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ON REPRESENTATION OF ONE CLASS OF SCHMIDT OPERATORS

In this paper, unitary symmetrizers are considered. It is well known that using Newton operator
algorithm, similar to the usual Newton algorithm, for extracting the square root, one can prove
that for every Hermitian operator 7' > 0, there exists a unique Hermitian operator S > 0 such
that T = S2. Moreover, S commutes with every bounded operator R with which commutes T'. The
operator S is called a square root of the operator T and is denoted by T"'/2. The existence of the
square root allows one to determine the absolute value |T'| = (T*T)/? of the bounded operator 7.
For every bounded linear operator T': H — H there exists a unique partially isometric operator
U: H — H such that T = U|T|, KerU = KerT. Such an equality is called a polar expansion
of the operator T. The Schmidt operator is understood as the unitary multiplier of the polar
expansion of a compact inverse operator, with the help of which E. Schmidt was the first to obtain
the expansion of a compact and not-self-adjoint operator and introduced so-called s-numbers.
This paper shows that the unitary symmetrizer of an operator differs only in sign from the adjoint
Schmidt operator. The main result of the paper: if A is an invertible and compact operator, and
S is a unitary operator such that the operator SA is self-adjoint, then the operator AS is also
self-adjoint and the formula S = +£U™* holds, where U is the Schmidt operator.

Key words: Unitary operator, symmetrizer, normal operator, Schmidt expansion, Schmidt
operator, compact operator, polar representation of operator, square root of positive self-adjoint
operator.

N. Opazor*, A.A. [llajganbaesa
Axwmer dcayn arbiamarsl XaablKapasblk Ka3ak-Typik yausepcureri, Kazakcran, Typkicran K.
*e-mail: orazov@math.kz
IIIMmuaT omepaTopJiapbIHBIH 6ip KJachkl TypaJjibl TYCiHIK

By xxymbicTa GipryTac cuMMeTpu3aTOpJIap KAPaCThIPhLIa bl. HBIOTOH OMEepaTopJIbIK, AJITOPUTMIH
KOJIJIAHBIN, Colikec KapamailbiM HbIOTOH asropuTMinme KBaapaT TyOIpai ay VIMNiH Ke3 KeJreH
T > 0 spmuTTiK oneparops! yimin 1 = S? maprTel opbIHIAIATBLIHIAN Kaareis S > 0 9pMUTTIK
OIepaTOP/IbIH, TaObLIATHIHBIH J1pJIeseyre 0oaareiabl Oesriyii. CoHbiMeH Karap, S - T oneparopbl-
M€H ajIMacaThiH opOip ImekTesreH R omepaTopbiMeH ajMacaibl. S omneparopbl T olepaTOpbIHBIH,
KBaJpar TyGipi gen aramaipl rkome T1/2 apkpiinl Gearizenemi. Ksagpar ry6ipain Gap Gosryst
mexresrerr T omeparopemmbis, |1 = (T*T)Y/? abcomor maMachH aHBIKTayFa MYMKIHIIK Gepesi.
Kes kesren mekrenren coi3bikrel T @ H — H oneparopwl ymin T = U|T|, KerU = KerT
GoslaThIHIAN 2KAIFBI3 KapThliait nzomerpusislk U : H — H oneparorsr 6ap. Byn resgik T
OIIEPATOPBIHBIH TOJIAPJIBI KiKTeyi sen aTamaabl. IIIMuaT ormepaTopb! peTine KeTKITKTI y3imticci3
KepiJieHeTiH ormepaTop/ IbIH HOJISIPJIbI YKIKTeyiHiH 6ipTyTac KOOEHTKIIIIH TYCIHEMI3, OHBIH KOMETriMeH
D .1Imuar Gipinmm 6OJIBIT KETKUTIKTI y3iIicei3 2KoHe ©3-03iHe TYHiHIeC eMec OnepaTop/IblH XKIKTe-
ViH aJIIbl XKoHe S-CaHbIH eHTi3/i. Byt xKymbIcTa, ornepaTopabii 6ipryTtac cumMmepTu3aTops! [IMuar
OIIepPATOPBLIHBIH TYHiHAeCIMEH TeK TaHOAChIMEH e3rerneseHe T i. 2K yMbICThIH, Heri3ri HOTHXKeCi: erep
A KepijieHeTiH >KoHE KOMIIAKTHI oreparop, SA omeparopbl e3-e3iHe TyiliHjec GosiaTbiHIal S —
6ipTyTac oneparop 6osica, ouga AS omeparopsl j1a ©3-e3iHe TyiiliHgec koHe S = +U* dhopmynace
opbia b, MyHIarsl U — [HIMuaT onepatopsl.

