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ASYMPTOTICS OF THE EIGENVALUES OF A PERIODIC BOUNDARY
VALUE PROBLEM FOR A DIFFERENTIAL OPERATOR OF ODD ORDER
WITH SUMMABLE OPERATOR

The paper is devoted to the study of spectral properties of differential operators of arbitrary odd
order with a summable potential and periodic boundary conditions. For large values of the spectral
parameter the asymptotics of the solutions of the differential equation that defines the differential
operator is obtained. Differential equation that defines the differential operator is reduced to
the Volterra integral equation. The integral equation is solved by Picards method of successive
approximations. The method of studing of operators with a summable potential is an extension
of the method of studing operators with piecewise smooth coefficients. The study of periodic
boundary conditions leads to the study of the roots of the entire function represented in the form of
an arbitrary odd order determinant. To obtain the roots of this function, the indicator diagram has
been examined. The roots of this equation are in the sectors of an infinitesimal angle, determined
by the indicator diagram. In the paper the asymptotics of eigenvalues of the differential operator
under consideration is found. The obtained formulas make it impossible to study the spectral
properties of the eigenfunctions and to derive the formula for the first regularized trace of the
differential operator under study.

Key words: Differential operator of odd order, spectral parameter, summable potential, periodic
boundary conditions, indicator diagram, asymptotics of solutions, asymptotics of eigenvalues.
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Kocsounybint oneparopsl 6ap Ttak perrti auddepeHuaiabiK onepaTop YIliH NepUuoOATHIK,
mekapa ecebiHiH MeHIIiK M9HAEPiHiH aCUMIITOTUKACHI

Bya xxymbicta muddepeHnaiabk orepaTopIap/IblH CIIEKTPJIIK KACHETTEPIH 3ePTTeyTre apHAJITaH.
CrexTpJiik napaMeTpiH YJIKeH MoHIepi VIl JuddepeHInaIIbK, OlePATOPIbl aHBIKTAUTHIH -
depeHnmaIIBIK, TeHIEY MIENiMIePiHIH aCHMITOTUKACH! aJibiHa bl uddeperimaiibik omeparop-
JIbl AHBIKTANTHIH A depeHnuaiIblK TeHiey BolbTeppanblH HHTEMPAJIBIK TEHIEYiHe KeaTipii-
rer. Unrerpanmaeik, Terey [lukapa omicimen mremnmisieni. 2KUBIHTHIK 9/1eyeTi 6ap omepaTop iapIbl
OKBITY 9ici 6iprekTec Ko durmeHTTepi 6ap orepaTopapiAbl OKLITY d/iCTeMeCiH KeHeHTy 60-
JIbIT TabbLIa bl [lepuoaThIK MeKapaJiblK, MapTTapiAbl 3ePTTeY TakK, TOPi3/i epiKTi JeTepMUHAHT
peTiHjie YCHIHBIIFaH OYTiH (DYHKIMAHBIH TYOIpJIEPIH 3epTTeyTe AJIBI KeJieli. Byl (DyHKIUSHBIH,
TaMBIPJIAPBIH 01Ty VIMH HHINKATOPJIBIK, JuarpamMmma 3eprresiai. byn Tenaeyain Tyoipiaepi naamka-
TOPJIBIK, TUArPAMMAMEH aHBIKTAJITAH IEKCi3 OYPBIMITHIH CEKTOPJIAPBIHIA YKATHIP. Byl Makazama
nuddepeHnnaaIbK OepaTOP/IbIH, MEHITKTI MOHIEPiHIH, aCUMIITOTUKACH! KerTipiaren. HoTmxe e
aJIBIHFaH (POPMyJIajiap MEHIMKTI (DYHKIUIaPIbIH CIEKTPJIIK KACHETTEPIH 3epTTeyTre JKoHe 3ePTTe-
Jietin uddepeHInaiIbiK OepaTOP/IblH AJFAIIKLI PErYJIUPJIEHTeH 13iHIH (POPMYJIACHIH IIBIFApyFa
MYMKIHIIK 6epei.
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aud pepeHIaIbHOroO OnepaTopa HeYeTHOrO MOPsSAKAa ¢ CYMMHUPYEMBIM OIIE€PaTOPOM

