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MACHINE LEARNING APPROACH TO PREDICT SIGNIFICANT WAVE
HEIGHT

To estimate significant wave height of ocean wave, a machine learning framework is developed.
Significant wave height and period can be used by supervised training of machine learning to
predict ocean conditions. In this paper we proposed a method to predict significant wave height
using Support vector regression (SVR). Buoy dataset taken from the Queensland government open
data portal the input from which were aggregated into supervised learning test and training data
sets, which were supplied to machine learning models. The SVR model replicated significant wave
height with a root-mean-squared-error of 0.044 and performed on the test data with 95% accuracy.
Comparing to forecasting with the physics-based model the Machine learning SVR model requires
only a fraction (< 1/1200th) of the computation time, to predict Significant wave height.
Key words: Machine learning, significant wave height, Support vector regression.
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Толқынның елеулi биiктiгiн болжауға арналған машиналық оқыту негiзiндегi тәсiл

Мұхит толқынының елеулi биiктiгiн бағалауға арналған машиналық оқыту жүйесi құрылды.
Толқынның елеулi биiктiгi мен толқын периоды мұхит жағдайларын болжау үшiн бақылана-
тын машиналық оқыту барысында пайдаланылуы мүмкiн. Бұл жұмыста тiрек векторы әдiсi
негiзiндегi регрессия көмегiмен (Support vector regression – SVR) толқынның елеулi биiктiгiн
болжау әдiсi ұсынылды. Буй деректер жиыны Квинсленд үкiметiнiң ашық деректер порталы-
нан алынды, кiрiс деректерi бақыланатын оқыту мен тестiлеу үшiн деректер жиынтығына
бiрiктiрiлдi. SVR моделi толқынның елеулi биiктiгiн 0,044 орташа квадраттық қателiкпен
көрсеттi және тестiлеу деректерiнде 95% дәлдiкпен бойынша орындалды. Толқынның елеулi
биiктiгiн физикалық модель негiзiнде болжаумен салыстырғанда, машиналық оқыту негiзiн-
дегi SVR моделi айтарлықтай аз есептеу уақытын (< 1/1200) қажет етедi.
Түйiн сөздер: Машиналық оқыту, толқынның елеулi биiктiгi, тiрек векторы әдiсi негiзiндегi
регрессия.
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Подход на основе машинного обучения для прогнозирования значительной высоты волны

Разработана система машинного обучения для оценки значительной высоты океанской вол-
ны. Значительная высота и период волны могут быть использованы при контролируемом
машинном обучении для прогнозирования состояния океана. В данной работе предложен ме-
тод для прогнозирования значительной высоты волны с помощью регрессии на основе метода
опорных векторов (Support vector regression – SVR). Набор данных буев взят с портала от-
крытых данных правительства Квинсленда, входные данные с которого были объединены в
наборы данных для контролируемого обучения и тестирования.
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Модель SVR воспроизводила значительную высоту волны со среднеквадратической ошибкой
0,044 и выполнялась на тестовых данных с точностью 95%. По сравнению с прогнозированием
значительной высоты волны на основе физической модели, для модели SVR с машинным
обучением требуется значительно меньше (< 1/1200) времени вычислений.
Ключевые слова: Машинное обучение, значимая высота волны, регрессия на основе метода
опорных векторов.

1 Introduction

Many people are unaware of a single climate factor that can have a profound effect on the
living conditions and health of coastal people. Wave weather is the distribution of wave
signals measured at a given time and place, just as atmospheric weather is defined as the
"intermediate weather" of a given time and place. About 10% of the world’s population lives
within 20 kilometers of coastline and less than 20 meters above sea level (Kummu et al.
2016). For these people, hot weather can affect their daily lives like atmospheric weather. Big
waves can disrupt harbors and make boats dangerous, keeping fishermen and boats afloat
while their businesses suffer.

Surfers aside, there are basic reasons why information on wave conditions over the next
few days is important. For example, delivery routes can be made by avoiding rough seas
and thus reducing shipping times. Another industry that benefits from wave information is
the $ 160 B (2014) [1] marine fishery, which can improve harvesting activities accordingly.
Awareness of critical situations is critical to military and navy operations by Navy and Marine
Corps teams. Also, predicting energy production from renewable energy sources is important
in maintaining a stable electricity grid because more renewable energy sources (e.g. sun, wind,
waves, wave, etc.) are in between. In the deep penetration of the renewable energy market, a
combination of increasing energy conservation and improved speculation of energy prediction
will be required.

Waves can be defined by three distinct elements: wavelength, wave duration, and direction
of wave. The higher the tide, the more dangerous the boat conditions and the greater the
potential for the wave to form or erode beaches and coastal cliffs. The direction of the wave
is the way in which the wave comes to the observer.