Tvyitin ce3znep: Bipryrac omeparop, cuMMETPUAIAYIIIBI, KAJBIITEHL oteparop, IMuarrin keneroi,
Imuar ommepaTophl, TOMBIK Y3/IIKCI3 OepaTop, OIepaTOPILIH, MOJIAPJIBLIK Oelineci, OH OailTaHbICKAH
OIIePATOP/IBbIH KBaJpaT TYOipi.
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O npejcraBiaeHun omHOTO KJjacca orneparopos IIImuara

B macrosimeit pabore paccMaTpuUBAIOTCsl YHUTAPHBIE CHMMETPHU3ATOPBI. XOPOIIO M3BECTHO, YTO,
UCTIOJIB3Ysl OMEepaToOpHbIA ajaroput™ HbOTOHA, aHAJOrMYHBIA OOBIYHOMY ajroputmy HboToHA
JUTsT M3BJIEYEHUST KBAJIPATHOTO KOPHSs, MOXKHO JIOKA3aTh, UTO JJIsi KAyKJOIO SPMHUTOBA, OII€PATOPA
T > 0 CymecTByeT eIMHCTBEHHEI 3pMuToB omeparop S > 0 Taxoit, uro T = S2. IIpu stom
S 1epecTaHOBOYEH C KaKJbIM OIPAHMYEHHBIM OlepaTropoM R, ¢ KoTopbIM IiepecraHoBoveH 1.
OmnepaTop S Ha3BIBAETCS KBAJIPATHBLIM KOpHeM omeparopa T u oGosmadaercs T1/2. Cymecrso-
BaHIE KBaJPATHOTO KODHs IO3BOJISIET ONpEAETHTh abcomornyio semmumny |I| = (T*T)'/2
orpanmdeHHoro omeparopa 1. Jljas KaXkaI0oro orpaHH<YeHHOro JuHeinoro omeparopa 1 : H — H
CyIIIeCTBYeT €JIMHCTBEHHBII YacTUYHO wu3omerpudeckuii omeparop U : H — H Ttakoif, 4ro
T = U|T|, KerU = KerT. Takoe paBeHCTBO HA3bIBAETCsI TIOJSIPHBIM DA3JIOXKEHUEM OIIEPATOPA
T. Tlox omeparopom IlImuara MOHMMAETCS YHATAPHBIA COMHOXKHUTE/Ib IOJIAPHOIO PA3JIOYKEHUS
BIIOJTHE HEIIPEPBIBHOIO 0OPATUMOTrO OMEepaTOpa, ¢ IOMONILI0 KOToporo . [TIMu it Brepsbie moryau
PA3JIOYKEHNE BIIOJIHE HEITPEPBIBHOIO U HECAMOCOIIPSI?)KEHHOTO OTMEPATOPA U BBEJI TaK HA3BIBAEMBIX
s-aucest. B jamHOit pabore MOKa3aHO, YTO YHUTAPHBIA CHMMETPHU3ATOD OIEPATOPA OTJINIAETCH,
JINIIb 3HAKOM OT conpsizkennsi oreparopa [Imuara. OcHoBHOI pedynabrar pabors:: ecin A —
0oOpaTUMBbIfi ¥ KOMITAKTHBIN OmepaTop, a S — YHHTapHBIN omeparop Takue, 4To orepatop SA
CaMOCOIIPsI?KEH, TO oneparop AS Tak»Ke caMOCOIpsi?KEeH U umeeT mecto dopmyna S = +U*, tie
U — oneparop [HImuzgra.