Pabora mocssillieHa U3yYEeHUIO CIEKTPAJIbHBIX CBOHCTB MU @epEeHIIUABHBIX OIepaTOPOB IIPOU3-
BOJIBHOI'O HEUYETHOI'O IOPSJIKA C CYMMHPYEMBIM ITOTEHIIMAJIOM U ITEPUOJINYECKUMU I'DAHUIHBIMEI
ycnoBusivu. [Ipu GoJbIIUX 3HAYEHUSIX CIEKTPAJIBHOTO IapaMeTpa IOJIyIeHA ACHMIITOTHKA
perernit  uddepeHInATBPHOTO YPABHEHNUS, ONPEIeAonero auddepeHuaibHblil OIepaTop.
Huddepenmnmaabioe ypaBHeHne, onpeaendomniee auddepeHnuaabHblil OnepaTop, CBOIUTCI K
HHTErpaJbHOMY ypaBHeHHI0 Bousibreppa. MHTErpasbHoe ypaBHEHNE PEIaeTcss METOJOM ITOCJIe0-
BaTe/IbHBIX npubkenuit [lukapa. Mero o0ydeHns: omiepaTopoB ¢ CyMMUPYEMbIM IIOTEHIIAAIOM
SIBJISIETCsT PACIIUPEHNEM MeTOa OOYyJYeHHUsl OIEPATOPOB C KYCOYHO IVIAJKUMU KO3 puimenTamu.
W3yuenne mepnognvuecKnx IPaHUIHBIX YCJIOBUI MPUBOIUT K M3YUEHUIO KOPHEH Tesioit hyHKIuH,
[PEJICTABJICHHON B BHJE IMPOM3BOJILHOIO OIPEIETUTENsT HEYETHOrO TMopsiaka. [iist mosrydenust
KOpHe#t 3Toil (DyHKINN ObLIa UCCJIe0BAHA WHINKATOPHAs Juarpamma. KOpHE 3TOro ypaBHEHUst
JIEXKAT B CEKTOpax OECKOHEYHO MAaJIoro YIJIA, OIPEeIesIsieMOro JIUarpamMMoil HHIuKaropa. B
cTaThe HaliJIeHa aCUMIITOTHKA COOCTBEHHBIX 3HAUYEHHUI paccMaTpuBaeMoro auddepeHua bHOro
oneparopa. [lomydennbie GOpMyJIbI HE TO3BOJISIOT HCC/IEIOBATH CIEKTPAJIbHBIE CBOMCTBA COO-
CTBEHHBIX (DYHKIWMI U BBIBECTU (DOPMYJIY MJisi TIEPBOIO PErYISAPUIOBAHHOIO CJIESIA MCCJIELyeMOroO
muddepeHnnaILHOTO OIepaTopa.

Kuarouesbie cioBa: {uddepeHmaabubiii onepaTop HEYETHOTO TOPSJIKa, CIIEKTPAIbHBIN mapa-
METP, CYMMHUPYEMBIil IOTEHITNAJ, IEPUO/IMYEeCKIE TPAHNYHbBIE YCJIOBUS, WHINKATOPHAS TUarpaMMa,
ACHMIITOTUKA, PENIEHU, aCHMITOTAKA COOCTBEHHBIE 3HATEHUSI.

1 Statement of the problem

Let us investigate the spectrum of a differential operator arbitrary odd order defined on an
interval [0; 7] by a differential equation of the form

y (1) + q(2)y(z) = AaP2y(z), 0<z<m, a>0 N=1,23, ..., (1)
with periodic boundary conditions
y(0) =y(x), y"™(©0)=y"(x), m=12,... 2N, (2)

where the number A is called the spectral parameter, the function ¢(x) is called the potential
and we assume that the potential ¢(x) is a summable function on the segment [0; 7]

T !

o(x) € L0 7] / ()t | =q(2) (3)

0 x

for almost all values x from the segment [0; 7].

The spectral properties of differential operators were first studied in the case when the
coefficients of the differential equations defining these operators were sufficiently smooth
functions. The asymptotic formulas for the roots of quasipolynomials, which are obtained
in the study of higher-order operators with regular boundary conditions with smooth
coeflicients, were obtained in paper [1].
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In paper [2], the traces of higher-order ordinary differential operators with sufficiently
smooth coefficients were calculated.

