss BosibTeppa BTOpPOro poma, K KOTOPOMY PeIyIIUPOBAHA HCXOaHAs 3amaada. Haiimeno
HeHyJIeBOe pellleH’e 3TOI'0 CUHIYJISIPHOI0 MHTEI'PAJIbHOIO ypaBHEHU.

KuroueBble cJjioBa: HeMMJIMHIApUYIEcKas 00JIACTh, KOHYC, KpaeBas 3aJiada TelJIOMPOBOIHOCTH,
CUHTYJIIPHOE MHTErpaJibHOEe ypaBHeHne Bosbreppa, perysispusanus.

1 Introduction

In the literature, a domain is usually called non-cylindrical if at least one of the parts of its
boundary moves with time. The domain, the boundary of which does not change its shape
with time, is cylindrical, for such domains, the theory of boundary value problems of heat
conduction is well developed.

In most papers, the domain in which the solution of the boundary value problem is sought
does not degenerate into a point at the initial moment of time. In [1-6] authors for solving
such problems used a technique which consists in reducing a non-cylindrical domain to a
cylindrical one. There are a number of works devoted to numerical methods for solving such
problems [7-9].

Of particular interest are the boundary value problems of heat conduction in domains
that degenerate into a point at the initial moment of time. For example, in the study of
thermophysical processes in an electric arc of high-current disconnecting devices, the effect
of contracting the axial section of the arc into a contact spot in the cathode field is observed
[10-14]. The solution domain changes over time according to the law determined by the
conditions for opening the contacts. At the initial moment of time, the contacts are in a
closed state and there is no domain for solving the problem. One-dimensional with respect to
the spatial variable boundary value problems in degenerate domains were studied in [15-20].

In this paper, we consider a two-dimensional boundary value problem of heat conduction
outside the cone with boundary conditions containing the time derivative. By the method
of heat potentials, boundary value problem of heat conduction is reduced to the solution of
singular Volterra type integral equation of the second kind. In order to solve the obtained
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singular Volterra integral equation we use the method of equivalent regularization by solving
the characteristic equation.

2 Statement of the boundary value problem

We consider in the domain G = {(r,t) : r >t > 0} the following boundary value problem:

ou o5 1 0 (,,,0u\
ot “ r2v=19r (T 87“) =0, (1)

2 %4_@
or Ot

_,0u(r,t)
2v—1 )
" or

=g(t), (2)

r=t

=0, (3)

r=0

where 0 < v < 1.

Remark 1 Solution of the problem (1)—-(3) for g(t) = 0, i.e. solution of a complete
homogeneous problem, can be only a constant.

3 Main result
For the problem (1)—(3), we proved the following theorem.

Theorem 1 If the condition t'~2g(t) € Lo (0,00) is satisfied, then the boundary value
problem (1)—(3) has a solution u (r,t) = (r,t) +C, u(r,t) € Ly (G), C = const.

4 Boundary value problem transformation

We make some transformations of the problem (1)-(3) by introducing a new unknown

function::
,_10u
w(r,t) = r? IE' (4)

Then, taking into account (4), problem (1)—(3) is reduced to the following one:

Ow  ,0Pw  ,2v—10w
=a —a —

ot or? r or’ (5)
¢ (o, 2
r2v=1\ Or a2w

w (r,t)],—g = q(t). (7)

=9g(t), (6)

r=t
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5 Integral representation of the solution of the problem (5)—(7) using heat
potentials

We seek the solution of problem (5)—(7) as a single layer heat potential:

w (1, 1) /Gr&t Ner 0 (7) dr, (8)

where function

R T S r’+ e re
Glrgt =)= g e | ()

is the fundamental solution of the equation (5), £ is a parameter. Hereinafter, [, (2) is the
modified Bessel function of order v. Function (8) satisfies our equation (5) for any potential
density ¢ (t) from the class

271 o (t) € Lug (0,00) . (9)

6 Reduction of boundary value problem (5)—(7) to a singular Volterra type
integral equation

Using the value of the derivative:

awé:’ te- / T;_:; (Vt_(ﬁ 55 o {—4;2(1727)} v <2a2 = ﬂ) plrydr+

rvrev r2 4+ 72 rT aq (r,t)