KiroueBble cjioBa: YHUTapHBII OlepaTop, CUMMETPHU3aTOP, HOPMAJIBHBII OIepaTop, pa3jioxKe-
nue IImugra, oneparopa IlIMuara, BIIOJIHE HENPEPBIBHBIN OIEPATOP, IOJAPHOE IPEICTABIEHUE
oreparTopa, KBaJIpaTHbI KOPEHb MTOJIOKUTETHLHOI'O CAMOCOIIPSI2KEHHOT'O OIIEPATOPA.

1 Introduction

As is known, many problems in mathematical physics lead to the need to study linear
equations with symmetrizable operators. An example of such equations is the integral
equation with a kernel symmetrizable in sense of Marty [5], which is led, for example, by
boundary value problems for differential Sturm — Liouville equations as well as boundary
value problems for linear differential equations of higher orders, both ordinary and with partial
derivatives. A number of problems in mechanics (see, for example, [6]) lead to the study of
boundary value problems for differential equations with coefficients non-linearly depending
on a parameter (the case of a polynomial of the second degree and higher degrees).

Let X be some Hilbert space (separable,generally speaking, complex). An operator A
mapping X into itself is called symmetrizable, if there exists a positive operator H mapping
X into itself and such that P = HA is a self-adjoint (Hermitian) operator.

Linear equations of the form
r— ANz =y, v € X, y€ X (\is a parameter)

with the symmetrizable compact operator A were studied by Saanen [7] and Ryde [8]. The
results obtained in this direction were systemized in the monographs of Saanen [9]. In the
present paper, we consider unitary symmetrizers.
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1.1 Formulation of the problem

Let B(H) be the algebra of all bounded linear operators A on the Hilbert space H # {0}

with the norm

|A[| = sup{[|Az|| : x € H, |[zf| <1} (1)
Suppose that A, S € B(H), S* = S exists S~ € B(H) and the equality

A= A'S, AS = SA* (2)

holds. The question is, what properties does the operator A have?

Denote, as usual, by D(A), R(A), N(A) the domain, the range and the kernel of the
operator A, respectively.

If N(A) = {0} and the operator A is compact, then the so-called Schmidt expansion takes
place

Az = Z si(z, on) U pn, (3)
1

where s; are the s-numbers of the operator A, {¢,}, (n =1,2,...) is an orthonormal basis
of the space H composed of eigenvectors of the operator A*A, U is a unitary operator from
the polar representation of the operator A, that is,

A=UP, (4)

where P is a square root of the positive self-adjoint operator A*A. In this case, what is the
relationship between the operators S and U.

Definition 1 If a compact operator A with the kernel N(A) = {0} admits the polar
representation (4), then the unitary operator U is called the Schmidt operator.

Note that the unitary operators play an important role in the theory of operators, suffice
it to mention scattering operators, wave operators, Fourier operators.

In solving this problem, we will use some general and less general theories of functional
analysis. For accuracy and convenience, we present their formulation.

2 Research methods.

Definition 2 An operator A € B(H) is called

(a) normal, if AA* = A*A;

(b) self-adjoint (Hermitian), if A* = A;
(¢) unitary, if A*A =1 = AA*, where I is the unit operator in H;
(d) a projector, if A% = A.

Lemma 1 [ [10], p.354]
a) If an operator A € B(H) is invertible, then it has a unique polar expansion A = UP;
(b) If an operator A € B(H) is normal, then it has a polar expansion A = U P, where the
operators U and P commute with each other and with the operator A.
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Lemma 2 Let M, N, T € B(H), where the operators M and N are normal. If

MT =TN, (5)
then

M*T = TN*. (6)

Proof. See [11].
This lemma and the spectral theorem of normal operators imply the following Lemma 3,
see [12].