In work [3], the author studied the spectral properties of differential operators with
piecewise smooth coefficients. In paper [4], we studied a differential operator in which not
only the potential is a discontinuous function, but the weight function was also piecewise
smooth.

In paper [5], a second-order operator with a summable potential was studied, the
asymptotics of the eigenvalues and eigenfunctions of the Sturm—Liouville boundary value
problem on a segment were calculated. A new method for studying differential operators with
summable coefficients, whose order is higher than the second, was developed by the author
in papers [6-8]. In all these works, the boundary conditions were separated. The periodic
boundary conditions that we study in this paper are a classic example of nonseparated
boundary conditions.

The spectral properties of differential operators with periodic boundary conditions with
smooth potentials were studied in papers [9-11]. Interest in the study of such operators is
caused by physical applications: in the case of fourth-order operators, they describe a model
of a beam or plate with a hinged joint or with fixed ends. Operators with periodic boundary
conditions were also studied in papers [12, 13].

In papers [14, 15| the author studied model examples of differential operators with
summable potential with periodic boundary conditions. The differential operators of odd
order with periodic boundary conditions have not actually been studied. A third-order
operator on the real axis with periodic boundary conditions was studied in paper [16].

2 Asymptotics of solutions of differential equation for large values of the
spectral parameter \

Let us introduce the following notation: A\ = s2V+1 s = *"%/), while fixing that branch of
the arithmetic root for which *"%/1 = +1. Let us denote by wy (k = 1,2,...,2N + 1) the
various roots of the (2N + 1)-th degree from the unity:

WAV 1wy = e vt (k=1,2,...,2N + 1);
27 27T 27]—
:1 — e2N+1 — ) Si = 2 4
w1 ; Wy =€ COS<2N+1)+ZSIH(2N+1> 2% ; (4)

W =2z""1 m=12,...,2N +1.

The numbers wy, (kK =1,2,...,2N + 1) from decide the unit circle into (2N + 1) an
equal part, and they satisfy the following relations:

2N+1 2N+1
dowp=0,m=12...2N; Y wp=2N+1, m=0 m=2N+1. (5)
k=1 k=1

The following statement is established by the method of variation of arbitrary constants
under the condition (3| of the summability of the potential ¢(z).
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Theorem 1 The solution y(x,s) of the differential equation 1s the solution to the
following integral equation:

2N+1 1 2N+1 z
y(%, 3) = Z Cre™ " — (2N T 1)a2N52N Z wre / qa)eiawkﬁy(t? S)dta (6>
k=1 k=1 0

where Cy (k=1,2,...,2N + 1) are arbitrary constants.

Proof. Let us prove that the function y(z, s) from (6]) is indeed a solution of the differential
equation ([I]). Since, in view of condition (3)) [¢(z) € L1[0; 7], the function e~**** is infinitely
differentiable with respect to the variable x, the function y(x,s) must satisfy the equation
(1), which means that it must be (2N 4 1) times differentiable with respect to variable x,
then the function G(z,s) = q(z)e~****y(z, s) € L1[0; 7] and then the relation

T ! T /

/G(t,s)dt = /a(t)e_a“’“Sty(t, s)dt | = q(x)e” “ **y(z,s) (7)

0 x 0 z

holds for almost all z from segment [0; 7].
Differentiating the function y(x,s) from @ with respect to the variable z, using the

properties and , we get:

2N+1 1 2N+1 z 1
y'(z,s) = ; Cy(awys)e™** — M ; wk(awks)eawksx/G(t,s)dt— M—N<;S1(:c,s), (8)
= = 0

2N+1
1 .

My = (2N 4+ 1)a*Ns*N | ¢y(z,8) = —— E wpe™ T q(z)e” Ry (x, 5) =) 9)

My =

From formulas , @, using the properties and , we have:

2N+1 2N+1 z

1 1
y'(z,s) = Z C’k(awks)Qe“wk“—M—N Z wk(awks)%a’”ksx/G(t,s)dt—M—Ngbg(m,s), (10)
k=1 k=1 9
Qb ( ) 1 2§1 ( ) awy ST ( ) —awg ST ( ) asq(x)y(x,s) 2§1 2 (2:2) 0 (11)
T,8) = ——— w(awgs)e T)e T,8) = ——— 2 wp = 0.
2 My 2 kAW q Y My — k