In practice, it is difficult to measure these variables because the waves of different
wavelengths, heights and directions can mix and produce very confusing wave patterns.
Scientists and engineers use sophisticated calculations to solve the parts of the waves and
produce three common summarization calculations: critical wavelengths (Hs), wavelength
(Tp), and wave direction (θm). These three figures are then used to describe the weather of
the waves, just as temperature, rain, wind speed and direction can be used to describe the
local climate. Commercialization and distribution of wave energy technology will require not
only addressing positive and regulatory issues, but also overcome technological challenges, one
of which can provide accurate predictions of energy production. The need for any prediction
is that the model that is properly represented is developed, measured and validated. In
addition, the model must be able to run fast and include the correct prediction details in its
predictions. A mechanical framework for this skill is developed here.

Because wave models can be awfully expensive, a new method of machine learning [2, 3,
4] is being developed here. The purpose of this approach is to train machine learning models
in the more realistic model of wave-based physics forced by atmospheric and ocean history
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conditions to accurately represent wave conditions (in particular, significant wavelengths and
feat). Computer costs are often a major limitation of real-time forecasting systems [6, 7].
Here, we use machine learning techniques to predict significant wave height by taking the
predictor and predict and variable into account from the dataset. While machine learning
were used to predict wave conditions [8, 9, 10, 11, 12, 13], it has not been used in the context
of a surrogate model which can obtained highest accuracy with lowest root mean squared
error as defined below.

2 Wave modeling

2.1 Numerical Model

The Simulating WAves Nearshore (SWAN) code FORTRAN is a standard industrial tool
developed at Delft University of Technology that incorporates wave fields in coastal waters
forced by wave conditions at natural boundaries, oceans, and winds [14]. SWAN mimics the
energy contained in the waves as they travel in the ocean and disperse ashore. Specifically,
data on the surface of the ocean contains a wave-variance spectrum, or energy density E(σ, θ),
and these wavelengths are still distributed over wavelengths (as seen in the unused frame of
the current speed reference) with distribution directions common to rotate the stems of each
spectral object.

The bulk of the action is defined as N = E/σ, which is saved during the distribution
along the wave element before the current one. The appearance of N(x, y, t;σ, θ) in space,
x, y, and time, t, is governed by the action balance equation [15, 16]:
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The left side represents the kinematic part of the equation. The second term (parent) describes
an increase in the wavelength of a wave in the opposite direction of the Cartesian space where
the c is wave wave. The third term represents the effect of a change in radian frequency due
to differences in water depth and current mean. The fourth term presents a deeper reflection
and current practice. Maximum cσ and cθ distribution speed in the spectral space (σ, θ). The
right-hand side represents the dynamic sources of space and the sinking of all body processes
that produce, disperse, or disperse the wave energy (i.e., wave growth through air, offline
power transmission through three or four wave interactions, and wave decay due to white
extinguishing, collision, and depth).

Haas et al. [5] define wave power consumption as a function of the critical wavelength, Hs
and time wavelength, T. This information can be used to calculate wave power. Therefore,
the time limit of T and, in particular, Hs because J is proportional to the wavelength, is
necessary to predict the intensity of the wavelength.

3 Machine learning

3.1 Proposed method

Supervised machine learning regression models are tested to perform tasks of predicting
significant wave height. Support-vector Regression (SVR) constructs a hyperplane or set
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of hyperplanes in a high- or infinite-dimensional space, which can be used for regression
(Hs prediction), or other tasks like outlier’s detection. The function used to map a lower
dimensional data into a higher dimensional data though kernel. Two parallel lines drawn to
the two sides of Support Vector with the error threshold value, (epsilon) are known as the
boundary line. These lines create a margin between the data points.

3.2 Background

Python toolkit SciKit-Learn [34] was used to access high-level programming interfaces to
machine learning libraries and to cross validate results. Machine learning have shown the
greatest potential for pattern recognition in large data sets. Consider that a physics-based
model acts as a non-linear function that converts input (wave signals and variable ocean
currents and wind speeds) to output (spatially variable Hs). The predictor and predict and
from buoy data can be collected in input vector, x, and output vector, y, respectively.

Because the purpose of this effort is to develop a framework of machine learning to
effectively predict Hs from buoy data, the nonlinear function mapping inputs to the best
representation of outputs, ŷ, is sought:

g(x; Θ) = ŷ. (2)

The machine learning sufficiently trained model provides a mapping matrix, Θ, which is
a machine learning data model driven by vector-matrix functions included in (3).

The Python Toolkit SciKit-Learn [21] has been used to access high-level frameworks for
cross-validation results and python machine learning libraries. Machine learning SVR model
is used considering the root mean squared error, less training data for better prediction and
is faster to compute output (more on this later).

