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SECULAR PERTURBATIONS OF TRANSLATIONAL-ROTATIONAL
MOTION IN THE NON-STATIONARY THREE-BODY PROBLEM

Modern observational data in astronomy show that real space systems are non-stationary, their
masses, sizes, shapes and a few other physical characteristics change over time during evolution.
In this connection, the creation of mathematical models of the motion of non-stationary celestial
bodies becomes relevant. We consider a non-stationary three-body problem with axisymmetric
dynamical structure, shape and variable compression. The Newtonian interaction force is
characterized by an approximate expression of the force function accurate to the second harmonic.
The masses of bodies change isotropically at different rates. The axes of inertia of the proper
coordinate system of non-stationary axisymmetric three bodies coincide with the major axes of
inertia of the bodies, and it is assumed that their relative orientations remain unchanged in the
process of evolution. Differential equations of translation-rotational motion of three non-stationary
axisymmetric bodies with variable masses and dimensions in the relative coordinate system, with
the origin in the center of the more massive body, are presented. The analytical expression
for the Newtonian force function of the interaction of three bodies with variable masses and
dimensions is given. The canonical equations of translational-rotational motion of three bodies in
Delaunay-Andoyer analogues are obtained. The equations of secular perturbations of translational-
rotational motion of non-stationary axisymmetric three-bodies in the Delaunay-Andoyer analogues
of osculating elements have been obtained. The new results obtained can be used to analyze the
dynamic evolution of the translation-rotational motion of the three-body problem. The problem
is investigated by methods of perturbation theory.

Key words: celestial mechanics, three-body problem, variable mass, secular perturbation,
axisymmetric body, translational-rotational motion.
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BeiicTtaiiuonap yi geHe ecebiniH inrepinemedii-afiHagaMaIbl KO3FAJIBICHIHBIH, FACBIPJIBIK,
YUBITKYJIapbI

AcrpoHoMusiiarel 3aMaHayn OaKblLIay JepeKTepi HAKThI FapbIITHIK, XKyiieJepiid OelcTamoHap
€KEHJIITiH, OJIap/IbIH, MACCATIAPDI, OJIIIIeM/IEPI, MilTiHi KoHe bacKa 1a bipkarap pU3NKaIbIK CUIIATTa-
MaJjiapbl 9BOJIIOIUs OAPBICHIHA ©3repeTiHairin kepcereai. OcbiFan OailylaHbICTHI HeficTAIMOHAD ac-
IaH JIeHeJIePiHiH, KO3FaIbIChIHBIH MATEMATHKAJIBIK, MOJIEIbIIEPIH Kacay aKTYaAJIbl MOcese OOJIbII
TabbLIaabl. JIMHAMUKAJIBIK KYPBLIBIMBI MEH (pOPMAaChl OCTIK CHMMETPHUSIIBI XKOHE CHIFBLIYHI aybl-
crrajpl OeficTarmonap yir jJeme ecebi KapacThIpblaran. HbIOTOHIBIK, ©3apa dpeKeTTecy KYII KyII
BYHKIUSACHIHBIH, €KiHIT TapMOHUKAFa, JI9JI KEJIEeTIH XKYBIK, MOHIMEH opHeriMeH cunaTrTaaasl. Jlere
MacCCaJIaPbl 0P TYPJIi KBLIIAMJIBIKTa U30TPOITHI TYp/ie e3repei. BeficTamumonap ecTik cuMMeTpu-
SIIBI VI JIEHEHIH ©3iH/[iK KOOp/IMHATTap XKYHeciHiH ecTepi jeHeiep/iH Heri3ri mHepIms ecTepiMeH
CoMiKeC KeJIeMIi »KoHe 9BOJIIONHsI DAPBICHIHIA OJAPIBIH CAJIBICTHIPMAJIbI OarIaphl €3repicci3 Kajia bl
nen ecenresei. Maccamapbl MeH OJIeMaepi aifHbIMaIbl, OeficTamonap, OCTiK-CAMMETPUSIIBI IIT
JICHEHIH 11repiseMerti-aifHaIMa bl KO3FAIBICHIHEIH, M depeHInaaIblK TeHIeyIepl Maccachl Yii-
KeHIpeK JIeHEeHiH IeHTPiHeH OacTaJaThIH CaJbICTBIPMAJIBI KOOPNHATAJIAD KYileciHie KeaTipiares.
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Maccastapbl MeH eJieMiepi affHbIMasibl VI JieHeHiH, HbIoTOHIBIK ©3apa opeKeTTecyiHiH KYIITIK
byHKIUsIAPHI VIIIH aHAJUTUKAJIBIK, ODHEK KeJITipijreH. YII JeHeHiH ijrepijieMeni-aiiHaaMaJIbl
KOBFaJIbICHIHBIH, KAHOHJIBIK, Terjieyiepl Jlemone-Anyaiie oCKyIsSIIUsIQYIIbI 3JIEMEHTTEPIHIH aHa~
JIOTTAPBIHIA aJbIHFAH. BeficTanonap eCTiK-CUMMETPHUIBI VI JIEHEHIH repigemesti-aifHaaMasrb
KOBFaJIBICBIHBIH, FACBIPJBIK, YHBITKY Tenjeysepi /[lemone-Anjyaite OCKyJISIUSIIAYIIBI SJIEMEHT-
TepiHiH, aHaJOITAPhIHJA AJIbIHFAH. AJIBIHFAH YKaHA HOTUXKeJep.i yII JjieHe ecebiHiH Lirepiiemerti-
aifHaJIMAJIbI KO3FAJIBICBIHBIH JIMHAMUKAJIBIK, IBOJIIOIUSICHIH TaJIIayFa maiinasanyra 6osaasl. Mocee
YUBITKY TEOPHUSICHIHBIH, 9/IiCTEPIMEH 3ePTTEIET].