T A S I S gq\r.t)

" / dat(t—7)2 P [ a2 (t — 7)} _— (2a2 (t—¢)> p(r)dr+ =5 —
0

where the notation I, , (2) = I, () — I, (2) is used, and satisfying the boundary condition
(6), we obtain a singular Volterra integral equation of the second kind with respect to the
required density ¢ (t):

t

tl/7_271/ tT tT P
ty— | ——— L S (" 7 dr —
o) /QaQ(t—T)QeXp[ 2a2(t—7)} 1 (2@2(15—7-))6 wr(r)dr
0

- / = |-z (=)« Femar=F 0, 00
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where
Ft)=2t""g(t).

We write equation (10) in the following form:

2=

@(t)—/ [;2_ e_] Ny (7)o (7) dT—j {72: e—} Ny (t,7) 0 (7) dr

where
t2

1 tT I tT
=~ o, 9 eX - o/, N V— 12 -~ o 7/, N\ )
202 (t—72 V| 2a(t—7)) "\ 22 (t—7)

%0 = g i)+ (amtm)

Remark 2 /21, P. 215] Let the solution of the integral equation

Ny (t,7) =

yw+/Kmﬂwﬂm=ﬂw

have the form
y) =0+ [ R £(r)dr

Then the solution of the more complicated integral equation

(7)

g
g(t)

y@+/K@ﬂ y(r)dr = £ (8)

has the form

g(7)
g9(t)

mwzﬂw+/Rwﬂ f(r)dr.

According to this remark, we will seek a solution of the following equation

w@—/MwﬂMﬂM—/%@ﬂwﬂwzﬂw

(14)

Note the following property of the kernel N (¢,7) = Ny (t,7) + Nz (¢, 7), from which it
follows that the integral equation (14), and together with it equation (11) are singular and

to them the method of successive approximations cannot be applied.
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Remark 3 For any value v, 0<v <1,

¢ ¢
lim [ Ny(t,7) =1 and lim/N2 (t,7) =0,
t—0 t—0

0 0

moreover

t

')

t
3
N =1, [ Ny(tr)=—— v
/1(’7) ’ / (b7 =5 Tagy b "0
0 0

7 Characteristic integral equation

In order to find a solution of the integral equation (14), we first seek a solution of the following
"truncated"integral equation

o1 (1) - / Ny (t.7) 1 () dr = B (1), (15)

which, by Remark 3, is characteristic for the equation (14).

Remark 4 If a solution of equation (15) is found, then the solution of equation (14) will be
obtained by the Carleman—Vekua regularization method.

We change the variables t = i, T = % and introduce new functions:

sO(t)—@(é) =9 (y), qD(t)—‘b(i) =p(y),

then equation (15) reduces to the following integral equation with a difference kernel with
respect to the unknown function v (y):

w@)—/k(y—x)w(x)dx:p(y» (16)

0= = g ) b ()

We introduce the corresponding one-sided functions for 1) and p by the formulas:

9+(Z):{0(z), 2> 0, 9_(2):{_0<0, 2z >0,

0, z<0; z), z<0,
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and for the function £ according to the formulas:

k+(2)={k(_2)’ 2> 0, k(z):{k(o, z >0,

0, z<0; z), z<0.

Then the solution of equation (16) can be written as follows:

+o0o

Kby = (1 — k_) by = iy (y) — / b (y— 2) by (@) de = py (4) + 0 (9). (17)

—0o0

Equation (17), defined on the entire real axis, for y > 0 coincides with equation (16) and,
as will be shown below, the solution of equation (17) does not depend on the method of
completing the definition of the equation on the negative semiaxis, i.e. does not depend on
function ¢_ (y).

Theorem 2 [22] The Fourier integrals of the right and left one-sided functions are the
boundary values of the function, which are analytic, respectively, in the upper and lower half-
planes.