Similarly, the following formulas are derived:

2N+1
y(n)(x>$) = Z Cr(awgs)" e+ —
k=1
| 2 z 1 (12)
e Z wk(awks)”e“w’““/G(t, s)dt — M—Nqbn(x, s),n=3,4,...,2N,

k=1 0
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REARY
¢n($’ 3) - _M_N Z wk(awks)n_1€awkst_I($)€_awkszy(l',S) _
k=1 (13)
_ IN+1 _
(as)" 'q(x)y(z, s) 22 (as)" 'q(x)y(z,s) -0
_ w22 —0, n=3,4,...,2N.
My ,; () My

Substituting the formulas , at n = 2N in the differential equation , we obtain;

2N+1
(23) AWl ST
y2N+1)($,S)+q(I)y(l‘,S) —)\2N+1y($,8) = Z Ck(awks)2N+le R —
k=1
1 2N+1 z
v ; wk(awks)2N+leW’“sm/G(t,s)dt—
= 0
2N+1
1 3 (14)
Y wlawns) N e g (n)em 5y (a, 5) + q(x)y(, 5)—
My k=1
2N+1 2N+1
2N+1 Z C eIRST | \g 2N+1 Z W 6awksx/ (t,S)dt _
k=1 s

= —q(z)y)z,s) + q(z)y(v,s) =0

for almost all  from the interval [0; 7], which means that the function y(z,s) from (6 is
indeed a solution of the differential equation .

(In equation (14])), the first and fifth terms cancel out, the second and sixth terms cancel
out due the fact that A\ = s2VF1 2Nt = 1 My = (2N + 1)a?V sV,

Futher, the asymptotics of solution of the differential equation (1) will be found by the
method of successive approximations of Picard: from the formula @ we obtain the function
y(t, s) and substitute it into equation ():

2N+1 1 2N+1 z
— C AWRST __ awp ST t —awkst><
) ,; . (2N + 1)a2N 52N ; e / e
. ! (15)
2N+1 2N+1

1 —QaWn S
> e iy 2 e [l s s)de | .
n=1 k=1

0

Changing the order of summation in formula ((15), performing the necessary
transformations and estimates similar to the monograph [1, chapter 2|, we come to the
conclusion that the following statement is true.
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Theorem 2 The general solution of the differential equation 1s represented in the
following form:

2N+1
y(l‘v 5) = Z Ckyk(xv S)a
k=1

AN+l

y™(z,5) = Z Cky,gm)(x,s), m=1,2,...,2N,
k=1

(16)

where Cy (k = 1,2,...,2N + 1) are arbitrary constants, and the following asymptotic
expansions and estimates are valid for the fundamental system of solutions {yx(z, s) iﬁfl

xT

2N+1
1
_ GwpST __ awn ST a(wg—wn)st
yk(x’ S) - (2N+ 1)0,2N32N 2:1 Wp€ /q(t)@ * dtakn+ (17>
n= 0

|Ss|ax

++Q(54N), F=1,2...2N+1, y(0,5) = L;

(m) 1 2N+1
Ys, (l’, S) - (CLS)m{w?eawksx N (2N - 1)a2N52N Z W,T+1€aw"sm><
n=1

y |Ss|az (18)
a(wp—wn )st €
0

k=1,2,....2N+1, m=12,...2N; 4"™(0,s) = (as)™w.

3 The study of boundary conditions (3))

Using the formulas , from the boundary conditions we get:

( (1.2) 2N+1 2N+1
y(ms) = y(0,5)& > Ceyr(m,s) = > Ciyr(0,5)e
k=1 k=1
2N+1 o 2N+1 (19)
&> Cugil(m,s) = ye(0,5)] = 0" Y Cilyu(m,s) — 1] = 0;
\ k=1 k=1

(Y (m,s) 12) y™(0,s) 251 Ty sy y™0,8) ]
= = Z Ch — =0,

(as)m (as)m & (as)™ (as)m

m=1,2,...,2N.