Lemma 3 Let M, N,T € B(H), where the operators M and N are normal, and the operator
T is invertible. Suppose that

M =TNT™ " (7)
If T = UP is a polar expansion of the operator T', then
M =UNU". (8)

Two operators connected by relation (7) are called similar. If U is a unitary operator and
relation (8) holds, then the operators M and N are called unitarily equivalent. Thus, it is
established in Lemma 3 that the similar normal operators are equivalent.

Lemma 4 Let S, T and ST are densely defined operators in H. Then

T*S* C (ST)". 9)
Moreover, if S € B(H), then

TS* = (ST)". (10)

Proof. The proofs of Lemmas 3 and 4 can be found in [10], on p. 355 and p. 370,
respectively.

Remark 1 If the equalities
SA=A"S, S=5A"
hold, then
SPA = AS? SPA* = A*S2
Indeed,
S?A = S(SA) = (SA*)S = (AS)S = AS?; (11)

S2A* = SSA* = S(AS) = (SA)S = (A*S)S = A*S2. (12)
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Lemma 5 [ [13], p.253]. If A is a compact and self-adjoint operator in H, then for any x €
H the element Ax expands into a convergent Fourier series with respect to the orthonormal
system of eigenvectors of the operator A.

Corollary 1 If the kernel of a compact self-adjoint operator A consists only of zero, then
the orthonormal eigenvectors of this operator form a basis in the space H.

Proof. By Lemma 5 for any € H there is the expansion

[e.o] o

1

1 1

where {¢,} are orthonormal eigenvectors of this operator A. If (x,p,) =0 (n = 1,2,..), then
Az = 0 and by virtue of invertibility of the operator x = 0. Consequently, the system {¢,}
is complete in H. Since it is orthonormal, then it forms an orthonormal basis of the space.

Lemma 6 [13.¢.130]. Let X be normal, and Y a Banach space and A a linear operator

with D(A) C X, R(A) C Y, moreover D(A) = X and the operator is bounded on D(A).
Then there exists a linear bounded operator A such that
(a) Az = Az for any x € D(A);
() [ All = 1[A]l
3 Research results.
Let A, S, S™' € B(A), S=5*, N(A) = {0} and the formulas hold:
A=A"S, AS=S5A". (13)
Then the equality
SAA* = A"SA* = A*AS (14)

holds. By virtue of Lemma 4 the operators AA* and A*A are self-adjoint, so they are normal
operators. Consequently, by Lemma 3 the following formula holds:

UAA* = A*AU, (15)

where S = UP is the polar expansion of the operator S.
Further, assuming

A+ A* A— A*
A — A —=
R 9 ) J 2 )
we have

A+ A A* A

SAp— At A _ASHAS 4 .
2 2

A— A* A*S — A A— A*

SAJ:S( . ) _ (A5 —AS5) ,)S:—AJS.

21 21 27
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Again, by Lemma 3, we have

UAr = AgrU, UA; = —A,;U, (16)
therefore

UA=U(Agr+iA;) = ARU —iA;U = (Ag —iA;)U = A*U; (17)

AU = (Arp +1iA))U =UAg —iUA; = U(Agr —iA,;) = UA". (18)

By formula (15), we get
(AU)*AU = U"A*AU = U"UAA" = AA* = AUUA* = AU(AU)".
By virtue of (17), (18), we have
(UA)J)UA=AUUA=A"A=AUVUU'A=UAUA* =UAA'U* =UAUA)".
We have proved the following theorem.
Theorem 1 If
A, S, St e B(H); (19)

SA = A*S, AS = SA", (20)

then the operators AU and U A are the normal operators, where S = U P is the polar expansion
of the similarity operator.
From the self-adjointness of the operator S and item (b) of Lemma 1 it follows that

S =UP = PU,

then S* = PU* = PU = S. Consequently, P(U* — U) = 0. Therefore, by virtue of the
condition N(A) = {0} it follows that U* = U, that is, the operator U is self-adjoint. Then

(AU)* = U*A* =UA" = AU

(UA)" = AU = A"U = UA,
that is, the operators AU and UA are self-adjoint.
Thus, the following Theorem 2 holds.