3.3 Training dataset

Cairns wave monitoring of Queensland Coastal weather Observation data from Datawell
0.7 m Waverider Buoys were downloaded. Measured and derived wave parameters from data
collected by a wave monitoring buoy anchored at Cairns (1 Jan 2020 to May 2020). The
dataset has six fields: Hs, Hmax, Tz, Tp, Di_TpTrue and SST. These fields are defined in
table (2). There were 130 occasions when data from wave monitoring buoy at cairns were
missing. Those missing values were deal using feature engineering by replacing them with the
average values. These data were compiled into X vectors. In total, the design matrix X has
4,369 rows and 7 columns.
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Table 1. Dataset fields (Attributes)
Field Definition

Hs
Significant wave height, an average of the highest third of the
waves in a record (26.6 minute recording period)

Hmax
The maximum wave height in the record The zero upcrossing
wave period

Tz The zero upcrossing wave period
Tp The peak energy wave period

Dir_Tp TRUE
Direction (related to true north) from which the peak period
waves are coming from

SST Approximation of sea surface temperature
Date_Time The Date and time of the record

For SVR algorithms, Y is composed of the 4,369 model runs (rows), each of which contains
7 attributes (columns) defining the Hs field.

Note that in practice, data on design matrices is pre-processed. Specifically, X undergoes
a generalized global variable (e.g., all existing members are measured so that their total
distribution is Gaussian with zero mean and unit variance). Here, no pre-processing of SVR’s
Y is required.

Data X and Y were randomly divided into two groups to form a training data set
consisting of 90% of 4,369 rows of data and test data sets the remaining 10%. The mapping
matrix is calculated using training data and then used in the test data set and RMSE between
the vector of the test data, y, and its machine learning representation, ŷ is calculated.

The SVR algorithm needs to be supplied only by X and the vector of the Hs value column
compiled as y. Data were further subdivided into two groups with 90% of x vector randomly
assembled in training dataset and reserved the remaining for testing. The SVR model returns
three files; the first describes the normal change applied to x, the dot product taken with the
mapping matrix Θ described in the second file, and the third file is used to convert ŷ back
to the characteristic Hs.

3.4 Support vector regression model

In training data set Xn is a multivariate set of N observations with Y n response value
observed. To find the linear function (4) and make sure it is as flat as possible, find f(x)
having minimal norm value

f(x) = x′β + b (3)

(β′, β). This is constructed as a convex optimization problem to minimize (5) subject to all
residuals

J(β) =
1

2
ββ′ (4)

having a value less than ε; or, in equation form (6):

∀n : |yn − (x′nβ + b)| ≤ ε. (5)



92 Machine learning approach to predict . . .

It is possible that no such function f(x) exists to satisfy the constraints of all points.
To deal with impossible obstacles, enter the slink ξn and ξ ∗ n variables for each point. This
approach is similar to the concept of "soft margin" in SVM segmentation, because the flexible
flexibility allows regression errors to exist until the ξn and ξ ∗ n values, but still satisfy the
required conditions.

The inclusion of slack variables leads to the primal formula, also known as the objective
function [25]:

J(β) =
1

2
ββ′ + C

N∑
n=1

(ξn + ξ∗n) (6)

Subject to:

∀n : yn − (x′nβ + b) ≤ ε+ ξn (7)

∀n : (x′nβ + b)− yn ≤ ε+ ξ∗n (8)

∀n : ξ∗n ≥ 0 (9)

∀n : ξn ≥ 0 (10)

Constant C is the limit of the box, a positive numerical value that controls the penalty
placed on the observation which lies outside the epsilon margin (ε) and helps prevent over-
fitting. This value determines the trade-off between f(x) fatness and the value until the
deviation greater than ε is tolerated.

The linear loss function of ε-insensitivity ignores errors that are in ranges of ε distance
of the observed values by considering them as equal to zero. Loss is measured based on the
distance between the observed value y and the ε boundary. This is described by

Lε =

{
0 If |y − f(x)| ≤ ε

|y − f(x)| − ε Otherwise
(11)

In most of the linear regression models, the objective is to minimize the sum of squared
errors. For example, take Ordinary Least Squares (OLS). For OLS with one predictor
(Maximum wave height) the objective function is as follows:

MIN
n∑
i=1

(yi − wixi)2 (12)

Where yi is the target, wi is the coefficient, and x? is the predictor (Maximum wave
Height).
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Ridge, Lasso and ElasticNet are all extensions of this simple equation, with an additional
penalty parameter, Correlation-based Feature Selection (CFS), that aims to minimize
complexity and reduce the number of features used in the final model. The aim is to reduce
the error of the test set.