(20)

\
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Theorem 3 The eigenvalue equation of the differential operator ()f() has the
following form:

yi(m,s) —1(0,5) Yo(m,5) —42(0,5) ... wonq1(m,5) — yan41(0, 5)
s 1(0,8) wms)  Y(0,s) vhn (™) Yan1(0,8)
as as as as as as —0. (21)
........ R AP
W) Y (0.8) Vg vy (0,5) () Yo (0,9)
((ZS)2N <a8)2N ((18)2N (a3)2N e (as)2N (aS)QN

Applying the asymptotic formulas , , we rewrite the equation in the following

form:

1 2N+1 T )
D, — e Z Wy, ST (f) +Q(s4_N> BLQN_H
n=1 0 aln
1 2N+1 9 ™ .
w1 Dy — —— W e + 0 (= B
f(S) — 141 My n;1 n (J >a1n ~Z (341\1) 2,2N+1 — 0, (22)
....... 12N+17T1
w%NDl - i Z w72LN+16awns7r (f .. ) + Q (84—]\,) . BQN+172N+1
n=1 0 aln

Dm — MWnsST _ 1; Mn — (2N + I)GQNSQN;

1 2N+1 m 1
_ . m—1 m awWn ST .
Bnany1 = wyn i Donvy1 — My E Wy e " / +0 (54_1\7) ;
n=1

0 a,2N+1,n
m=1,2,...,2N + 1.

Expanding the determinant f(s) from (22)) into columns into the sum of determinants,
we obtain:

fan(s) 1
f(S) - fO(S) - (2N + ].)CLQNSQN +Q 84_N = 07 (23)
fo(S) — Aoo[eawlsﬂ' . 1][€aw237r . 1][€aW3srr . 1]( N )[eaw2N+1s7r o 1]7 (24)
L-feism — 1] 1-[emasm — 1) .. 1. [ewanasm ]
) — | e walemm =) e 1| 25)
W%N[eawlsﬂ' _ 1] w%N[eawgsw o 1] L w%]]\\;+1[eaw2N+18ﬂ' _ 1]
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Agp is the Wandermonde’s determinant of the numbers wy, wo, ..., woni1:
1 1 1 1 1
w1 ) w3 Won WaN+1
— |, 2 2 2 2 =
Aoo Wy Wy W3 WoN Wan+1
..................... (26)
2N , 2N , 2N aN , 2N
Wy Wy Wy ... Wiy Woni
= H k>n (wk — wn) 7A O,
k,n=1,2,....2N+1
2N+1 ” 2N+1
fon(s) = Aoo{ g Wi / ks H (e ™ —1) | +
= =1
k=1 0 alk Z;él
2N+1 ~ 2N+1
+ E W / . e WkRST H (™™ — 1) | +---+ (27)
= =1
k=1 0 a2k Z¢2
2N+1 " 2N+1
+ 2 Wi / kST H (eawnSﬂ' - 1) }
= =1
k=1 0 a,2N+1,k n?snzN+1

For the determinant Ay from ((26)) the following property holds: if (0,.x) (m,k =
1,2,...,2N+1) is the matrix of algebraic minors to the elements b, , (m,k =1,2,...,2N+1)
of the determinant Ay of ((26])), then

o di2 ... O1ont1
5 o 021 022 o 029N +1 .
(Gmn) = =
JoN+1,1 Oan+12 02N +1,2N+1
1 -1 1 -1 —1 1
1 1 1 -1 -1 1 (28)
—Ww, Wy —Ws Wy Wo N Won+1
2 2 2 2 2 2
A Wy W ws Wy —WoN WoN+1
127
—2N—-1  —2N-1 —2N—1  —2N-1 —2N-1 —oN-1
Wy 2 Ws 4 Won —Woni1
2N 2N 2N 2N 9N 2N
Wi 2 Ws 4 —Won WoNnt1

The proof of property can be found in the work of the author [2|. The formula
is derived using the property (28). To find the roots of the equation fo(s) from (24), it is
necessary to study the indicator diagram of this equation (see [3, chapter 12]).
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For the equation fy(s) = 0 from - the following relation is valid:

2N+1 2N+1
f0<8) = A00 -1+ Z edWn1 ST _ Z ea(wn1+wn2)s7r+
ni=1 ni,ng=1
2N+1 "1¢n22N+1 (29)
+ Z ewny +wng Fwng)sT Z ewny +Wng Fwng+wn, )sm 4+ b
ny,mg,nz=1 n namgim=]
A2 2 ny #nm . (k#m)