Theorem 2 If
S, S~'e B(H), S*=5,; (21)

A€ B(H), N(A) = {0}, SA=A*S, AS = SA", (22)

then the operators AU and U A are self-adjoint, where S = UP 1is the polar expansion of the
simalarity operator S.
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Suppose that N(A) = {0}, A is compact, the operator AS is self-adjoint, and S is unitary,
then the operator SA is self-adjoint and compact. In fact, from (AS)* = AS and S* = S~!
we have S*A* = AS, A* = SAS, A*S* = SA, therefore, (SA)* = A*S* = S.

From N(A) = {0} it follows that N(SA) = {0}. Indeed, if SAX = 0, then, since the
operator Sis invertible, we have Az =0, z = 0.

By the Hilbert-Schmidt theorem

SAx = Z A (T, ©0n)on, (23)

where ¢, (n =1,2,..) are the orthonormal eigenvectors of the operator SA.

If all (z,¢,) = 0, then according to the formula SAz = 0. Therefore, Az = 0, = = 0.
Consequently, the eigenvectors of the operator SA form a complete system in H. Since this
system is orthonormal, it forms the basis in H. Acting by the operator S* on both sides of
(23), we obtain

Az = Z An (@, 0n) S  on, (24)

where the system {S*¢,}, (n=1,2,...) also forms the orthonormal basis in H.
Further, we have the formulas

(SA)? = SASA = SS*A*A = A*A, (25)

A=UP, (26)

where U is a unitary operator which we have called the Schmidt operator and P is the square
root of the positive operator A*A, see | [12], p.22].

From the formula SAp, = A\, it follows that (SA)%p,,= Ny, = A*Ap, = P?p,.
Consequently, Py, = $,¢n, Sp = ||, m = 1,2,..., these numbers are called s-numbers of
the operator A, see | [14], p.46]. Since the system ¢,, (n =1,2,...) forms the orthonormal
basis of the space, then the following expansion holds

o0 [e.9]

Px = Z(Pm, On)Pn = Z (x, Pn)pn Z Sn(z (27)

1 1

Then by virtue of formula (26), we obtain the Schmidt expansion of the compact operator

Ar = Z Sn(T, on) U pn. (28)

For x = ¢,, (n=1,2,...) from formulas (24) and (28) we obtain

’)‘nlUﬂp

S*p, = 3 " = sign\, U,
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U*S* @, = signhnon = SU@,, (n=1,2,...). (29)

Due to the basicity of the system {¢,} and extension theorem from (29), we deduce that
U*S* = SU, in other words, the operator SU is self-adjoint. The unitary operators form a
group, therefore the operator SU is also unitary. Indeed:

(SU)*SU = U*S*SU = U*U = I,

(SU)(SU)* = SUU*S* =85 =1.
Thus,

(SU)* = (SU) ™' = SU,— (SU)? =1, SU = +I, § = +U*.
Let us formulate the obtained result.

Theorem 3 Let A be an invertible and compact operator, and S a unitary operator.
If the operator S A is self-adjoint, then the operator AS is also self-adjoint and the formula
holds

S==xU", (30)
where U 1is the Schmaidt operator.
Remark 2 This theorem says that the stock of S-operators is not large.

Remark 3 To construct the Schmidt operator, it is necessary to study the operator A*A.
That is a more complicated problem than the study of the operator itself. Therefore it is
desirable to have an easier way of constructing the Schmidt operator. For some class of
operators such a way exists, we will make sure of this in the next section, see [15]- [17].

4 Discussions.

Lemma 1 was obtained in [11], Lemma 2 was obtained in [12], the initial proofs of these
results were simplified in [18]. Our research is a continuation of these works. For clarity, we
will give an example illustrating the results obtained.