In contrast to OLS, the SVR’s objective function is to reduce coefficients – in particular,
the l2-norm of the vector coefficient – not the squared error. The term error is rather handled
in constraints, where we set the absolute error below or equal to the specified margin, called
the maximum error, ε (epsilon). We can tune the epsilon to get for our model the desired
accuracy. The new objective function and constraints for our model are as follows:

Minimize
1

2
‖w‖2,

Subject to |yi − 〈w, xi〉 − b| ≤ ε
(13)

Where xi is a training sample with target value yi.
The inner product plus intercept 〈w, xi〉 − b is the prediction for that sample, and ε is

a free parameter that serves as a threshold. The Kernel applied here is RBF(Radial basis
function) due to non-linearity in the data set.

Figure 1: Scatter plot showing the actual and predicted values for Hs. The Swan model values
horizontally on X-axis and SVR predicted values are represented by Y -axis vertically.

The SVR model effectiveness was evaluated according to the accuracy percentage in
predicting Hs value. In the SVR results no bias was observed and 95.7% of the time correctly
predicted the characteristic Hs in the test data set. The scattered plot in Figure 2 visualize
the characteristic Hs from SWAN and the SVR representation which revel that there is no
outlier found with the final model.

The problem of regression is to find a function that approximates mapping from an input
domain to real numbers based on a training sample. To analyze the performance of SVR, the
model was trained on 90% of the dataset and the remaining 10% was allocated as test data.
The accuracy of SVR was 95% on test dataset with a root mean squared error of 0.044.
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Figure 2: Plot visualizing the actual and forecasted values for Hs against time series. Blue
indicate the actual Swan model Hs while the orange represents SVR predicted Hs.

4 Discussion

Advanced machine learning models have been developed here to create improved mapping
matrix (or vector) and pre- and post-processor functions, to predict significant wave height.
Instead of the historical data used to create an input vector, x, now the weather data can
be used. In order to work with the weather mode, the data from buoy are used, both the
predictor and predicant from the same data, to train the machine learning algorithm to
form Hs field. Such data is part of the Marine Information System which is the state of
WAVEWATCH III-predictable waves conditions available for the next 10 days. Also, forecasts
for ROMS-simulated ocean-currents and wind forecast are available for the next 48 hours
from CeNCOOS and The Weather Company [19], respectively. For the Cairns wave the
historical data is available on Queensland Coastal weather Observation [24] for data taken
from Datawell 0.7m Waverider Buoys.

The execution of machine learning models quickly produces theHs field. Computationally,
this only need a multiplication of the L+1 matrix. In fact, for a 24-hour forecast, on a single-
core processor the machine-learningSVR took 0.044 s to calculate the Hs field | well over
three orders of magnitude (485,833%) faster than the running the full physics based models.
In fact, performance that requires a lot of wall clock time loads metrics files for memory.

The machine learning models presented here are specific to the Queensland coast cairns
region and will need to be re-training to apply to other locations. Of course, using a physics-
based model on a new site requires the creation of a grid and the integration of all the
boundary and conditions of coercion with all the efforts of the server. However, the important
thing is that the framework needed to develop this technology is introduced for the first time
for wave modeling in 2017. As expected [22], the data-centric modeling machine learning
approaches has grown increasingly common in last few years and are expecting to grow in
near future rapidly.
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5 Conclusion

An improved version of machine learning models has been developed with new approach,
as computationally efficient to predict Hs fields. From supervised training of machine
learning models determined appropriately trained mapping matrices, give in representations
of similarly accurate Hs in the domain of interest. Thus, this approach of machine learning
models can contribute to a fast and efficient wave-condition forecast system. The power-
generation potential of WECs or surf conditions can be estimated using these forecasted wave
conditions. Ultimately, it is envisioned that such improved version of machine learning models
which don’t required many parameters for accurate prediction could be installed locally on a
WEC thereby making their own forecast system. In addition, the buoy itself can collect wave-
condition data that can be used to update machine learning models. As machine learning
technology advances, they can be adapted to integrate the continuous distribution of real-
time data collected locally with predictions available to change and improve the parameters
of the machine learning model. In fact, such methods have already been widely used "online
learning" [23].

The approach previously proposed by author to predict characters Hs using MLP requires
a large amount of data and more calculation to form mapping matrix due to lack of
an important parameter maximum wave height, which is considered in this work. This
parameter when used as a predictor gives better forecasting with low calculation cost and high
model efficiency. Additional efforts are currently underway using ensemble machine learning
approaches to predict Hs and Wave period T. The results are expected to further improve
the process of wave characteristics prediction and take into account how bathymetry effects
wave heights.
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