Tyiiin ce3mep: Acnan MeXaHUKACHI, VI JieHe ecebi, alfHbIMaIbl Macca, FAChIPJIBIK, YABITKY, OCTIK
CUMMETPHUSJIBIK, JIeHe, LJIrepijieMerti-aifHaIMa bl KO3FAJIbIC.
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*e-mail: kkabylay@gmail.com
BekoBble BO3MYIIEHUS TOCTYHATEIbHO-BPAIIIATEJILHOIO ABUXKEHNS B HECTAIIOHAPHON 3agade
Tpex Ted

CoBpeMeHHbIE JaHHbIe HaOJIONEHUI B ACTPOHOMHUH IIOKA3BIBAIOT, YTO PEAJbHbIE KOCMUYECKHE
CUCTEMBI sIBJITIOTCS HECTAIMOHAPHBIMY, UX MACCHI, pa3Mepbl, (hopMa U psii APYTUX (PUHIECKUX
XapaKTEPUCTUK HU3MEHSIIOTCA C TedeHHeM BpEeMeHHM B IIPOIecce 3BOJIIONUU. B ¢Ba3m ¢ 3THM,
CTAHOBUTCS AKTYaJbHBIM CO3JaHHE MaTeMaTUYECKUX MOJeJell JIBUXKEHUs] HeCTallMOHAPHBIX
HebecHbIX Tesl. PaccMmarpuBaeTcss HeCTaIlMOHApHAs 3aJada TpeX Tes, O0JaIAIONINX OCECUM-
METPUYHBIM JUHAMUYECKUM CTpOeHueM, (GOpMOIl M IepeMeHHBIM CXKaThueM. HBIOTOHOBCKAs
cujla B3AMMOJENCTBUsI XapaKTepPU3yeTCsl MPUOJIMKEHHBIM BBIPDAXKEHHEM CHJIOBOM (QYHKIUU C
TOYHOCTBIO IO BTOPOH TapMOHUKH. Macchl Tesl M3MEHSIOTCS M30TPOITHO B PA3JIUIHBIX TEMITax.
Ocu wmHEpUMM COOCTBEHHOW CHCTEMbl KOODIUHAT HECTAIMOHAPHBIX OCECUMMETPUYHBIX TPeX
TeJI COBIIAJAIOT C TJIABHBIMU OCSIMU WHEPIUU TeJ, W IIPEJIIOJIAaraeTcsi, YTO B XOJE SBOJIIOIIH
UX OTHOCHUTEJIbHASI OPUEHTAIlMsI OCTAIOTCS Hem3MeHHbIMU. IlpuBenennl mudepeHnnaabHbe
YPaBHEHUSI IOCTYIIATETLHO-BPAIATE/IBHOIO JIBUKEHUSI TPEX HECTAIMOHAPHBIX OCECUMMETPUIHBIX
TeJ ¢ HMepPeMEHHBIMA MaCCAMU W pa3MepaMd B OTHOCHTEJILHON CHCTEME KOOPIWHAT, C HATAIOM
B IeHTpe OoJlee MACCHBHOTO Tesa. IIpwBemeHbl aHAJIMTHYIECKOE BBIPAXKEHHME CHJIOBOI (DyHKITHIT
HBIOTOHOBCKOI'O B3aMMOJIEHCTBUSL TPeX TeJl C IIePEMEHHBIMU MaccaMd U pasMepaMiu. 1lojrydeHbr
KAQHOHWYECKUE YyPaBHEHMs IIOCTYIaTe/JIbHO-BPAIATEbHOIO JIBUXKEHUsI TpPeX TeJl B aHaJIorax
ocKysupyomux 3jeMenToB [lemone-Annyaite. IlojydeHbl ypaBHEHUsI BEKOBBIX BO3MYIIEHUI
MOCTYTIATEIbHO-BPAIATEILHOIO JIBUYKEHUs] HECTAIIMOHAPHBIX OCECHMMETPUYHBIX TPEX Tea B
aHaJIorax OCKyJHpylonmx sjgeMenToB Jlenone-Anmpyaiie. IloaydeHHble HOBblE PE3YyIbLTATHI MOLYT
OBITH WCIIOJb30BAHBI JIJI AHAJIM38, JUHAMUYECKON SBOJIIOIUEA IIOCTYIIATEIbHO-BPAIIATEILHOIO
JIBUZKEHMS 3aJ1a91 TPeX Tejl. 3ajiada MCCJIeI0BaHa METOJAMI TEOPUU BO3MYIIEHU.