Applying the Fourier transform to equation (17), we get

Ut (s)— K (s5)- 9" (s)=P" (s)+ ¥ (s), (18)

where the corresponding Fourier images are denoted in capital letters. Under the condition

A(s)=1—-K (s)#0, VseR

from (18), we obtain the following Riemann boundary value problem

Ut (s) = AG) U™ (s)+ R (s)- PT(s)+ P (s), (19)
where
GRS

We calculate K~ (s):

+oo

K G6) = [t = / #I (557 ) 40 -
)

[e.9]

e_ﬁ_isn 1
= - 5 Il/—l,l/ 242
] n a=n

a
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Hence,

A(s) = 2@1,, <\/—E> K, 4 (\/TE> :

a a

The coefficient of the Riemann problem

1 R | 1
A<s>:H A(s)

S — Sk
—0o0

has simple poles at the points s, = i (aay)*, k € Z. The Riemann problem (19) has an index
equal to the number of zeros of the function A (s) in the lower half-plane, including the axis
itself, i.e. equals 1. € is the main part of the expansion of the function [A ()] ¥ (2) in
powers of z. Then

will be a function whose original is zero at y > 0.
Now equality (19) can be represented as

Ut (s)=PF(s)+ R (s)-P* (s)—l—%+x(s), Vs € R. (20)

Passing in relation (20) to the originals for y > 0, we obtain the general solution of the
integral equation (16)

o0

¢(y)=p(y)+/r—<w—y)p(x)dm+0.

)

Note that ¢y (y) = C, C = const is a solution of the corresponding homogeneous equation

¢(?J)—//€(y—x)¢(x)dx:[).

Here r_ (n) is the restriction to the negative semiaxis of the original Fourier transform
R~ (s) and is determined according to the theory of residues. By closing the contour of
integration over the semicircle in the upper half-plane and using the theory of residues and
Jordan’s lemma, we have

CL2
™

=gy 2 Aw / g - emimeige (21)

2 kez\foy 0

mw| =
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7.1 Estimation of the resolvent r_ (7)

Let us prove the following lemma

Lemma 1 The resolvent r_ (n) (21) satisfies the estimate

1
r—(n)éC-%, n > 0.
Proof

(12 1 —& _japa®¢

r_(n) < —32Ay1k/§e4n RSAE| =
2
kezZ\{0}
CL2 2
- & _iapa’é —iapa“€ o
B ZAM/se £ o d§+ZAV1k/fe iowet g
2\/7_1-7]2 k=—o00
= 3 v—1,—n e = v—1,n e 4 =
2\/7_”72 n=1 0 n=1 0
2o =iy <
<

= ||z, = —icw,
o) 00
—ﬁ—i-ia a’¢ £ _iana 3
v—1,—n 56 n " dé- + Au—l,n 4 " dé.
0
v—1 n‘ + ‘Aufl,n’} .

a2
and AV -n Al/ n
SQﬁn 0/56 SZ{‘ 1-n| + [Av_10|} =

Let’s find the sum ) {|A,_1 .| + |Av_10]}
n=1

}:

S = -
; { 22 [V*I (Z*n) Kllfl (Z*n) 2Zn[1/71 (Zn> Kufl (Zn)
= ||z = =i, z_, =la,| =
1 1
+ . , . =
—2ia, 1, 1 (—iay,) K1 (—iay,)

i, 1,1 (iay,) K,y (ioy,)
(i2), I,1(2)= e~ zv=ig (1z)
_@_(V_l)mHz(i)l (2)|| ~

-2

K, 1(2)= %eﬂ(” L H,Ei)
=l () =T, (2), HY (—2) =
(2) = Jo1 (2) +iN,_1 (2), HP, (2) = Jyo1 (2) — N,y (2)
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1 1 1 1
== . + ‘ =
T Gn | Jo—1 ()] { |1 () = iNy—r ()| [yt (o) + iNu—1 (an) }

_lz 1 2 _—Z . 2 B
i an |1 ()] \/ (o) —I—N2 Oén|=]z/ 1 ()] J3—1 (o)

2 2 d(ay) _ N, (ay)
N Z anJ? (o) — /OszVQ_1 (an)  Juo1(ay)

«aq

[e.e]

S O(a1)7

1

where we used the formula (1.8.4.1) |23, P.39] and N,_; (z) is a cylinder function of the
second kind (the Neumann function). Then we get

Cla)a? 1
V—l,—n| + |AI/—1,’I’L|} S & y—
2 N4l

Lemma is proved.