To construct the indicator diagram of the equation (29)), it is necessary to study the
convex hulls of the sets

4 2N+1
2N+1 2N+1 2N+1 §
{wnl }m:l ) {wnl + wnz}m,nzzh {wnl + Wny + wnS}nl,nz,ngil’ { wmn} - )t
nl#n2 m=1 mz7{L,2_,3,4
The indicator diagram has the following form:
Wgm = Wk + wn, Wnyna,...,n, — Wny + Wniy +- 1+ Wny, (30)

In figure the following designations are introduce: the points By, By, B3, By, Bs, . . .,
Bon, Bonit, -, Banas, Banags - - -, Bani1, Banao correspond to exponents with
exponents  wia . N; W1,2,...,.N,N+1; W23, N,N+1; W23 .. N+1,N+2; W34, N+1,N+25 - )
WN,N+1,...2N; WN4+1,N+2,...2N; WN4+1,N+2,...2N2N+1; WN4+2 N+3,...2N,2N+1; WN42 N+3,... 2N+1,1;

WN4+3,N+4,..2N+1,15  WN43,N+4,..2N+1,1,2; - -3 W2N+1,1,2,3,.N-15 WN+1,1,2,3,...2N—1,N, where



12 Asymptotics of the eigenvalues of a periodic boundary value problem ...

Wny na,...ny COrresponds to the sum w,, + wyp, + -+ + w,, indices ny,n,, do not coincide in
pairs at k # m.

In figure (30), the circle of the smallest radius Ry = 1 is the set of points {wi};;" from
that divide the unit circle (2N + 1) equal parts. The circle of the second largest radius

Ry = |wi + wy| > 1 is a set of points {wy + wp, Y3+ that are constructed according to the
k#m
parallelogram rule, while only points wy + ws, we + w3, W3 + Wy,. . ., Won + Woni1, Won+1 + W1

appear on the circle, the point w,, + w,, under the condition |n; — ny| > 2 fall inside the
circle of radius Ry and do not affect the asymptotics of the roots of equation - (see
[3, chapter 12]).

The third largest circle of radius R3 = |w; + we + w3| > Ry is a set of the points {wy +

ON+1 .
W + wn}km:_n:l only points w; +ws +ws,wz + w3 + w4, W3 +ws +Ws, ..., Won_2+wWan_1+WaN,

WoN_1 + Wan + Wont1, Won + Want1 + Wi, Woni1 + wi + wo are located on the boundary of
the circle, the remaining points are inside this circle, and the asymptotics of the roots of

equation — are not affected. Next come the circles of the radius Ry = |wy + wo +

w3 + wy| > Ry (this is a set of points {wy, + Wi, + Wiy + wr, J40L, ), the circle of radius

m=1,2,3,4

5
Rs = | > wi| > Ry (this is the set of points {wy, +wk, + - +wi. }2NFL, )., the circle of
k=1

m=1,2,...,5

N-1
radius Ry_; = | > wi| > Ry_o (this is the set of points {wy, +wk, +- - +wry V0 0 ),
k=1

m=1,2,...,.N—1

N N
and finally, the circle of the largest radius Ry = | > wi| > Ry41 = | D wi| due to equality
k=1 k=1

2.2 .
w1 twastws+- - -+wan+wani1 @2 0 (these are the sets of points {wyg, +wWp, ++ - +Wry } 01,
m=1,2,...,N
and {wkl -+ ka + -+ wkN + wkal 2Nt}n:1 )
m=1,2,...,N+1
N+2
The circle of he radius Ryi2 = | > wg| coincides with the circle of the radius Ry_1,
k=1
N+m
the circle of the radius Ryym = | Y, wi| coincide with the circles of the radius Ry_p41 =
k=1
N—m+1 . 2N11 (2.2) o
| > wi| (m = 2,3,...,N) due to equality > wy = 0 they are located inside the

k=1 k=1
indicator diagram and such exponentials do not affect the asymptotics of the roots of

equation - (27).

The roots of equation - are located in the sectors 1),2),...,(4N+1)), (4N+2)) of
an infinitesimal opening, the bisectors of which are perpendicular to the segment [B,,; B, 11]
(m=1,2,...,4N + 2) and pass through the midpoints of the segments.