Kuarouesbie cioBa: Hebecnasi MmexaHuka, 3aJlada TpexX TeJ, IepeMeHHasl Macca, BEKOBOE BO3MY-
MEeHnEe, OCECUMMETPUYHOE TeJIO, MMOCTYIATeIbHO-BPAIATeIbHOE JTBUKEHIE.

1 Introduction

In classical celestial mechanics, real celestial bodies are considered as material points moving
in absolutely empty space under the action of the forces of mutual attraction according to
Newton’s law of universal gravitation [1]. However, it is not always possible to be satisfied
with this first approximation. In other cases, it is impossible to consider real celestial bodies
as material points and we have to take into account the influence of their shape by considering
them as rigid bodies.

But in reality celestial bodies are not material points (spherically symmetric bodies), but
they are not, of course, absolutely rigid bodies either, but always possess a certain degree of
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plasticity or even are liquid (or gaseous, or dusty) formations [2]. Modern observational data
in astronomy show that the real space systems are non-stationary, their masses, sizes, shapes
and a number of other physical characteristics change over time during the evolution [5,
12]. In this connection, the creation of mathematical models of the motion of nonstationary
celestial bodies becomes actual.

The goal of this work is to obtain differential equations of secular perturbations of the
translational-rotational motion of nonstationary axisymmetric three-body dynamic structure,
shape, and variable compression. The solution of this problem is associated with rather

cumbersome symbolic calculations, which are best performed using computer algebra systems
9, 11].

2 Problem formulation and equations of motion in the relative coordinate system

Let us consider the motion of three non-stationary axisymmetric celestial bodies Tg, Ti,
T, with variable masses, sizes and variable compression moving in a absolutely empty
space under the action of mutual attraction forces according to Newton’s law of universal
gravitation.

Let the shapes of bodies Ty, Ti, T, are different, axisymmetric, and have their own
equatorial symmetry plane. Let also assume that the compressions of the bodies with respect
to the equatorial plane are variable. The initial locations of the main axes of inertia and the
center of inertia in the body of axisymmetric bodies remain unchanged during evolution and
are directed along the intersection of the three mutually perpendicular planes.

Let m; = m;(to)v; be the mass, [; = [;(ty)x; be the characteristic linear dimension, and
A;, B;, C; be the second-order principal moments of inertia of the bodies T;, ¢y be the initial
time, v, x; (i = 0,1,2) be the dimensionless known time functions.

Let us make the following assumptions:

1. Bodies with variable masses m; = m;(t) have equatorial symmetry planes and
characteristic linear sizes [; = [;(f). The second order moments of inertia of the
considered bodies are variable

A= A(t), By =Bi(t), C;=Cit). (1)

2. Bodies are axisymmetric and remain axisymmetric with respect to their own equatorial
symmetry planes during evolution

Ai(t) = Bi(t) # Ci(t) (2)

3. The axes of inertia of the proper coordinate system Glgﬁlé coincide with the main
axes of inertia and this position in the process of evolution is saved.