7.2 Solution of the “characteristic” equation

We found a solution of equation (16), which has the form

o0

w(y)=p(y)+/7“—(x—y)p(x)da:+c.

)

We make the reverse replacements

and write the solution of the characteristic equation (15) as follows
t
o (t) = (I)(t)+/}?(t,7)<1>(7)d7+0,
0

where

R(t,T)SC

= @

T

[SI3Y)

=
The last inequality follows from the Lemma 1.

Remark 5 Since ¢q (t) = C, C = const is a solution of the homogeneous equation

_/Nl(t,T)go(T)dT:o,
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then
1 ot
wo(t):C-tZ—_V-e 12 C = const (23)
is a solution of the homogeneous equation

t
tz/7_271/ tT tT t—r
t) — - — [, | T 442 dr = 0.
(1) /2@2(25—7-)2 exp{ 2a2(t—7')] L (2@2(t—7-)>6 p(r)dr =0

0
Solution (23) does not belong to class (9).

8 Solution of the "complete" integral equation. Carleman—Vekua regularization
method

Theorem 3 The original integral equation (14) for any function 3 ven? - F(t) €
Ly (0,00) has a unique solution in the class of functions

t27Vema? - @ (t) € Log (0,00), (24)
which can be found by the method of successive approximations.

Proof. To solve the original "complete"integral equation (14), we represent it as

/NltT /NQtT d

and apply the Carleman—Vekua regularization method. Assuming the right-hand side of
equation (14) to be temporarily known, we write its solution

/MtT m+/R().ﬂﬂ+]MU@¢@% dr.

° (25)

We change the order of integration in the iterated integral and, then, change the roles of the
variables 7 and &, hence equation (25) takes the form

—/M@ﬂﬂﬂﬁ=ﬁ@, (26)

where
t

M (t,7) = Ny (t,7) +/R(t,7) Ny (€, 7) de,
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By using (22), we obtain that the kernel M (¢, 7) of the integral equation (14) has a weak
singularity, since it satisfies the estimate

oVt
V=

This means that the solution of the integral equation (14) can be found by the method of
successive approximations. The theorem is proved.

M(t,T)SDl' +D2

9 Solution of the boundary value problem (1)—(3). Proof of the Theorem 1

From the integral representation for the solution (8) of the boundary value problem (5)-(7),
we get

t
ou rv .l r? 4+ 712 rT
_ 2v=17" — _
w(rt)=r or /2(12 (t—1) &xp l 4a? (t—T)] L (2@2 (t—r))gp(T)dT'
0

We estimate w (r, t), taking into account that ¢z~ e1a? (1) € Lo (0, 00):

) = Vo[ [ e I [t

4a? 202 (t—1) \/— 4a? (t — 1)

x{eXp [_%]1 (M — )} T3 exp 472]@(7)}057.

Then we have

jw (r,8)] <
t

t 1 rY rT T
< t - —. — I, dr =
C’l\/_exp{ 4a2]/2a2 t—TeXp{ 2a2(t—r)} (2@2(t—7)> 4
0

Cnitexp -5 [ 1
— T = 1Vtexp [~ g]r / e *1,(2)dz =
2a% (t — ) 2a? oz + 2
B Civitexp [— =] 1T )T (3) B Civitexp [—4=] r”
B 2a? vr T(1+v) 2a%v ’

where we used the formula (2.15.3.3) |23, P.272|. Therefore,

C’l\/fexp [ 1 2] rv
o ()] € TP e

or, taking into consideration (4):

u (r,t) - Ci/tri= exp { t }

or —  2d%v
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This implies the validity of the main result — the Theorem 1.

10 Conclusion

The boundary value problem of heat conduction outside the cone is reduced by the method
of heat potentials to the singular Volterra type integral equation of the second kind. We
constructed for it a characteristic integral equation and found its explicit solution. Using
the estimate for resolvent of the characteristic equation, we found a solution of the original
integral equation by the Carleman-Vekua regularization method.
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