Example 1 In L?(0,1) consider an integration operator
u(z) = / w(@)dt, = € [0,1]. (31)
0
Obuviously that
1
A*v(x) :/ v(t)dt, = € [0,1]. (32)

Moreover, the equality

SA = A*S, where Su(z) = u(l — x) (33)
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holds and S is a unitary self-adjoint operator.
Indeed,

11—z T
SAu(z) = / u(t)dt = ‘f =1- t‘ = —/ u(l —&)d¢
0 1
1
_ / (1 — £)dE = A*Su(z)
Consequently,

(SA)* = A*S* = A*S = SA,

(AS)* = S*A" = SA* = AS,

that is, the operators SA and SA are self-adjoint. By virtue of the proved theorem, we have
the formula

S =4U", (34)
where U is the Schmidt operator, that is,
A=UP, (35)

where P =~/ A*A.
Let us find eigenvalues and eigenvectors of the operator SA. Let

SApn(x) = A, on(2), (36)
then
S/ Qpn(t)dt = >‘;190n<x)7
0

/ on(t)dt = N\ Spn(z) = A (1 — 2),
0

Pn(T) = _)‘;180;1(1 — ), 9021(1 —z) = —Apon(T),

P () = =Anpn(l — ), ¢n(1) = 0. (37)
Differentiating both sides of this equation, we have
Pn() = Xl (1 = 2) = =2 (@),
— onl@) = ANypn().

It is easy to see that p,(1) = 0, ¢, (0) = 0. Therefore, we seek solutions of the boundary
value problem

o (x) = Noen(x), ©n(1) =0, ¢,(0) =0 (38)
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in the form
o(x,\) = Acos \zx.

Then ¢'(x,\) = —Acos Az = 0 for x = 0.

If A = 0, then ¢'(x) = 0, therefore, ¢ = const, ©(1) = 0, consequently, ¢(z) = 0.
Therefore the value A = 0 is not an eigenvalue. From the equation (1) = 0 we have cos A = 0,
consequently, N\, = nm + 5, n = 0,%£1,£2,.... Therefore the eigenfunctions are p,(x) =
A, cos(wn + g)x We ﬁnd the unknown coefficients A, from the normalization condition:

[len|l = 1.
1 T A2 1
lon(2)]]* = Ai/ cos’ <7m - 5) vdr = 7"/ [1 4 cos (2mn + 7)z]da

0 0

A2

=1, A, =2
2
Thus, the eigenfunctions of the Sturm-Liouville problem (38) have the form:

() = V2 cos (7m+g>x, n=0,+1,42, .. (39)

Substituting ¢, (x) into the initial equation (37), we find the eigenvalues of the spectral
problem:

(P/n(x) = —Aupn(l =), wa(1) =0;

¢ (r) = —V/2sin (7rn+g)$' (WJrg)?

en(l —x) = V2cos (erg)(l —x) = v/2cos [m+ g — (m+g)x}

= \/i[cos <7m + g) coS (7rn + g)x + sin (Wn + g) sin (7T7’L + g)yc]

= cos Tn sin <7rn + g)x = v/2(—1)"sin (71'71 + g)gg,

(1l — ) = A(—1)" {—\/isin (7m + g) a:}

= —ﬂ(ﬂn + g) sin (7m + g):z:,

An(—1)”:m+g, Ay = (—1)”{%71—1—%], n=0,+1,42, ..

e = =17 (nn+ 3 )1 = ).
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where

() = V2 cos <7m + g)x (41)

Formula (24) takes the form:

[ uwi =3 @t - o) (42)

where U is the Schmidt operator. For u = ,,, we have

(=" 1
- - %n 1-— =——7U n s
7rn+§(’0( 2 ™m+ 5 #n(z)

consequently, Uy, = (—1)"¢,(1 —z) = (=1)"Sp,, that is, U = £S5, which is consistent with
the overall result.
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