4. Masses and characteristic sizes of bodies change at different specific rates
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5. Let us assume that the masses of the bodies change isotropically and there are no
reactive forces as well as additional rotational moments.

Freay =0, M@ =0 (4)

6. In the expression for the force function, we restrict the approximation to the second
harmonic inclusive.

U~UO +y® (5)

If the above assumptions are satisfied, the translational motions of bodies T} and T5 in
the gravitational field of the "central" body Tj in the relative coordinate system (Fig. 1) are
described by the equations [1-3]:

1 ouY ov, 1 aUY av,. 1 oUuY v
L o (6
where z;,1;, z; coordinates of the center of mass of the body 77 and T3 in the relative

coordinate system Goryz with origin in the center of the body To, u;(t) = mem;/(m; +m;)
— reduced masses, V; — perturbing functions have the form|2]

xTr; =

1 1 1 oU; oU; oU;
iz Lo@ s Loy L [p 20, %0, U

J mo O0x; Yi dy; 9z | (1,7 =1,2), (i#j) (7)

e
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. dh "
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Figure 1: Bodies in a relative coordinate system Gyxyz.

Goaﬁoﬁg, Gléﬁfl, Ggéﬁgé — own coordinate systems.
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The expression of the Newtonian force function of the interaction of three non-stationary
bodies has the form [1, 2]

2 2
U= %Z > Uy (8)
1=0 j=0,i#j

Ui; — the force function of the mutual attraction of the two bodies 7T; and T} is
0 2

Ui(jo) — the first term of the force function decomposition is

ms;my;

7o _ 10
=1 (10
Ui(jQ) — the second term of the force function decomposition is equal to
24, + C; — 3197 924, + C; — 3109
2 _ J J J ) 3 i
Uij = fm; QR% + fm; 2R?j (11)

where R;; = /(x; — 2;)® + (y; — vi)®> + (2; — ;) — the mutual distance between the centers
of inertia of the considered bodies, f gravitational constant, Ii(w ) andl ]W) — moments of
inertia of bodies T; and T} with relative to vector G;G;, connecting the centers of mass of
two bodies, is defined by the expression
I = A02 + B2) + C 1) = Aj(a2 + B2) + C, (12)
Where «;j, Bi5,7; — the directional cosines of the vector G;G; with the main central axes

of inertia of the body T;. The rotational motions of bodies Tg, T}, T5 around their own center
of masses in Euler variables are described by the equations [1]

d ou oU | sing, oU

LAY — (A — C g — | L2 Rl Bale &} e

dt< i) — (A5 = Cj)gsr; 0, cost; g, | sind, + Cosp; 8(%-’

d [ oU oU | cosp; . U

L Aa) —(C— Ao = | L Rt it A g 13
dt(AJQJ> (Cj — Aj)pjr; 0, cosb); ¢, | sind; SINY; 89j7 (13)
d oU

—(Cir;)=— §=0,1.2

dt< JTJ) agpj j ) L

where
p; = ¢j sin 0; sin ¢, + 9j cospj, q; = ”&j sin 6; cos p; — éj sing;, ;= ¢j cosf; +¢; (14)

Dj, ¢;, rj — the projections of the angular velocities of bodies T on the axes of their own
coordinate systems G;&;1;(;, ¢, ¢;,0; — Euler angles [6].
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The resulting equations @ and fully characterize the translational-rotational motion
of bodies T7 and T, and the rotational motion of body Tj in the relative coordinate system
Goryz in the considered statement.

The equations of perturbed motion in the form of Newton’s equations, although they
are the most general in the case when the perturbing forces admit a force function, are
inconvenient. In this case the equations of perturbed motion in the form of the canonical
Hamilton equations are preferable, which have, as in the classical problems, a number of
advantages and elegance [5].

In the considered formulation of the problem is very complicated, so we will use the
methods of perturbation theory for its investigation [1].

3 Equations of motion in osculating Delaunay-Andoyer elements

For our purposes, the canonical equations of perturbed motion in osculating analogues of
Delaunay-Andoyer elements are preferable [1].
Let us consider the analogues of Delaunay-Andoyer elements.