4 The asymptotics of the eigenvalues of the differential operator - in the
sector 1) of the indicator diagram (30))

To find the roots of the roots of the equation f(s) = 0 from - in the sector 1)
N

of the indicator diagram , only the exponents with the exponents wy23. N = > wy and
k=1
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N+1
w123, NN+1 = »_ wg should be left in this equation.
k=1

Theorem 4 The equation for the eigenvalues of the differential operator — in the
sector 1) of the indicator diagram has the following form:

vi(s) = vi0(s) — (2N1i’21]\)[((1§2V82N +0 (34%) =0, (31)

UL()(S) (3:6) Aoo[ea(w1+w2+...+w1v)s7r . ea(wl—&-(4;24-...—|—w1\/—|—w1\]+1)s7r]7 (32)
while the main approximation has the form vy o(s)

V12N (8) / v10(s) / vi0(s)

. = w1 . + Wwo . + -t

AOO AOO A00

_ 0 all ~ 0 a22
v10(s
+wn / X)( ) WN+1 / (—1)hN+1(S)—|—
00
0 aNN 0 a,N+1,N+1
N ~ N I
h Ul,O(S)
00
k=1 0 aN+1E 0 a,N+2,k
™ N ™
v1,0(s)
+Wwn11 (_1)hN+1(5)+"'+ZWk A—+
00
0 a,N+2,N+1 k=1 0 a,2N+1,k
+C<)N+1 / e (—1)]'LN+1(S),
0 a,2N+1,N+1

Where the notation hy(s) = e@@itwet=F+wn)sm and by, (s) = et@itwetFontwni)sm gre
introduced.

Dividing in the equation - by (—1)Agohn(s) # 0 we obtain:

~ N
AWN 18T 1 AWN 18T
nls) = e _1]_(2N+1)a2N52N{/ q(t)dtary Y wrle™ 1T — 1)+
k=1

N
+WnN11 / NI E Wi / +
k=1

0 a,N+1,N+1 0 a,N+1,k
N s s

a,N+2k 0 a,N+2,N+1
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™

N ™
+Zwk (/ [N+ — 1] + w1 / EOWNHIST 4

0 a,N+3,k 0 a,N+3,N+1

> aAQWpN 18T AWN 41ST (34)
—I—Zwk [6 + —1]+WN+1 e + —+

0 a,2N+1,k 0 a,2N+1,N+1

at the same time

m ™ ™ ™

/ _ / — = / Qil)/q(t)dtall,

0 all 0 a22 0 akk 0
k=1,2,...,2N + 1.
The basic approximation of equation ((34])) has the form:
2ik
eawN-HSﬂ' —1= O<:>€awN+1S7T =1= 27”k<2>5k Lbas = G ’ k c N. (35>
AWN+1
The following statement follows from the formula and the general theory of finding
the roots of quasipolynomes of the form (34)) (see [4], [5]).

Theorem 5 The asymptotics of the ez’genvalues of the differential operator - in the
sector 1) of the indicator diagram (30) has the following form:

2i d 1
Spp = —— [k—l— 2N’“+O( )} keN. (36)

AWN 11 2N L2N

Proof. Applying the Maclaurin’s formulas, we have:

aw ST QZ d oy 1
SO A YRR R

N+1
_ 2nik o dan k1 0 1 _1 2midan k1 0 1 ' (37)
— ¢ exp[ m( L2N +o LAN } =1+ k2N +¢ JAN >7
21N _ aNwi 1 (1 B 2Nd2N,k,1Q< 1 )) | (38)
S 22N 2N kQN k2N+1 k4N+1
Sk,1

Substituting formulas - into equation (3 , we obtain:
27TZ'd2N,k 1 1 aZNw]QV]YH 1 1
[1 + k2N +0 EAN | 1 (2N + 1)a2N 22N 2N 2N 1+0 L2N+1 X

X{ /q dtanzwko (];N) +UJN+1/Q(t)Clta11 (1 +0 (%)
(

m N+1 m

_i\f:wk / +;wk Z / +0

—
0 a,N+1,k m 0 a,N+m,k

rn 3 j (1+Q(%)>}+O(kijv):0.

a,N+m,N+1
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For k° in (39) we obtain the correct equality 1 — 1 = 0, which means that the form of
asymptotic formula is chosen correctly. For 72V in (39)) we have:

N ™ N s

1 WL
d = + [ / t)dtg — /
2L = 5 2N + )22V (—1)N WN+1O q(t)dtan ;Wk J ) k+
a,N+1,
2N+1 m (40)
tone Y / ] k€N,
k=N+2 \D ak,N+1

In the formula the first term is transformed to the following form:

1 W [ (2.1) (=D f d A
0 0

The second and the third terms in formula will be calculated as follows:

™

N ” 2N+1
HN:_E Wm / +WN+1 E / =
m=1 0 a,N+1m m=N+2 0 a,m,N+1
N ™ s
(2.14)
= E WN+1 Ce — Wm ce =
k=1 0 @,2N+2—m,N+1 0 a,N+1,m

N
_ (t) a(w2N+2—m*wN+l)5tdt _
= wWn+1 [ glt)e a,2N+2—m,N+1

3
,!.
o

— Wy / q(t>ea(w1\]+1fwm)stdta7N+17m (2.144.5)
0

N 2mN o« - 2mi(2N + 1 —m) 2miN
-3 [62N 1 /q(t) oxp lat—" [ 2NFT 2N L || dtuanssmniie
m=1 AWN+1
0
2mi(m — 1 s
( ) 2ik

—e 2N +1 /q(t) exp {at (Wni1 — wm)] dta,N+1,m] dta.N+1.m

AWN +1
this expression will be transformed and simplified as follows:
Ny T(N+m-—-1) 7m(N-m+1) =

) 2mi(1l — N
Hy=Ye 2N+1 [e ON +1 /q(t)e_%“exp{thiexp(WZ(QNT;— th—

m=1 0
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mi(N—m+1) =

¢ 2N+l / g(t)e™ i exp [(—2’“”) P <QM(?N_+11_ N)> } )=

0
Ny T(N+m—1) =« . .

= Z e 2N+1 /q(t)e%” exp [Zktz'(cos < TN —m + )) +
m=1

2N +1
2n(N ) mi(N —m+1)
m —m +
i 2N +1 _
+zsm< N T 1 ))]e dt

_ /q(t)e%“‘e_ ON + 1 exp[(—thi) [cos <27T(N —m 1)) -

2N +1
. (2r(N —m+1)
—zsm( N 1 >]dt},

0

as a result of which we will receive:

N . ”
Nitm—1 2w (N —m+1
Hy = (=2i) 3 exp (7”( 2;111 )) /q(t) sin 2kt 2ktcos( m{ - ﬂ* >> _
m=1 0

(N —-—m+1 L (2r(N—m—+1
— (2N+1 )}dtexp<—2k‘tzsm( (2N+1 )>)dthm.

(42)

Substituting the formulas , into formula , we find:

g
2N

don k1 = : UN+L WN+1 /q(t)dtan +Hy| =
" (2mi) (2N + 1)22N(=1)N

0
2mN

(—1)N+ ] 5% 7i(N +m—1) j
_ _ +1
(2N + 1)722N+1 q(t)dt — 2ie ZleXp IN + 1 at)x (43)
0 m= 0
2n(N —m+1) _7T(N—771+1)
2N + 1 2N + 1

2n(N — 1

X sin [Zkt — 2kt cos

We have proved that all the coefficients don i1 (K =1,2,3,...) of formula (36) are found
in a unique way, in formula we have given explicit formulas for calculating them, so
theorem 5 is completely proved. Studying in a similar way sectors 2),3),..., (4N +2)) of the
indicator diagram (30)), we come to the following statement.

Theorem 6 1) The asymptotics of the eigenvalues of the differential operator - n
the sectors 2),3),..., (4N + 2)) of the indicator diagram satisfies the following law:

271 271 4y
Sk2 = Ska1€ 4N—|—2; Sk3 = Sk2€ AN 4+ 2 — Sk.1€ 4N—|—2;,‘_;
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27i 2mi(m — 1)
Shm = Skmre AN T2 =g 0 AN 42

m=1,2,3,...,4N +2,

where sy satisfies formulas . .

(1]

2l
(3l

[4]

(5]

[6]

(7]

(8]

(]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

2) Wherezn)\km—skN+1, =1,2,3,...,4N+2; k=1,2,3,....
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