L,G,H,l,g,h — Delaunay elements (15)

L',G' H I ¢, h - Andoyerelements (see Fig. 2) (16)

Equations of translational motion of bodies 77 and 75 in osculating Delaunay elements
have the form [3].

: oF;, . oF;, . oF; . OF; oF;, . OF;
Li=—~ Gi=—4— H=_— lLi=—F+, gi=—72, hi=—55 17
where
L g,
E = 0'_122L012 + Epert (18)
1 2
Epert = ‘/z - ébszo (19)

g; @ mo + m;

b = bilty) = 00 = (o + mi) & (#) 5, = Molto) +mf(t°) i=1,2 (20)
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Given the relation o, + 2 + 72 = 1 and formulas (9) — (12), expression has the form

1 1— 3%2 1-— 372i 1
Fon = 5 (€m0 [ S5 s | )

1— 392 1—37
x (fmlmj {RLU] + f7nJ(C'z —A)) { 2R3%]} + fmZ(CJ — Aj) [ 2R37]1}) + LX (21)

ij mo

1 737%-

o o o fmom,; [%}J +fm;(C; — A;) [—3]] + 1
S G i Ll

The rotational motion of an axisymmetric body (A = B) around its center of inertia is
described in the analogues of the Andoyerosculating elements. As noted above, the axes of
the own coordinate system coincide with the main central axes of inertia of the body.

In the Euler variables, the kinetic energy of rotational motions of non-stationary axisymmetric
bodies has the form

1
S (502 + ) + Cir?) (22

On the other hand, in the Andoyervariables we get [1]:

Aip; = ,/Gf — L;? sin l;quj = ,/Gf — L;? coS l;erj = L;- (23)

Therefore, the expression for kinetic energy in the Andoyervariables can generally be
written as

rot __
K =

1 sin?l cos?l/ L'?
vaot — G/-2 o L/2 J J J 24
=R G T T T (24)
In the case of an axisymmetric body, expression is greatly simplified
1 L7
Krt= —(G? - L) + L (25)
J 24,7 J 2C;

Hence, the Hamiltonian of rotational motions of axisymmetric bodies can be written in the
form

F/ o 1 G12 L/2 1 L./72 F/ 26
j—g(j— j)A—j+2—Cj+ jpert (26)
where
Fl.=U®  j=012 (27)
1 2
e = - DR (28)
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Accordingly, the rotational motions of axisymmetric bodies Tg, T}, T3 around their own center
of inertia are defined by the equations of perturbed motion in the Andoyerosculating elements
of the form [3].

i =95
T

OF!
oM

¢ 08 05 OF O

Sl | i BT W
og," U T any T oy BT Taay

(29)

Qu
3

" w = .Hr f}_

Figure 2: Andoyer variables

The geometric meaning of the analogues of the Andoyer variables are given in [10].
Given the relation Oz?j + ZQJ + ”yfj = 1 and formulas @D - , expression has the

form

- 1 . 1 - 342
Flpert = 7 > (fmj(Ci —Aj) [W + fmi(C; — Aj) [—%D (30)

The values in square brackets in the right-hand side of equation and must be
expressed in terms of the Delaunay-Andoyerosculating elements.

4 Differential equations of secular perturbations

Let us consider the nonresonant case. By averaging the right-hand side of equation ({17])
and over the variables ¢’, [, we obtain the equations for secular perturbations of the
translational-rotational motion of bodies T} and T, and the rotational motion of body T in
the problem under consideration [10, 11]. If we denote the secular parts of the perturbing
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functions F;, FJ’ as Fj e, F]’ sec; then according to the Gaussian scheme we have

2w 27 2m 2w
1 1 . .
Fisec = 4—7‘_2//Edl1d‘g;7 P}{sec = H//.F;dl]dg;, 1 = 1, 2, ] = O, 172 (31)
0 0 0 0

Accordingly, it is possible to write

Floee = 2%((?}2)3@#% <c% - A%) (L?)m% z-_oi# i?;fcj Ai})ﬁi’”]]+ (32)
[REL) ] rme-w 5]
+fmi(C; — Aj) [%%Z?Z] B + mio <I18ix] + yiaiyj + Zla%) x (33)

5 Conclusion

The translational-rotational motion of three non-stationary axisymmetric mutually
gravitating bodies according to Newton’s law is studied by perturbation theory methods.
Equations for secular perturbations are obtained. Further it is planned to express the values
in square brackets in the right part of equations and through the Delaunaye-Andoyer

osculating elements.
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